[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Application of superconducting integrated receiver in the TELIS instrument for the spectroscopic study of atmosphere

  • Novel Radio Systems and Elements
  • Published:
Journal of Communications Technology and Electronics Aims and scope Submit manuscript

Abstract

A superconducting integrated receiver (SIR) (superheterodyne receiver) is developed for detection of radiation in a frequency range of 450–650 GHz. The SIR is used as a detector in the Terahertz Limb Sounder (TELIS) instrument that is mounted on a high-altitude balloon for the study of the atmospheric composition in the terahertz frequency range using limb sounding. The TELIS instrument and its detectors are described, and several results of the measurements in Polar Regions in 2009–2014 are presented

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. P. Koshelets, S. V. Shitov, L. V. Filippenko, et al., Appl. Phys. Lett. 68, 1273 (1996).

    Article  Google Scholar 

  2. V. P. Koshelets and S. V. Shitov, Supercond. Sci. Technol. 13 (5), R53 (2000).

    Article  Google Scholar 

  3. M. Birk, G. Wagner, G. de Lange, et al., in Proc. 21st Int. Symp. Space THz Technol. Mar. 23–25, 2010 (Oxford Univ. Press, Oxford, 2010), p.195.

    Google Scholar 

  4. F. Friedl-Vallon, G. Maucher, M. Seefeldner, et al., Appl. Opt 43, 3335 (2004).

    Article  Google Scholar 

  5. N. Suttiwong, “Development and Characterization of the Balloon Borne Instrument TELIS (TErahertz and submillimeter LImb Sounder): 1.8 THz receiver,” PhD Thesis (Bremen Univ., Bremen, 2010).

    Google Scholar 

  6. O. S. Kiselev, Candidate’s Dissertation in Mathematics and Physics (IRE im. V. A. Kotel’nikova RAN, Moscow, 2011).

    Google Scholar 

  7. P. Sobis, V. Drakinskiy, N. Wadefalk, et al., in Proc._ESA ESTEC Micro-and Millimetre Wave Technol. Techn. Workshop, Noordwijk, Nov. 25–27, 2014 (Europ. Space Res. Technol. Center (ESTEC), Noordwijk, 2014), p.1.

    Google Scholar 

  8. V. P. Koshelets, P. N. Dmitriev, M. I. Faley, et al., IEEE Trans. Terahertz Sci. Technol. 5, 687 (2015).

    Article  Google Scholar 

  9. A. De Lange, M. Birk, G. de Lange, et al., Atmos. Meas. Techniques 5, 487 (2012).

    Article  Google Scholar 

  10. J. Xu, F. Schreier, P. Vogt, et al., Geosci. Instrum., Method Data System. Discuss 3, 251 (2013).

    Article  Google Scholar 

  11. Y. Kasai, H. Sagawa, D. Kreyling, et al., Atmos. Meas. Techniques 6, 2311 (2013).

    Article  Google Scholar 

  12. H. Sagawa, T. O. Sato, P. Baron, et al., Atmos. Meas. Techniques 6, 3325 (2013).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. S. Kiselev.

Additional information

Original Russian Text © O.S. Kiselev, A.B. Ermakov, V.P. Koshelets, L.V. Filippenko, 2016, published in Radiotekhnika i Elektronika, 2016, Vol. 61, No. 11, pp. 1132–1138.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kiselev, O.S., Ermakov, A.B., Koshelets, V.P. et al. Application of superconducting integrated receiver in the TELIS instrument for the spectroscopic study of atmosphere. J. Commun. Technol. Electron. 61, 1314–1319 (2016). https://doi.org/10.1134/S1064226916110061

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064226916110061

Navigation