[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Combining SWAT Model and Regionalization Approach to Estimate Soil Erosion under Limited Data Availability Conditions

  • SOIL EROSION
  • Published:
Eurasian Soil Science Aims and scope Submit manuscript

Abstract—

The objective of this paper is to test the feasibility of using the SWAT model under limited data availability to estimate soil erosion in two adjacent watersheds, namely Mazer (gauged) and El Himer (ungauged) watersheds. In this study, we used the physical proximity approach as one of the regionalization methods while ensuring the similarity between both watersheds. Moreover, the comparison of the most important characteristics that influence runoff production shows that Mazer and El Himer watersheds are nearly similar in terms of soil, land use and all other morphological and physical characteristics. In aiming to achieve the objectives set out in this study, SWAT Model was calibrated and validated on a monthly time step at Mazer watershed using SWAT-CUP (SUFI-2). Results showed a good correlation between the observed and simulated streamflow with a NSE (Nash–Sutcliffe Efficiency) of 0.65, 0.89 and R2 of 0.75, 0.95 for calibration and validation, respectively. After the calibration and validation processes in Mazer watersheds, the fitted values for the most sensitive parameters have been applied at El Himer watershed and both models were executed for 5 years to estimate streamflow and soil erosion at Mazer and El Himer watershed. The results showed that all studied subwatersheds present a weak amount of soil erosion rate, with a maximum of 5.20 t/ha/year. Generally, soil erosion in El Himer is slightly high. The average annual values recorded of sediment yield at Mazer and El Himer were 725 and 2991 tons/year, respectively. Moreover, the results obtained can be used in other watersheds with the same characteristics. The interest shown in this type of study stems from our major problem inherent in the developing country, where very few measuring stations are available. It is hoped to demonstrate the utility of regionalization and to encourage modelers to work more on ungauged watersheds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. K. C. Abbaspour, SWAT-CUP4: SWAT Calibration and Uncertainty Programs: A User Manual (Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, 2011), p. 106.

    Google Scholar 

  2. K. C. Abbaspour, J. Yang, I. Maximov, R. Siber, K. Bogner, J. Mieleitner, and R. Srinivasan, “Modeling hydrology and water quality in the pre-alpine/alpine Thur watershed using SWAT,” J. Hydrol. 333 (2–4), 413–430 (2007). https://doi.org/10.1016/j.jhydrol.2006.09.014

    Article  Google Scholar 

  3. O. M. M. Abdelwahab, G. F. Ricci, A. M. De Girolamo, and F. Gentile, “Modeling soil erosion in a Mediterranean watershed: comparison between SWAT and AnnAGNPS models,” Environ. Res. 166, 363–376 (2018). https://doi.org/10.1016/j.envres.2018.06.029

    Article  Google Scholar 

  4. J. G. Arnold, D. N. Moriasi, P. W. Gassman, K. C. Abbaspour, M. J. White, R. Srinivasan, and N. Kannan, “SWAT: model use, calibration, and validation,” Trans. ASABE 55 (4), 1491–1508 (2012).

    Article  Google Scholar 

  5. J. G. Arnold, R. Srinivasan, R. S. Muttiah, and J. R. Williams, “Large area hydrologic modeling and assessment. Part I: Model development,” J. Am. Water Resour. Assoc. 34 (1), 73–89. (1998). https://doi.org/10.1111/j.1752-1688.1998.tb05961.x

    Article  Google Scholar 

  6. R. Arsenault and F. P. Brissette, “Continuous streamflow prediction in ungauged basins: The effects of equifinality and parameter set selection on uncertainty in regionalization approaches,” Water Resour. Res. 50 (7), 6135–6153 (2014). https://doi.org/10.1002/2013wr014898

    Article  Google Scholar 

  7. A. Bárdossy, “Calibration of hydrological model parameters for ungauged catchments,” Hydrol. Earth Syst. Sci. 11 (2), 703–710 (2007). https://doi.org/10.5194/hess-11-703-2007

    Article  Google Scholar 

  8. B. C. Bates, Regionalization of Hydrologic Data: A Review (Cooperative Research Centre for Catchment Hydrology, Canberra, 1994).

    Google Scholar 

  9. H. E. Beck, A. I. van Dijk, A. De Roo, D. G. Miralles, T. R. McVicar, J. Schellekens, and L. A. Bruijnzeel, “Global-scale regionalization of hydrologic model parameters,” Water Resour. Res. 52 (5), 3599–3622 (2016).

    Article  Google Scholar 

  10. K. Beven and A. Binley, “The future of distributed models: model calibration and uncertainty prediction,” Hydrol. Process. 6 (3), 279–298 (1992). https://doi.org/10.1002/hyp.3360060305

    Article  Google Scholar 

  11. J. Blaszczynski, “Estimating watershed runoff and sediment yield using a GIS interface to curve number and MUSLE models,” in Bureau of Land Management Resource Notes No. 66 (US Department of Interior, Washington, DC, 2003).

    Google Scholar 

  12. G. Blöschl, “Rainfall-runoff modeling of ungauged catchments,” in Encyclopedia of Hydrological Sciences (Wiley, New York, 2006). https://doi.org/10.1002/0470848944.hsa140

    Book  Google Scholar 

  13. G. Blöschl and M. Sivapalan, “Scale issues in hydrological modeling: a review,” Hydrol. Process. 9 (3–4), 251–290 (1995). https://doi.org/10.1002/hyp.3360090305

    Article  Google Scholar 

  14. Y. Bouslihim, A. Rochdi, N. E. A. Paaza, and L. Liuzzo, “Understanding the effects of soil data quality on SWAT model performance and hydrological processes in Tamedroust watershed (Morocco),” J. Afr. Earth Sci. 160, 103616 (2019). https://doi.org/10.1016/j.jafrearsci.2019.103616

    Article  Google Scholar 

  15. H. Briak, R. Moussadek, K. Aboumaria, and R. Mrabet, “Assessing sediment yield in Kalaya gauged watershed (Northern Morocco) using GIS and SWAT model,” Int. Soil Water Conserv. Res. 4 (3), 177–185 (2016). https://doi.org/10.1016/j.iswcr.2016.08.002

    Article  Google Scholar 

  16. A. Bronstert, D. Niehoff, and G. Bürger, “Effects of climate and land-use change on storm runoff generation: present knowledge and modeling capabilities,” Hydrol. Process. 16 (2), 509–529 (2002). https://doi.org/10.1002/hyp.326

    Article  Google Scholar 

  17. R. Eberhart and J. Kennedy, “A new optimizer using particle swarm theory,” in Proceedings of the Sixth International Symposium on Micro Machine and Human Science, MHS’95 (Institute of Electrical and Electronics Engineers, Piscataway, NJ, 1995), pp. 39–43. https://doi.org/10.1109/mhs.1995.494215

  18. D. R. Fuka, M. T. Walter, C. Macalister, A. T. Degaetano, T. S. Steenhuis, and Z. M. Easton, “Using the Climate Forecast System Reanalysis as weather input data for watershed models,” Hydrol. Process. 28 (22), 5613–5623 (2014). https://doi.org/10.1002/hyp.10073

    Article  Google Scholar 

  19. H. El Gasmi, B. El Mansouri, and M. Tammal, “Surface flows in the plate of Settat-Ben Ahmed and the plain of Berrechid: endoreic hydrography,” Int. J. Innovation Sci. Res. 9, 40–53 (2014).

    Google Scholar 

  20. W. H. Green and G. A. Ampt, “Studies on soil physics,” J. Agric. Sci. 4 (1), 1–24 (1911). https://doi.org/10.1017/s0021859600001441

    Article  Google Scholar 

  21. A. V. Griensven and W. Bauwens, “Multiobjective autocalibration for semidistributed water quality models,” Water Resour. Res. 39 (12), (2003). https://doi.org/10.1029/2003wr002284

  22. H. V. Gupta, S. Sorooshian, and P. O. Yapo, “Toward improved calibration of hydrologic models: multiple and noncommensurable measures of information,” Water Resour. Res. 34 (4), 751–763 (1998). https://doi.org/10.1029/97wr03495

    Article  Google Scholar 

  23. Y. He, A. Bárdossy, and E. Zehe, “A review of regionalisation for continuous streamflow simulation,” Hydrol. Earth Syst. Sci. 15 (11), 3539–3553 (2011). https://doi.org/10.5194/hess-15-3539-2011

    Article  Google Scholar 

  24. M. Hrachowitz, H. Savenije, G. Blöschl, J. Mcdonnell, M. Sivapalan, J. Pomeroy, and C. Cudennec, “A decade of predictions in ungauged basins (PUB)—a review,” Hydrol. Sci. J. 58 (6), 1198–1255 (2013).https://doi.org/10.1080/02626667.2013.80318325

  25. K. Kaffas, V. Hrissanthou, and S. Sevastas, “Modeling hydromorphological processes in a mountainous basin using a composite mathematical model and ArcSWAT,” Catena 162, 108–129 (2018). https://doi.org/10.1016/j.catena.2017.11.017

  26. P. Krause, D. P. Boyle, and F. Bäse, “Comparison of different efficiency criteria for hydrological model assessment,” Adv. Geosci. 5, 89–97 (2005). https://doi.org/10.5194/adgeo-5-89-2005

    Article  Google Scholar 

  27. G. Kuczera and E. Parent, “Monte Carlo assessment of parameter uncertainty in conceptual catchment models: the Metropolis algorithm,” J. Hydrol. 211 (1–4), 69–85 (1998). https://doi.org/10.1016/s0022-1694(98)00198-x

    Article  Google Scholar 

  28. L. Ma, J. C. A. Ii, L. R. Ahuja, M. J. Shaffer, J. D. Hanson, and K. W. Rojas, “Root Zone Water Quality Model sensitivity analysis using Monte Carlo simulation,” Trans. ASAE 43 (4), 883–895 (2000). https://doi.org/10.13031/2013.2984

    Article  Google Scholar 

  29. B. Merz and A. Bárdossy, “Effects of spatial variability on the rainfall runoff process in a small loess catchment,” J. Hydrol. 212–213, 304–317 (1998). https://doi.org/10.1016/s0022-1694(98)00213-3

    Article  Google Scholar 

  30. R. Merz and G. Blöschl, “Regionalization of catchment model parameters,” J. Hydrol. 287 (1–4), 95–123 (2004). https://doi.org/10.1016/j.jhydrol.2003.09.028

    Article  Google Scholar 

  31. R. Merz, G. Blöschl, and J. D. Parajka, “Regionalization methods in rainfall-runoff modelling using large catchment samples,” in Large Sample Basin Experiments for Hydrological Model Parameterization: Results of the Model Parameter Experiment–MOPEX (International Association of Hydrological Sciences, Wallingford, 2006).

    Google Scholar 

  32. D. N. Moriasi, J. G. Arnold, M. W. V. Liew, R. L. Bingner, R. D. Harmel, and T. L. Veith, “Model evaluation guidelines for systematic quantification of accuracy in watershed simulations,” Trans. ASABE 50 (3), 885–900 (2007). https://doi.org/10.13031/2013.23153

    Article  Google Scholar 

  33. J. Nash and J. Sutcliffe, “River flow forecasting through conceptual models: Part I—A discussion of principles,” J. Hydrol. 10 (3), 282–290 (1970). https://doi.org/10.1016/0022-1694(70)90255-6

    Article  Google Scholar 

  34. S. L. Neitsch, J. G. Arnold, J. R. Kiniry, and J. R. Williams, Soil and Water Assessment Tool Theoretical Documentation, Version 2009 (Texas A&M Natural Resources Institute, College Station, TX, 2011),

    Google Scholar 

  35. L. Oudin, V. Andréassian, C. Perrin, C. Michel, and N. L. Moine, “Spatial proximity, physical similarity, regression and ungaged catchments: A comparison of regionalization approaches based on 913 French catchments,” Water Resour. Res. 44 (3), (2008). https://doi.org/10.1029/2007wr006240

  36. I. Ouraich and W. E. Tyner, Climate Change Impacts on Moroccan Agriculture and the Whole Economy. An Analysis of the Impacts of the Plan Maroc Vert in Morocco: WIDER Working Paper 83/2014 (United Nations University World Institute for Development Economics Research, Helsinki, 2014) https://doi.org/10.35188/unu-wider/2014/804-9

  37. J. Parajka, A. Viglione, M. Rogger, J. L. Salinas, M. Sivapalan, and G. Blöschl, “Comparative assessment of predictions in ungauged basins—Part 1: Runoff-hydrograph studies,” Hydrol. Earth Syst. Sci. 17 (5), 1783–1795 (2013). https://doi.org/10.5194/hess-17-1783-2013

    Article  Google Scholar 

  38. T. Razavi and P. Coulibaly, “Streamflow prediction in ungauged basins: review of regionalization methods,” J. Hydrol. Eng. 18 (8), 958–975 (2013). https://doi.org/10.1061/(asce)he.1943-5584.0000690

    Article  Google Scholar 

  39. M. Requier-Desjardins, Impacts des Changements Climatiques sur l’Agriculture au Maroc et en Tunisie et Priorités d’Adaptation (Centre International de Hautes Études Agronomiques Méditerranéennes, Montpellier, 2010).

    Google Scholar 

  40. J. Samuel, P. Coulibaly, and R. A. Metcalfe, “Estimation of continuous streamflow in Ontario ungauged basins: Comparison of regionalization methods,” J. Hydrol. Eng. 16 (5), 447–459 (2011). https://doi.org/10.1061/(asce)he.1943-5584.0000338

    Article  Google Scholar 

  41. G. Sapriza-Azuri, J. Jódar, V. Navarro, L. J. Slooten, J. Carrera, and H. V. Gupta, “Impacts of rainfall spatial variability on hydrogeological response,” Water Resour. Res. 51 (2), 1300–1314 (2015). https://doi.org/10.1002/2014wr016168

    Article  Google Scholar 

  42. K. E. Saxton and W. J. Rawls, “Soil water characteristic estimates by texture and organic matter for hydrologic solutions,” Soil Sci. Soc. Am. J. 70 (5), 1569–1578 (2006). https://doi.org/10.2136/sssaj2005.0117

    Article  Google Scholar 

  43. Soil Conservation Service, “Hydrology,” in National Engineering Handbook (United States Department of Agriculture, Beltsville, MD, 1972), Section 4.

  44. X. Song, J. Zhang, C. Zhan, Y. Xuan, M. Ye, and C. Xu, “Global sensitivity analysis in hydrological modeling: review of concepts, methods, theoretical framework, and applications,” J. Hydrol. 523, 739–757 (2015).

    Article  Google Scholar 

  45. A. Stehr, P. Debels, F. Romero, and H. Alcayaga, “Hydrological modelling with SWAT under conditions of limited data availability: evaluation of results from a Chilean case study,” Hydrol. Sci. J. 53 (3), 588–601 (2008). https://doi.org/10.1623/hysj.53.3.588

    Article  Google Scholar 

  46. X. Wang and A. M. Melesse, “Effects of STATSGO and SSURGO as inputs on SWAT model’s snowmelt simulation,” J. Am. Water Resour. Assoc. 42 (5), 1217–1236 (2006). https://doi.org/10.1111/j.1752-1688.2006.tb05296.x

    Article  Google Scholar 

  47. J. R. Williams, “Sediment routing for agricultural watersheds 1,” J. Am. Water Resour. Assoc. 11 (5), 965–974 (1975).

    Article  Google Scholar 

  48. A. W. Worqlul, E. K. Ayana, H. Yen, J. Jeong, C. Macalister, R. Taylor, et al., “Evaluating hydrologic responses to soil characteristics using SWAT model in a paired-watersheds in the Upper Blue Nile Basin,” Catena 163, 332–341 (2018). https://doi.org/10.1016/j.catena.2017.12.040

    Article  Google Scholar 

  49. H. Wu and B. Chen, “Evaluating uncertainty estimates in distributed hydrological modeling for the Wenjing River watershed in China by GLUE, SUFI-2, and ParaSol methods,” Ecol. Eng. 76, 110–121 (2015). https://doi.org/10.1016/j.ecoleng.2014.05.014

    Article  Google Scholar 

  50. A. Yair and N. Raz-Yassif, “Hydrological processes in a small arid catchment: scale effects of rainfall and slope length,” Geomorphology 61 (1–2), 155–169 (2004). https://doi.org/10.1016/j.geomorph.2003.12.003

    Article  Google Scholar 

  51. A. R. Young, “Stream flow simulation within UK ungauged catchments using a daily rainfall-runoff model,” J. Hydrol. 320 (1–2), 155–172. (2006). https://doi.org/10.1016/j.jhydrol.2005.07.017

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Bouslihim.

Ethics declarations

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bouslihim, Y., Rochdi, A. & Paaza, N.E. Combining SWAT Model and Regionalization Approach to Estimate Soil Erosion under Limited Data Availability Conditions. Eurasian Soil Sc. 53, 1280–1292 (2020). https://doi.org/10.1134/S1064229320090021

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064229320090021

Keywords:

Navigation