[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

A new approach to Catalan numbers using differential equations

  • Published:
Russian Journal of Mathematical Physics Aims and scope Submit manuscript

Abstract

In this paper, we introduce two differential equations arising from the generating function of the Catalan numbers which are ‘inverses’ to each other in a certain sense. From these differential equations, we obtain some new and explicit identities for Catalan and higher-order Catalan numbers. In addition, by other means than differential equations, we also derive some interesting identities involving Catalan numbers which are of arithmetic and combinatorial nature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Adiga and H. Ariamanesh, “Some Properties of Cayley Graphs on Symmetric Groups Sn,” Internat. J. Algebra 6 (17–20), 807–813 (2012).

    MATH  Google Scholar 

  2. H. W. Gould, “Sums and Convolved Sums of Catalan Numbers and Their Generating Functions,” Indian J. Math. 46 (2–3), 137–160 (2004).

    MathSciNet  MATH  Google Scholar 

  3. R. Hampel, “On the Problem of Catalan,” (Polish) Prace Mat. 4, 11–19 (1960).

    MathSciNet  MATH  Google Scholar 

  4. S. Hyyro, “On the Catalan Problem,” (Finnish) Arkhimedes (1), 53–54 (1963).

    Google Scholar 

  5. T. Kim, “Identities involving Frobenius-Euler polynomials arising from non-linear differential equations,” J. Number Theory 132 (12), 2854–2865 (2012).

    Article  MathSciNet  MATH  Google Scholar 

  6. K. Inkeri, “On Catalan’s Problem,” Acta Arith. 9, 285–290 (1964).

    Article  MathSciNet  MATH  Google Scholar 

  7. D. Kang, J. Jeong, S.-J. Lee, and S.-H. Rim, “A Note on the Bernoulli Polynomials Arising from a Non-Linear Differential Equation,” Proc. Jangjeon Math. Soc. 16 (1), 37–43 (2013).

    MathSciNet  MATH  Google Scholar 

  8. T. Kim and D. S. Kim, “A Note on Nonlinear Changhee Differential Equations,” Russ. J. Math. Phys. 23, 88–92 (2016).

    Article  MathSciNet  MATH  Google Scholar 

  9. T. Kim, D. S. Kim, J.-J. Seo, and H.-I. Kwon, “Differnetial Equations Associated with λ-Changhee Polynomials,” J. Nonlinear Sci. Appl. 9, 3098–3111 (2016).

    Article  MathSciNet  MATH  Google Scholar 

  10. J. Morgado, “Some Remarks on an Identity of Catalan Concerning the Fibonacci Numbers,” Special issue in honor of António Monteiro. Portugal. Math. 39 (1–4), 341–348 (1985).

    MathSciNet  MATH  Google Scholar 

  11. A. Natucci, “Ricerche sistematiche intorno al “teorema di Catalan”,” (Italian) Giorn. Mat. Battaglini 5 2(82), 297–300 (1954).

    MathSciNet  MATH  Google Scholar 

  12. R. Rangarajan and P. Shashikala, “A Pair of Classical Orthogonal Polynomials Connected to Catalan Numbers,” Adv. Stud. Contemp. Math. (Kyungshang) 23 (2), 323–335 (2013).

    MathSciNet  MATH  Google Scholar 

  13. A. Rotkiewicz, “Sur le problème de Catalan,” (French) Elem. Math. 15, 121–124 (1960).

    MATH  Google Scholar 

  14. A. D. Sands, “On Generalised Catalan Numbers,” Discrete Math. 21 (2), 219–221 (1978).

    Article  MathSciNet  MATH  Google Scholar 

  15. G.-W. Jang and T. Kim, “Some identities of ordered Bell numbers arising from differential equation,” Adv. Stud. Contemp. Math. (Kyungshang) 27 (3), 385–397 (2017).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. S. Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, D.S., Kim, T. A new approach to Catalan numbers using differential equations. Russ. J. Math. Phys. 24, 465–475 (2017). https://doi.org/10.1134/S1061920817040057

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061920817040057

Navigation