[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content

Advertisement

Log in

Scaling behavior of threshold epidemics

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

We study the classic Susceptible-Infected-Recovered (SIR) model for the spread of an infectious disease. In this stochastic process, there are two competing mechanism: infection and recovery. Susceptible individuals may contract the disease from infected individuals, while infected ones recover from the disease at a constant rate and are never infected again. Our focus is the behavior at the epidemic threshold where the rates of the infection and recovery processes balance. In the infinite population limit, we establish analytically scaling rules for the time-dependent distribution functions that characterize the sizes of the infected and the recovered sub-populations. Using heuristic arguments, we also obtain scaling laws for the size and duration of the epidemic outbreaks as a function of the total population. We perform numerical simulations to verify the scaling predictions and discuss the consequences of these scaling laws for near-threshold epidemic outbreaks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. McNeill, Plagues and People (Anchor Books, New York, 1989)

  2. M. Oldstone, Viruses, Plagues, and History (Oxford University Press, Oxford, 1998)

  3. D. Bernoulli, Mem. Math. Phys. Acad. Roy. Sci., Paris 1 (1760)

  4. A.S. Perelson, P.W. Nelson, SIAM Rev. 41, 3 (1999)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  5. M.A. Nowak, R. May, Virus Dynamics: Mathematical Principles of Immunology and Virology (Oxford University Press, Oxford, 2001)

  6. M.A. Ludwig, The Giant Black Book of Computer Viruses (American Eagle Publications Inc., Show Low, 1998)

  7. E.M. Rogers, Diffusion of Innovations (Free Press, New York, 2003)

  8. P.L. Krapivsky, S. Redner, D. Volovik, J. Stat. Mech. P12003 (2011)

  9. M. Granovetter, Am. J. Sociol. 83, 1420 (1978)

    Article  Google Scholar 

  10. S. Lohmann, World Polit. 47, 42 (1994)

    Article  Google Scholar 

  11. D.J. Day, D.G. Kendall, Nature 204, 496 (1964)

    Article  ADS  Google Scholar 

  12. J.D. Murray, Mathematical Biology. I. An Introduction (Springer-Verlag, New York, 2002)

  13. A.G. McKendrick, Proc. Edinb. Math. Soc. 14, 98 (1926)

    Google Scholar 

  14. N.T.J. Bailey, Biometrika 37, 193 (1950)

    MathSciNet  MATH  Google Scholar 

  15. N.T.J. Bailey, Biometrika 40, 177 (1953)

    MathSciNet  MATH  Google Scholar 

  16. N.T.J. Bailey, The Mathematical Theory of Infectious Diseases (Oxford University Press, Oxford, 1987)

  17. D.P. Maki, M. Thompson, Mathematical Models and Applications, with emphasis on the social, life, and management sciences (Englewood Cliffs, N.J., Prentice-Hall, 1973)

  18. H. Andersson, T. Britton, Stochastic Epidemic Models and Their Statistical Analysis (Springer, New York, 2000)

  19. P.L. Krapivsky, S. Redner, E. Ben-Naim, A Kinetic View of Statistical Physics (Cambridge University Press, Cambridge, 2010)

  20. A. Martin-Löf, J. Appl. Probab. 35, 671 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  21. E. Ben-Naim, P.L. Krapivsky, Phys. Rev. E 69, R050901 (2004)

    Article  ADS  Google Scholar 

  22. D.A. Kessler, N.M. Shnerb, Phys. Rev. E 76, R010901 (2007)

    Article  ADS  Google Scholar 

  23. L.F. Gordillo, S.A. Marion, A. Martin-Löf, P.E. Greenwood, Bull. Math. Biol. 70, 589 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  24. R. van der Hofstad, A.J.E.M. Janssen, J.S.H. van Leeuwaarden, Adv. Appl. Probab. 42, 1187 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  25. D.A. Kessler, N.M. Shnerb, arXiv:1201.5306

  26. R. Anderson, R. May, Infectious Diseases: Dynamics and Control (Oxford University Press, Oxford, 1991)

  27. H.W. Hethcote, SIAM Rev. 42, 599 (2000)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  28. G.H. Weiss, M. Dishon, Math. Biosci. 11, 261 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  29. H.E. Daniels, Biometrika 59, 211 (1972)

    Article  MATH  Google Scholar 

  30. C. Lefèvre, P. Picard, Adv. Appl. Probab. 22, 25 (1990)

    Article  MATH  Google Scholar 

  31. F. Ball, D. Clancy, Adv. Appl. Probab. 25, 721 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  32. H. Andersson, B. Djehiche, J. Appl. Probab. 35, 662 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  33. J. Grasman, Math. Biosci. 152, 13 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  34. R. Antia, R.R. Regoes, J.C. Koella, C.T. Bergstrom, Nature 426, 658 (2003)

    Article  ADS  Google Scholar 

  35. P. Grassberger, Math. Biosci. 63, 157 (1983)

    Article  MATH  Google Scholar 

  36. D. Stauffer, A. Aharony, Introduction to Percolation Theory (Taylor & Francis, Briston PA, 1994)

  37. H. Andersson, B. Djehiche, J. Appl. Probab. 34, 698 (1998)

    Article  MathSciNet  Google Scholar 

  38. H. Hinrichsen, Adv. Phys. 49, 815 (2000)

    Article  ADS  Google Scholar 

  39. T. Antal, M. Droz, A. Lipowski, G. Ódor, Phys. Rev. E 64, 036118 (2001)

    Article  ADS  Google Scholar 

  40. J. Marro, R. Dickman, Nonequilibrium Phase Transition in Lattice Models (Cambridge University Press, Cambridge, 1999)

  41. J.D. Murray, Mathematical Biology. II. Spatial Models and Biomedical Applications (Springer-Verlag, New York, 2002)

  42. C.P. Warren, L.M. Sander, I.M. Sokolov, Phys. Rev. E 66, 056105 (2002)

    Article  ADS  Google Scholar 

  43. T. Tomé, R.M. Ziff, Phys. Rev. E 82, 051921 (2010)

    Article  ADS  Google Scholar 

  44. R. Pastor-Satorras, A. Vespignani, Phys. Rev. Lett. 86, 3200 (2001)

    Article  ADS  Google Scholar 

  45. R.M. May, A.L. Lloyd, Phys. Rev. E 64, 066112 (2001)

    Article  ADS  Google Scholar 

  46. M.E.J. Newman, Phys. Rev. E 66, 016128 (2002)

    Article  MathSciNet  ADS  Google Scholar 

  47. T.E. Harris, The Theory of Branching Processes (Dover, New York, 1989)

  48. M. Kimmel, D. Axelrod, Branching Processes in Biology (Springer, New York, 2002)

  49. C.J. Ridler-Rowe, J. Appl. Probab. 4, 19 (1967)

    Article  MathSciNet  Google Scholar 

  50. N.G. Van Kampen, Stochastic Processes in Physics and Chemistry (North Holland, Amsterdam, 2003)

  51. B. Bollobás, C. Borgs, J.T. Chayes, J.H. Kim, D.B. Wilson, Random Struct. Algorithms 18, 201 (2001)

    Article  MATH  Google Scholar 

  52. E. Ben-Naim, P.L. Krapivsky, Phys. Rev. E 71, 026129 (2005)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Ben-Naim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ben-Naim, E., Krapivsky, P.L. Scaling behavior of threshold epidemics. Eur. Phys. J. B 85, 145 (2012). https://doi.org/10.1140/epjb/e2012-30117-0

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2012-30117-0

Keywords

Navigation