Abstract
We study the classic Susceptible-Infected-Recovered (SIR) model for the spread of an infectious disease. In this stochastic process, there are two competing mechanism: infection and recovery. Susceptible individuals may contract the disease from infected individuals, while infected ones recover from the disease at a constant rate and are never infected again. Our focus is the behavior at the epidemic threshold where the rates of the infection and recovery processes balance. In the infinite population limit, we establish analytically scaling rules for the time-dependent distribution functions that characterize the sizes of the infected and the recovered sub-populations. Using heuristic arguments, we also obtain scaling laws for the size and duration of the epidemic outbreaks as a function of the total population. We perform numerical simulations to verify the scaling predictions and discuss the consequences of these scaling laws for near-threshold epidemic outbreaks.
Similar content being viewed by others
References
M. McNeill, Plagues and People (Anchor Books, New York, 1989)
M. Oldstone, Viruses, Plagues, and History (Oxford University Press, Oxford, 1998)
D. Bernoulli, Mem. Math. Phys. Acad. Roy. Sci., Paris 1 (1760)
A.S. Perelson, P.W. Nelson, SIAM Rev. 41, 3 (1999)
M.A. Nowak, R. May, Virus Dynamics: Mathematical Principles of Immunology and Virology (Oxford University Press, Oxford, 2001)
M.A. Ludwig, The Giant Black Book of Computer Viruses (American Eagle Publications Inc., Show Low, 1998)
E.M. Rogers, Diffusion of Innovations (Free Press, New York, 2003)
P.L. Krapivsky, S. Redner, D. Volovik, J. Stat. Mech. P12003 (2011)
M. Granovetter, Am. J. Sociol. 83, 1420 (1978)
S. Lohmann, World Polit. 47, 42 (1994)
D.J. Day, D.G. Kendall, Nature 204, 496 (1964)
J.D. Murray, Mathematical Biology. I. An Introduction (Springer-Verlag, New York, 2002)
A.G. McKendrick, Proc. Edinb. Math. Soc. 14, 98 (1926)
N.T.J. Bailey, Biometrika 37, 193 (1950)
N.T.J. Bailey, Biometrika 40, 177 (1953)
N.T.J. Bailey, The Mathematical Theory of Infectious Diseases (Oxford University Press, Oxford, 1987)
D.P. Maki, M. Thompson, Mathematical Models and Applications, with emphasis on the social, life, and management sciences (Englewood Cliffs, N.J., Prentice-Hall, 1973)
H. Andersson, T. Britton, Stochastic Epidemic Models and Their Statistical Analysis (Springer, New York, 2000)
P.L. Krapivsky, S. Redner, E. Ben-Naim, A Kinetic View of Statistical Physics (Cambridge University Press, Cambridge, 2010)
A. Martin-Löf, J. Appl. Probab. 35, 671 (1998)
E. Ben-Naim, P.L. Krapivsky, Phys. Rev. E 69, R050901 (2004)
D.A. Kessler, N.M. Shnerb, Phys. Rev. E 76, R010901 (2007)
L.F. Gordillo, S.A. Marion, A. Martin-Löf, P.E. Greenwood, Bull. Math. Biol. 70, 589 (2008)
R. van der Hofstad, A.J.E.M. Janssen, J.S.H. van Leeuwaarden, Adv. Appl. Probab. 42, 1187 (2010)
D.A. Kessler, N.M. Shnerb, arXiv:1201.5306
R. Anderson, R. May, Infectious Diseases: Dynamics and Control (Oxford University Press, Oxford, 1991)
H.W. Hethcote, SIAM Rev. 42, 599 (2000)
G.H. Weiss, M. Dishon, Math. Biosci. 11, 261 (1971)
H.E. Daniels, Biometrika 59, 211 (1972)
C. Lefèvre, P. Picard, Adv. Appl. Probab. 22, 25 (1990)
F. Ball, D. Clancy, Adv. Appl. Probab. 25, 721 (1993)
H. Andersson, B. Djehiche, J. Appl. Probab. 35, 662 (1998)
J. Grasman, Math. Biosci. 152, 13 (1998)
R. Antia, R.R. Regoes, J.C. Koella, C.T. Bergstrom, Nature 426, 658 (2003)
P. Grassberger, Math. Biosci. 63, 157 (1983)
D. Stauffer, A. Aharony, Introduction to Percolation Theory (Taylor & Francis, Briston PA, 1994)
H. Andersson, B. Djehiche, J. Appl. Probab. 34, 698 (1998)
H. Hinrichsen, Adv. Phys. 49, 815 (2000)
T. Antal, M. Droz, A. Lipowski, G. Ódor, Phys. Rev. E 64, 036118 (2001)
J. Marro, R. Dickman, Nonequilibrium Phase Transition in Lattice Models (Cambridge University Press, Cambridge, 1999)
J.D. Murray, Mathematical Biology. II. Spatial Models and Biomedical Applications (Springer-Verlag, New York, 2002)
C.P. Warren, L.M. Sander, I.M. Sokolov, Phys. Rev. E 66, 056105 (2002)
T. Tomé, R.M. Ziff, Phys. Rev. E 82, 051921 (2010)
R. Pastor-Satorras, A. Vespignani, Phys. Rev. Lett. 86, 3200 (2001)
R.M. May, A.L. Lloyd, Phys. Rev. E 64, 066112 (2001)
M.E.J. Newman, Phys. Rev. E 66, 016128 (2002)
T.E. Harris, The Theory of Branching Processes (Dover, New York, 1989)
M. Kimmel, D. Axelrod, Branching Processes in Biology (Springer, New York, 2002)
C.J. Ridler-Rowe, J. Appl. Probab. 4, 19 (1967)
N.G. Van Kampen, Stochastic Processes in Physics and Chemistry (North Holland, Amsterdam, 2003)
B. Bollobás, C. Borgs, J.T. Chayes, J.H. Kim, D.B. Wilson, Random Struct. Algorithms 18, 201 (2001)
E. Ben-Naim, P.L. Krapivsky, Phys. Rev. E 71, 026129 (2005)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Ben-Naim, E., Krapivsky, P.L. Scaling behavior of threshold epidemics. Eur. Phys. J. B 85, 145 (2012). https://doi.org/10.1140/epjb/e2012-30117-0
Received:
Revised:
Published:
DOI: https://doi.org/10.1140/epjb/e2012-30117-0