[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Consensus reaching in swarms ruled by a hybrid metric-topological distance

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

Recent empirical observations of three-dimensional bird flocks and human crowds have challenged the long-prevailing assumption that a metric interaction distance rules swarming behaviors. In some cases, individual agents are found to be engaged in local information exchanges with a fixed number of neighbors, i.e. a topological interaction. However, complex system dynamics based on pure metric or pure topological distances both face physical inconsistencies in low and high density situations. Here, we propose a hybrid metric-topological interaction distance overcoming these issues and enabling a real-life implementation in artificial robotic swarms. We use network- and graph-theoretic approaches combined with a dynamical model of locally interacting self-propelled particles to study the consensus reaching process for a swarm ruled by this hybrid interaction distance. Specifically, we establish exactly the probability of reaching consensus in the absence of noise. In addition, simulations of swarms of self-propelled particles are carried out to assess the influence of the hybrid distance and noise.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Camazine, J.-L. Deneubourg, N.R. Franks, J. Sneyd, G. Theraulaz, E. Bonabeau, Self-Organization in Biological Systems (Princeton University Press, Princeton, 2001)

  2. T. Vicsek, A. Zafeiris, Phys. Rep. 517, 71 (2012)

    Article  ADS  Google Scholar 

  3. R. Bouffanais, D.K.P. Yue, Phys. Rev. E 81, 041920 (2010)

    Article  ADS  Google Scholar 

  4. D.J.T. Sumpter, Phil. Trans. R. Soc. B 361, 5 (2006)

    Article  Google Scholar 

  5. D.J.T. Sumpter, Collective Animal Behavior (Princeton University Press, Princeton, 2010)

  6. M.A. Hsieh, V. Kumar, L. Chaimowicz, Robotica 26, 691 (2008)

    Article  Google Scholar 

  7. K. Naruse, in Intelligent Autonomous Systems, edited by S. Lee, H.S. Cho, K.J. Yoon, J.M. Lee (Advances in Intelligent Systems and Computing, 2013), Vol. 12, pp. 843–851

  8. C.K. Hemelrijk, H. Hildenbrandt, Ethology 114, 245 (2008)

    Article  Google Scholar 

  9. C.K. Hemelrijk, H. Hildenbrandt, Interface Focus 2, 726 (2012)

    Article  Google Scholar 

  10. C.K. Hemelrijk, H. Hildenbrandt, PLoS One 6, e22479 (2011)

    Article  ADS  Google Scholar 

  11. M. Ballerini, N. Cabibbo, R. Candelier, A. Cavagna, E. Cisbani, I. Giardina, V. Lecomte, A. Orlandi, G. Parisi, A. Procaccini, M. Viale, V. Zdravkovic, Proc. Natl. Acad. Sci. USA 105, 1232 (2008)

    Article  ADS  Google Scholar 

  12. F. Ginelli, H. Chaté, Phys. Rev. Lett. 105, 168103 (2010)

    Article  ADS  Google Scholar 

  13. M. Moussaïd, D. Helbing, G. Theraulaz, Proc. Natl. Acad. Sci. USA 108, 6884 (2011)

    Article  ADS  Google Scholar 

  14. S. Coombs, J.C. Montgomery, in Comparative Hearing: Fish and Amphibians, edited by R.R. Fay, A.N. Popper (Springer Handbook of Auditory Research, Springer-Verlag, New York, 1999), pp. 319–362

  15. R. Bouffanais, G.D. Weymouth, D.K.P. Yue, Proc. R. Soc. A 467, 19 (2011)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  16. D.B. Dusenbery, Sensory Ecology: How organisms acquire and respond to information (W.H. Freeman, Co., New York, 1992)

  17. J. Emmerton, J. Delius, Vision, Brain, in Beyond Sensation: Visual Cognition in Pigeons, edited by H. Zeigler, H.J. Bischof (MIT Press, Cambridge, 1993), pp. 377–390

  18. T. Niizato, Y.-P. Gunji, Ecol. Model. 222, 3041 (2011)

    Article  Google Scholar 

  19. L. Barberis, E.V. Albano, Phys. Rev. E 89, 012139 (2014)

    Article  ADS  Google Scholar 

  20. H.G. Tanner, A. Jadbabaie, J.P. Pappas, in Proc. of the 42nd IEEE Conference on Decision and Control, IEEE, Maui, Hawaii USA, 2003, pp. 2010–2015

  21. H.G. Tanner, A. Jadbabaie, J.P. Pappas, IEEE Trans. Automat. Control 52, 863 (2007)

    Article  MathSciNet  Google Scholar 

  22. M. Komareji, R. Bouffanais, PLoS One 8, e82578 (2013)

    Article  ADS  Google Scholar 

  23. Y. Shang, R. Bouffanais, Sci. Rep. 4, 4184 (2014)

    ADS  Google Scholar 

  24. P. Miller, The Smart Swarm (Penguin Group, 2010)

  25. M. Aldana, V. Dossetti, C. Huepe, V.M. Kenkre, H. Larralde, Phys. Rev. Lett. 98, 095702 (2007)

    Article  ADS  Google Scholar 

  26. R. Olfati-Saber, J.A. Fax, R.M. Murray, Proc. IEEE 95, 215 (2007)

    Article  Google Scholar 

  27. D. Eppstein, M.S. Paterson, F.F. Yao, Discrete Computational Geometry 17, 263 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  28. P. Balister, B. Bollobás, A. Sarkar, M. Walters, Adv. Appl. Probab. 37, 1 (2005)

    Article  MATH  Google Scholar 

  29. P. Balister, B. Bollobás, A. Sarkar, M. Walters, Adv. Appl. Probab. 41, 1 (2009)

    Article  MATH  Google Scholar 

  30. W. Ren, R.W. Beard, IEEE Trans. Autom. Control 50, 655 (2005)

    Article  MathSciNet  Google Scholar 

  31. H. Chaté, F. Ginelli, G. Grégoire, F. Peruani, F. Raynaud, Eur. Phys. J. B 64, 451 (2008)

    Article  ADS  Google Scholar 

  32. G. Grégoire, H. Chaté, Y.H. Tu, Physica D 181, 157 (2003)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  33. G. Grégoire, H. Chaté, Phys. Rev. Lett. 92, 025702 (2004)

    Article  ADS  Google Scholar 

  34. I. Matei, J. Baras, C. Somarakis, SIAM J. Control Optim. 51, 1574 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  35. I. Matei, N. Martins, J. Baras, in Proc. of the 47th IEEE Conference on Decision and Control, Cancún, Mexico, 2008, pp. 3535–3540

  36. M. Huang, S. Dey, G.N. Nair, J.H. Manton, Automotica 46, 1571 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  37. T. Vicsek, A. Czirók, E. Ben-Jacob, I. Cohen, O. Shochet, Phys. Rev. Lett. 75, 1226 (1995)

    Article  ADS  Google Scholar 

  38. M. Komareji, Y. Shang, R. Bouffanais, arXiv:1409.7207 (2014)

  39. D.S. Calovi, U. Lopez, P. Schuhmacher, H. Chaté, C. Sire, G. Theraulaz, arXiv:1409.6430 (2014)

  40. A. Attanasi, A. Cavagna, L. Del Castello, I. Giardina, T.S. Grigera, A. Jelić, S. Melillo, L. Parisi, O. Pohl, E. Shen, M. Viale, Nat. Phys. 10, 691 (2014)

    Article  Google Scholar 

  41. H. Chaté, F. Ginelli, G. Grégoire, F. Raynaud, Phys. Rev. E 77, 046113 (2008)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roland Bouffanais.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shang, Y., Bouffanais, R. Consensus reaching in swarms ruled by a hybrid metric-topological distance. Eur. Phys. J. B 87, 294 (2014). https://doi.org/10.1140/epjb/e2014-50094-4

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2014-50094-4

Keywords

Navigation