[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Focused ultrasound as a tool to input sensory information to humans (Review)

  • Acoustics of Living Systems. Biological acoustics
  • Published:
Acoustical Physics Aims and scope Submit manuscript

Abstract

This review is devoted to the analysis of studies and implementations related to the use of focused ultrasound for functional effects on neuroreceptor structures. Special attention was paid to the stimulation of neuroreceptor structures in order to input sensory information to humans. This branch of medical and physiological acoustics appeared in Russia in the early 1970s and was being efficiently developed up to the late 1980s. Then, due to lack of financial support, only individual researchers remained at this field and, as a result, we have no full- fledged theoretical research and practical implementations in this area yet. Many promising possibilities of using functional effects of focused ultrasound in medicine and physiology have remained unimplemented for a long time. However, new interesting ideas and approaches have appeared in recent years. Very recently, very questionable projects have been reported related to the use of ultrasound for targeted functional effects on the human brain performed in some laboratories. In this review, the stages of the development of scientific research devoted to the functional effects of focused ultrasound are described. By activating the neuroreceptor structures of the skin by means pulses of focused ultrasound, one can cause all the sensations perceived by human beings through the skin in everyday life, such as tactile sensations, thermal (heat and cold), tickling, itching, and various types of pain. Stimulation of the ear labyrinth of humans with normal hearing using amplitude-modulated ultrasound causes auditory sensations corresponding to an audio modulating signal (pure tones, music, speech, etc.). Activation of neuroreceptor structures by means of focused ultrasound is used for the diagnosis of various neurological and skin diseases, as well as hearing disorders. It has been shown that the activation is related to the mechanical action of ultrasound, for example, by the radiation force, as well as to the direct action of ultrasonic vibrations on nerve fibers. The action of the radiation force is promising for the realization of the possibility of blind and even deaf-and-blind people to perceive text information on a display using tactile sensations caused by ultrasound. Very different methods of using ultrasound for local stimulation of neuroreceptor structures are discussed in this review. Among them are practical methods that have been already tested in a clinic, as well as pretending to be sensational methods that are hardly feasible in the foreseeable future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. P. Lele, Ultrasonics 5, 105 (1967).

    Article  Google Scholar 

  2. W. J. Fry, V. J. Wulff, D. Tucker, and F. J. Fry, J. Acoust. Soc. Am. 22, 867 (1950).

    Article  ADS  Google Scholar 

  3. W. J. Fry, J. W. Barnard, F. J. Fry, and J. F. Brennan, Am. J. Phys. Med. 34, 413 (1955).

    Google Scholar 

  4. F. J. Fry, H. W. Ades, and W. J. Fry, Science 127(3289), 83 (1958).

    Article  ADS  Google Scholar 

  5. W. J. Fry, Amer. J. Phys. Med. 37, 143 (1958).

    Google Scholar 

  6. W. J. Fry and F. J. Fry, IRE Trans. Med. Electron. 7, 166 (1960).

    Article  Google Scholar 

  7. H. T. Ballantine, E. Bell, and J. Manlapaz, J. Neurosurg. 17, 858 (1960).

    Article  Google Scholar 

  8. P. P. Lele, Exp. Neurol. 8, 47 (1963).

    Article  Google Scholar 

  9. R. R. Young and E. Henneman, Science 134(3489), 1521 (1961).

    Article  ADS  Google Scholar 

  10. R. R. Young and E. Henneman, Arch. Neurol. 4, 83 (1961).

    Article  Google Scholar 

  11. P. O. Makarov and A. V. Lonskii, Biofizika 10, 181 (1965).

    Google Scholar 

  12. A. V. Lonskii, P. O. Makarov, and B. S. Tuchkov, Tsitologiya 11, 1401 (1969).

    Google Scholar 

  13. P. O. Makarov, Fiziol. Zh. SSSR 59(1), 39 (1973).

    Google Scholar 

  14. G. V. Gershuni, E. M. Tsirulnikov, L. R. Gavrilov, V. I. Pudov, and A. S. Rosenblyum, Dokl. Akad. Nauk SSSR 251, 763 (1980).

    Google Scholar 

  15. I. A. Vartanyan, L. R. Gavrilov, V. D. Zharskaya, G. I. Ratnikova, and E. M. Tsirulnikov, Zh. Evol. Biokhim. Fiziol. 17, 512 (1981).

    Google Scholar 

  16. G. V. Gershuni and E. M. Tsirulnikov, Fiziol. Chel. 7, 420 (1981).

    Google Scholar 

  17. G. V. Gershuni and E. M. Tsirulnikov, in Physiological Sciences for Medicine (Nauka, Leningrad, 1983), pp. 38–45 [in Russian].

    Google Scholar 

  18. E. M. Tsirulnikov, Zh. Evol. Biokhim. Fiziol 21, 591 (1985).

    Google Scholar 

  19. E. M. Tsirulnikov, A. G. Gurgenidze, I. A. Vartanyan, I. V. Daneliya, and V. A. Shubaev, Fiziol. Chel. 11, 241 (1985).

    Google Scholar 

  20. I. A. Vartanyan, L. R. Gavrilov, G. V. Gershuni, A. S. Rosenblyum, and E. M. Tsirulnikov, Sensory Reception: Research with the Use of Focused Ultrasound (Nauka, Leningrad, 1985) [in Russian].

    Google Scholar 

  21. E. M. Tsirulnikov, A. G. Gurgenidze, and I. A. Vartanyan, Fiziol. Chel. 12, 310 (1986).

    Google Scholar 

  22. E. M. Tsirulnikov, L. D. Enin, and I. L. Potekhina, Neirofiziologiya 24, 529 (1992).

    Google Scholar 

  23. L. D. Enin, E. M. Tsirulnikov, I. L. Potekhina, and L. R. Gavrilov, Zh. Evol. Biokhim. Fiziol. 28, 353 (1992).

    Google Scholar 

  24. E. M. Tsirulnikov, L. R. Gavrilov, and I. Davis, Sens. Sist. 14, 234 (2000).

    Google Scholar 

  25. E. M. Tsirulnikov, E. S. Titkov, G. A. Oganesyan, A. I. Smirnova, and A. M. Markovich, Sens. Sist. 21, 299 (2007).

    Google Scholar 

  26. W. J. Fry, J. Acoust. Soc. Am. 44, 919 (1968).

    Article  ADS  Google Scholar 

  27. V. A. Tsukerman, Biofizika 14, 300 (1969).

    Google Scholar 

  28. O. S. Adrianov, N. I. Vykhodtseva, V. F. Fokin, and V. M. Avirom, Byull. Eksp. Biol. Med. 98(7), 115 (1984).

    Google Scholar 

  29. O. S. Adrianov, N. I. Vykhodtseva, and L. R. Gavrilov, Fiziol. Zh. SSSR Sechenova 70, 1157 (1984).

    Google Scholar 

  30. O. S. Adrianov, N. I. Vykhodtseva, V. F. Fokin, N. A. Uranova, V. M. Avirom, and M. Galogazha, Byull. Eksp. Biol. Med. 98, 760 (1984).

    Article  Google Scholar 

  31. N. I. Vykhodtseva and V. I. Koroleva, Dokl. Akad. Nauk SSSR 287, 248 (1986).

    Google Scholar 

  32. V. I. Koroleva, N. I. Vykhodtseva, and V. A. Elagin, Neirofiziologiya 18(1), 55 (1986).

    Google Scholar 

  33. V. A. Velling and S. P. Shklyaruk, Fiziol. Zh. SSSR Sechenova 73, 708 (1987).

    Google Scholar 

  34. L. R. Gavrilov and E. M. Tsirulnikov, Focused Ultrasound in Physiology and Medicine (Nauka, Leningrad, 1980) [in Russian].

    Google Scholar 

  35. L. R. Gavrilov, G. V. Gershuni, O. B. Ilyinski, L. A. Popova, M. G. Sirotyuk, and E. M. Tsirulnikov, Sov. Phys. Acoust. 19, 332 (1973).

    Google Scholar 

  36. L. R. Gavrilov, G. V. Gershuni, O. B. Ilyinski, E. M. Tsirulnikov, and E. E. Shchekanov, Reception and Focused Ultrasound (Nauka, Leningrad, 1976) [in Russian].

    Google Scholar 

  37. L. R. Gavrilov, G. V. Gershuni, O. B. Ilyinski, and E. M. Tsirulnikov, Brain Res. 135, 265 (1977).

    Article  Google Scholar 

  38. L. D. Rozenberg, in Physics and Engineering of High Power Ultrasound, Vol. 1: Sources of High Power Ultrasound, Ed. by L. D. Rozenberg (Nauka, Moscow, 1967) [in Russian].

    Google Scholar 

  39. L. Bergmann, Der Ultraschall und seine Anwendung in Wissenschaft und Technik (Zurich, 1954; Inostr. Liter., Moscow, 1956).

  40. E. M. Tsirulnikov and A. G. Gurgenidze, Zh. Evol. Biokhim. Fiziol. 26, 267 (1990).

    Google Scholar 

  41. E. M. Tsirulnikov, I. A. Vartanyan, I. Yu. Shcherbakova, L. E. Voinova, and K. N. Sokolov, Zh. Evol. Biokhim. Fiziol. 26, 795 (1990).

    Google Scholar 

  42. E. M. Tsirulnikov, in Sensory Systems. Morphophysiological and Behavioral Aspects (Nauka, Leningrad, 1977), pp. 104–124 [in Russian].

    Google Scholar 

  43. E. M. Tsirulnikov and E. E. Shchekanov, in Sensory Functions in the Skin in Primates with Special Reference to Man (Pergamon, Oxford, New York, 1976), pp. 399–411.

    Google Scholar 

  44. E. M. Tsirulnikov, in Sensory Reception: Research with the Use of Focused Ultrasound, I. A. Vartanyan, L. R. Gavrilov, G. V. Gershuni, A. S. Rosenblyum, and E. M. Tsirulnikov (Nauka, Leningrad, 1985), pp. 89–90 [in Russian].

    Google Scholar 

  45. L. R. Gavrilov, E. M. Tsirulnikov, and E. E. Shchekanov, Sov. Phys. Acoust. 21, 437 (1975).

    Google Scholar 

  46. L. R. Gavrilov, E. M. Tsirulnikov, and E. E. Shchekanov, Fiziol. Zh. SSSR Sechenova 61, 213 (1975).

    Google Scholar 

  47. K. R. Foster and M. L. Wiederhold, J. Acoust. Soc. Am. 63, 1199 (1978).

    Article  ADS  Google Scholar 

  48. L. R. Gavrilov, V. I. Pudov, A. S. Rosenblyum, E. M. Tsirulnikov, A. V. Chepkunov, and E. E. Shchekanov, Sov. Phys. Acoust. 23, 318 (1977).

    Google Scholar 

  49. L. R. Gavrilov, Ultrasonics 22, 132 (1984).

    Article  Google Scholar 

  50. G. V. Gershuni, in Physiological Methods in Clinical Practice (Medgiz, Leningrad, 1959), pp. 349–406 [in Russian].

    Google Scholar 

  51. B. M. Sagalovich and G. G. Melkumova, Biofizika 11, 156 (1966).

    Google Scholar 

  52. B. M. Sagalovich and K. P. Pokryvalova, Biofizika 9, 138 (1964).

    Google Scholar 

  53. G. R. Broun, L. R. Gavrilov, G. G. Zhadan, O. B. Ilyinski, and E. M. Tsirulnikov, Zh. Evol. Biokhim. Fiziol. 16, 352 (1980).

    Google Scholar 

  54. L. R. Gavrilov, V. A. Kovalev, and E. M. Tsirulnikov, Sov. Phys. Acoust. 24, 231 (1978).

    Google Scholar 

  55. E. E. Shchekanov, Fiziol. Zh. SSSR Sechenova 66, 1715 (1980).

    Google Scholar 

  56. L. R. Gavrilov, E. M. Tsirulnikov, and I. Davies, Ultrasound Med. Biol. 22, 179 (1996).

    Article  Google Scholar 

  57. L. R. Gavrilov and E. M. Tsirulnikov, in Nonlinear Acoustics at the Beginning of 21st Century, Ed. by O. V. Rudenko and O. A. Sapozhnikov (Moscow Gos. Univ., Moscow, 2002), Vol. 1, pp. 445–448 [in Russian].

    Google Scholar 

  58. K. Altenberg and S. Kästner, Ann. Physik 11, 161 (1952).

    Article  ADS  Google Scholar 

  59. A. P. Sarvazyan, O. V. Rudenko, S. D. Swanson, J. B. Fowlkes, and S. Emelianov, Ultrasound Med. Biol. 24, 1419 (1998).

    Article  Google Scholar 

  60. Yu. A. Pishchalnikov, O. A. Sapozhnikov, and T. V. Sinilo, Acoust. Phys. 48, 253 (2002).

    Article  Google Scholar 

  61. O. O. Godovanik, L. R. Gavrilov, O. B. Ilyinski, E. M. Tsirulnikov, and E. E. Shchekanov, Zh. Nevropat. Psikhiatr. 78, 1189 (1978).

    Google Scholar 

  62. E. M. Tsirulnikov, V. A. Kudinov, L. N. Monakhov, and I. M. Raznatovskii, Vestn. Dermatol. Venerol., No. 12, 11 (1988).

  63. I. Ya. Ashkinazi, V. A. Ishinova, and E. M. Tsirulnikov, Neirofiziologiya 24, 535 (1992).

    Google Scholar 

  64. I. Davies, L. R. Gavrilov, and E. M. Tsirulnikov, Pain 67, 17 (1996).

    Article  Google Scholar 

  65. E. M. Tsirulnikov, I. A. Vartanyan, G. V. Gersuni, A. S. Rosenblyum, V. I. Pudov, and L. R. Gavrilov, Ultrasound Med. Biol. 14, 277 (1988).

    Article  Google Scholar 

  66. V. I. Antipov, L. R. Gavrilov, B. E. Mikhalev, V. I. Pudov, A. S. Rosenblyum, E. M. Tsirulnikov, and N. Ya. Shchegoleva, USSR Inventor’s Certificate No. 1152111 (1981).

  67. V. I. Antipov, L. R. Gavrilov, V. I. Pudov, A. S. Rosenblyum, and E. M. Tsirulnikov, USSR Inventor’s Certificate No. 1317711 (1983).

  68. L. R. Gavrilov, G. V. Gershuni, V. I. Pudov, A. S. Rosenblyum, and E. M. Tsirulnikov, Vestn. Otorinolaringol., No. 2, 3 (1983).

  69. V. I. Antipov, L. R. Gavrilov, V. I. Pudov, A. S. Rosenblyum, and E. M. Tsirulnikov, Vestn. Otorinolaringol., No. 1, 32 (1985).

  70. R. T. Mihran, F. S. Bames, and H. Wachtel, Biomed. Sci. Instrum. 26, 235 (1990).

    Google Scholar 

  71. R. T. Mihran, F. S. Barnes, and H. Wachtel, Ultrasound Med. Biol. 16, 297 (1990).

    Article  Google Scholar 

  72. P. C. Rinaldi, J. P. Jones, F. Reines, and L. R. Price, Brain Res. 558, 36 (1991).

    Article  Google Scholar 

  73. M. R. Bachtold, P. C. Rinaldi, J. P. Jones, F. Reines, and L. R. Price, Ultrasound Med. Biol. 24, 557 (1998).

    Article  Google Scholar 

  74. D. Dalecki, S. Z. Child, C. H. Raeman, and E. L. Carstensen, J. Acoust. Soc. Am. 97(Pt. 1), 3165 (1995).

    Article  ADS  Google Scholar 

  75. A. Wright, I. Davies, and J. G. Riddell, Pain 52, 149 (1993).

    Article  Google Scholar 

  76. A. Wright and I. Davies, Neurosci. Lett. 97, 145 (1989).

    Article  Google Scholar 

  77. A. Wright, T. Graven-Nielsen, I. Davies, and L. Arendt-Nielsen, Exp. Brain Res. 144, 475 (2002).

    Article  Google Scholar 

  78. M. Fatemi, P. L. Ogburn, and J. Greenleaf, J. Ultrasound Med. 20, 883 (2001).

    Google Scholar 

  79. M. Fatemi and J. Greenleaf, US Patent No. 6709407 (2004).

  80. I. A. Vartanyan, N. N. Konstantinova, M. F. Litvinova, and E. M. Tsirulnikov, Sens. Sist. 10(3), 41 (1996).

    Google Scholar 

  81. Tsui Po-Hsiang, Wang Shyh-Hau, and Huang Chih-Chung, Ultrasonics 43, 560 (2005).

    Article  Google Scholar 

  82. J. L. Foley, J. W. Little, and S. Vaezy, Muscle and Nerve 37, 241 (2008).

    Article  Google Scholar 

  83. R. Muratore, J. LaManna, E. Szulman, A. Kalisz, M. Lamprecht, M. Simon, Yu Zhe, Xue Nina, and B. Morrison, in Proceedings of the 8th International Symposium on Therapeutic Ultrasound, Ed. by E. S. Ebbini (American Institute of Physics, 2009), pp. 25–29.

  84. R. Muratore, J. LaManna, M. Lamprecht, and B. Morrison, in Proceedings of the 38th Annual Ultrasonic Industry Association Symposium, Vancouver, BC Canada, March 23–25, 2009.

  85. W. J. Tyler, Y. Tufail, M. Finsterwald, M. L. Tauchmann, E. J. Olson, and C. Majestic, PLoS One 3, e3511 (2008).

    Article  ADS  Google Scholar 

  86. V. Colucci, G. Strichartz, F. Jolesz, N. Vykhodtseva, and K. Hynynen, Ultrasound Med. Biol. 35, 1737 (2009).

    Article  Google Scholar 

  87. B. K. Min, A. Bystritsky, K. I. Jung, K. Fischer, Y. Zhang, L. S. Maeng, S. I. Park, Y. A. Chung, F. A. Jolesz, and S. S. Yoo, BMC Neurosci. 12(12), 1 (2011); http://www.biomedcentral.com/1471-2202/12/23

    Google Scholar 

  88. T. Yang, J. Chen, B. Yan, and D. Zhou, Medical Hypotheses 76, 381 (2011).

    Article  Google Scholar 

  89. E. M. Tsirulnikov, E. S. Titkov, G. A. Oganesyan, A. I. Smirnova, and A. M. Markovich, Sens. Sist. 21, 299 (2007).

    Google Scholar 

  90. T. Iwamoto, T. Maeda, and H. Shinoda, in Proceedings of the International Conference on Artificial Reality and Telexistence (2001), pp. 121–126.

  91. T. Iwamoto and H. Shinoda, in Proceedings of the World Haptics Conference, Pisa, Italy, March 18–25, 2005 (2005), pp. 220–228.

  92. T. Iwamoto and H. Shinoda, in Proceedings of the Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems, IEEE Haptics Symposium (2006), pp. 57–61.

  93. L. R. Gavrilov, Acoust. Phys. 54, 269 (2008).

    Article  MathSciNet  ADS  Google Scholar 

  94. Y. Hertzberg, O. Naor, A. Volovick, and S. Shoham, J. Neural Eng. 7, 056002 (2010). doi: 10.1088/1741-2560/7/5/056002

    Article  ADS  Google Scholar 

  95. G. K. Lewis and W. L. Olbricht, Rev. Sci. Instrum. 79, 114302 (2008). http://dx.doi.org/10.1063/1.3020704

    Article  ADS  Google Scholar 

  96. G. K. Lewis and W. L. Olbricht, Rev. Sci. Instrum. 80, 114304 (2009). http://dx.doi.org/10.1063/1.3258207

    Article  Google Scholar 

  97. T. P. Dawson, US Patent No. 6536440 (2003).

  98. Y. Tufail, A. Matyushov, N. Baldwin, M. L. Tauchmann, J. Georges, A. Yoshihiro, S. I. Helms Tillery, and W. J. Tyler, Neuron 66, 681 (2010).

    Article  Google Scholar 

  99. W. J. Tyler, The Neuroscientist, 1 (2010). doi: 10.1177/1073858409348066.

  100. V. A. Ishinova, I. A. Vartanyan, and E. M. Tsirulnikov, Sens. Sist. 25, 174 (2011).

    Google Scholar 

  101. S. S. Yoo, A. Bystritsky, J. H. Lee, Y. Zhang, K. Fischer, B. K. Min, N. McDannold, A. Pascual-Leone, and F. Jolesz, NeuroImage 56, 1267 (2011).

    Article  Google Scholar 

  102. B.-K. Min, P. S. Yang, M. Bohlke, S. Park, D. R. Vago, T. J. Maher, and S.-S. Yoo, Inc. Int. J. Imag. Syst. Technol. 21, 232 (2011).

    Article  Google Scholar 

  103. A. Bystritsky, A. S. Korb, P. K. Douglas, M. S. Cohen, W. P. Melega, A. P. Mulgaonkar, A. Desalles, B. K. Min, and S. S. Yoo, Brain Stimulat. Jul. 4(3), 125 (2011).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. R. Gavrilov.

Additional information

Original Russian Text © L.R. Gavrilov, E.M. Tsirulnikov, 2012, published in Akusticheskii Zhurnal, 2012, Vol. 58, No. 1, pp. 3–27

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gavrilov, L.R., Tsirulnikov, E.M. Focused ultrasound as a tool to input sensory information to humans (Review). Acoust. Phys. 58, 1–21 (2012). https://doi.org/10.1134/S1063771012010083

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063771012010083

Keywords

Navigation