Abstract
The review considers the roles of root and shoot tissues in transport and accumulation of heavy metals in plants of two contrast groups, i.e., excluders and hyperaccumulators. The regularities in distribution of cadmium, lead, nickel, and strontium are summarized. Effects of other cations, calcium in particular, on accumulation and distribution of heavy metals are analyzed. Specific patterns of metal distribution in hyperaccumulator plants are discussed together with morphological and functional features underlying the ability of plants to accumulate heavy metals in the aboveground organs. Based on the data available, the root and shoot tissues are classified according to their roles in transport and distribution of the metals examined.
Similar content being viewed by others
References
Baker, A.J.M., Accumulators and Excluders-Strategies in Response of Plants to Heavy Metals, J. Plant Nutr., 1981, vol. 3, pp. 643–654.
Kabata-Pendias, A. and Pendias, H., Trace Elements in Soils and Plants, Boca Raton: CRC, 1984.
Alekseeva-Popova, N.V., Cellular and Molecular Mechanisms of Plant Tolerance to Heavy Metals, Ustoichivost’ k tyazhelym metallam dikorastushchikh vidov (Tolerance to Heavy Metals in Wild-Grown Species), Alekseeva-Popova, N.V., Ed., Leningrad: Lenuprizdat, 1991.
Temp, G.A., Nickel in Plants as Related to Its Toxicity, Ustoichivost’ k tyazhelym metallam dikorastushchikh vidov (Tolerance to Heavy Metals in Wild-Grown Species), Alekseeva-Popova, N.V., Ed., Leningrad: Lenuprizdat, 1991.
Metal Ions in Biological Systems, Concepts on Metal Ion Toxicity, Singel, H. and Singel, A., Eds., New York: Marcel Dekker, 1986.
Phytoremediation of Toxic Metals Using Plants to Clean up the Environment, Raskin, I. and Ensley, B.D., Eds., New York: John Wiley and Sons, 2000.
Seregin, I.V. and Ivanov, V.B., Physiological Aspects of Cadmium and Lead Toxic Effects on Higher Plants, Russ. J. Plant Physiol., 2001, vol. 48, pp. 523–544.
Hall, J.L., Cellular Mechanisms for Heavy Metal Detoxification and Tolerance, J. Exp. Bot., 2002, vol. 53, pp. 1–11.
Yang, X., Feng, Y., He, Z., and Stoffella, P.J., Molecular Mechanisms of Heavy Metal Hyperaccumulation and Phytoremediation, J. Trace Elem. Med. Biol., 2005, vol. 18, pp. 339–353.
Seregin, I.V. and Kozhevnikova, A.D., Physiological Role of Nickel and Its Toxic Effects on Higher Plants, Russ. J. Plant Physiol., 2006, vol. 53, pp. 257–277.
Seregin, I.V. and Ivanov, V.B., Histochemical Investigation of Cadmium and Lead Distribution in Plants, Russ. J. Plant Physiol., 1997, vol. 44, pp. 791–796.
Seregin, I.V., Kozhevnikova, A.D., Kazyumina, E.M., and Ivanov, V.B., Nickel Toxicity and Distribution in Maize Roots, Russ. J. Plant Physiol., 2003, vol. 50, pp. 711–718.
Seregin, I.V. and Kozhevnikova, A.D., Strontium Transport, Distribution, and Toxic Effects on Maize Seedling Growth, Russ. J. Plant Physiol., 2004, vol. 51, pp. 215–221.
Severne, B.C., Nickel Accumulation by Hybanthus floribundus, Nature, 1974, vol. 248, pp. 807–808.
Nabais, C., Freitas, H., Hagemeyer, J., and Breckle, S.-W., Radial Distribution of Ni in Stemwood of Quercus ilex L. Trees Grown on Serpentine and Sandy Loam (Umbric leptosol) Soils of NE-Portugal, Plant Soil, 1996, vol. 183, pp. 181–185.
Heath, S.M., Southworth, D., and D’Allura, J.A., Localization of Nickel in Epidermal Subsidiary Cells of Leaves of Thlaspi montanum var. siskiyouense (Brassicaceae) Using Energy-Dispersive X-Ray Microanalysis, Int. J. Plant Sci., 1997, vol. 158, pp. 184–188.
Sagner, S., Kneer, R., Wanner, G., Cosson, J.-P., Deus-Neumann, B., and Zenk, M.H., Hyperaccumulation, Complexation and Distribution of Nickel in Sebertia acuminata, Phytochemistry, 1998, vol. 47, pp. 339–343.
Kupper, H., Lombi, E., Zhao, F.J., Wieshammer, G., and McGrath, S.P., Cellular Compartmentation of Nickel in the Hyperaccumulators Alyssum lesbiacum, Alyssum bertolonii and Thlaspi goesingense, J. Exp. Bot., 2001, vol. 52, pp. 2291–3000.
Psaras, G.K. and Manetas, Y., Nickel Localization in Seeds of the Metal Hyperaccumulator Thlaspi pindicum Hausskn., Ann. Bot., 2001, vol. 88, pp. 513–516.
Bidwell, S.D., Crawford, S.A., Woodrow, I.E., Sommer-Knudsen, J., and Marshall, A.T., Subcellular Localization of Ni in the Hyperaccumulator, Hybanthus floribundus (Lindley) F. Muell., Plant Cell Environ., 2004, vol. 27, pp. 705–716.
Glater, R.A. and Hernandez, L., Lead Detection in Living Plant Tissue Using a New Histochemical Method, J. Air Pollut. Control Ass., 1972, vol. 22, pp. 463–467.
Wierzbicka, M., Lead Translocation and Localization in Allium cepa Roots, Can. J. Bot., 1987, vol. 65, pp. 1851–1860.
Theiss, H.-B., Localization of Lead in Seedlings of Lepidium sativum, Sci. Tech. Inf., 1990, vol. 9, pp. 246–252.
Wierzbicka, M. and Antosiewicz, D., How Lead Can Easily Enter the Food Chain — A Study of Plant Roots, Sci. Total Environ., 1993, Suppl., pp. 423–429.
Tung, G. and Temple, P.J., Uptake and Localization of Lead in Corn (Zea mays L.) Seedlings, a Study by Histochemical and Electron Microscopy, Sci. Total. Environ., 1996, vol. 188, pp. 71–85.
Gzyl, J., Przymusinski, R., and Wozny, A., Organospecific Reactions of Yellow Lupine Seedlings to Lead, Acta Soc. Bot. Pol., 1997, vol. 66, pp. 61–66.
Peterson, C.A. and Cholewa, E., Structural Modifications of the Apoplast and Their Potential Impact on Ion Uptake, Z. Pflanzenernaehr. Bodenk., 1998, vol. 161, pp. 521–531.
Mench, M., Morel, J.L., and Guckert, A., Metal Binding Properties of High Molecular Weight Soluble Exudates from Maize (Zea mays) Roots, Biol. Fertil. Soils, 1987, vol. 3, pp. 165–169.
Morel, J.L., Mench, M., and Guckert, A., Measurement of Pb, Cu and Cd Binding with Mucilage Exudates from Maize (Zea mays L.) Roots, Biol. Fertil. Soils, 1986, vol. 2, pp. 29–34.
Seregin, I.V., Shpigun, L.K., and Ivanov, V.B., Distribution and Toxic Effects of Cadmium and Lead on Maize Roots, Russ. J. Plant Physiol., 2004, vol. 51, pp. 525–533.
Levina, E.N., Obshchaya toksikologiya metallov (General Toxicology of Metals), Leningrad: Meditsina, 1978.
Seregin, I.V. and Kozhevnikova, A.D., Distribution of Heavy Metals and Strontium in Tissues of Maize Seedlings as Related to Specificity and Selectivity of Their Toxicity, Bioraznoobrazie prirodnykh i antropogennykh ekosistem. (Biodiversity of Natural and Anthropogenic Ecosystems), Yekaterinburg, 2005, pp. 92–97.
Kozhevnikova, A.D., Seregin, I.V., Bystrova, E.I., and Ivanov, V.B., Effects of Heavy Metals and Strontium on Division of Root Cap Cells and Meristem Structural Organization, Russ. J. Plant Physiol., 2007, vol. 54, pp. 257–266.
Danilova, M.F., Strukturnye osnovy pogloshcheniya veshchestv kornem (Structural Basics for Substance Absorption by the Root), Leningrad: Nauka, 1974.
Esau, K., Anatomy of Seed Plants, New York: John Wiley and Sons, 1977.
Kozhevnikova, A.D., Nickel Distribution in Maize Seedlings and Its Inhibitory Effect on Growth, Cand. (Biol.) Dissertation, Moscow: Inst. Plant Physiol. Russ. Acad. Sci., 2006.
White, P.J., Calcium Channels in the Plasma Membrane of Root Cells, Ann. Bot., 1998, vol. 81, pp. 173–183.
White, P.J. and Broadley, M.R., Calcium in Plants, Ann. Bot., 2003, vol. 92, pp. 487–511.
Danilova, M.F., Mazel’, Yu.Ya., Stamboltsyan, E.Yu., and Telepova, M.N., Development of Ion Transport System in Plants: 2. Ultrastructure of Differentiating Zea mays Root Tissues, Sov. Plant Physiol., 1983, vol. 30, pp. 1061–1068.
Ivanov, V.B., Kletochnye osnovy rosta rastenii (Cellular Basics of Plant Growth), Moscow: Nauka, 1974.
Wierzbicka, M., Lead Accumulation and Its Translocation Barriers in Roots of Allium cepa L. — Autoradiographic and Ultrastructural Studies, Plant Cell Environ., 1987, vol. 10, pp. 17–26.
Lane, S.D. and Martin, E.S., A Histochemical Investigation of Lead Uptake in Raphanus sativus, New Phytol., 1977, vol. 79, pp. 281–286.
Clowes, F.A.L. and Juniper, B.E., The Fine Structure of the Quiescent Centre and Neighbouring Tissues in Root Meristems, J. Exp. Bot., 1964, vol. 15, pp. 622–630.
Enstone, D.E. and Peterson, C.A., The Apoplastic Permeability of Root Apices, Can. J. Bot., 1992, vol. 70, pp. 1502–1512.
Seregin, I.V., Kozhevnikova, A.D., Davydova, M.A., Bystrova, E.I., Schat, H., and Ivanov, V.B., Role of Root and Shoot Tissues of Excluders and Hyperaccumulators in Nickel Transport and Accumulation, Dokl. Akad. Nauk, Biol.Sci., 2007, vol. 415, pp. 295ó297.
Jarvis, S.C., Jones, L.H.P., and Hopper, M.J., Cadmium Uptake from Solution by Plants and Its Transport from Roots to Shoots, Plant Soil, 1976, vol. 44, pp. 179–191.
Kawasaki, T. and Moritsugu, M., Effect of Calcium on the Absorption and Translocation of Heavy Metals in Excised Barley Roots: Multi-Compartment Transport Box Experiment, Plant Soil, 1987, vol. 100, pp. 21–34.
Gabbrielli, R. and Pandolfini, T., Effect of Mg2+ and Ca2+ on the Response to Nickel Toxicity in a Serpentine Endemic and Nickel-Accumulating Species, Physiol. Plant., 1984, vol. 62, pp. 540–544.
Boyd, R.S. and Martens, S.N., Nickel Hyperaccumulation by Thlaspi montanum var. montanum (Brassicaceae): A Constitutive Trait, Am. J. Bot., 1998, vol. 85, pp. 259–265.
Seregin, I.V., Functional and Anatomical Investigations of Cadmium and Lead Toxicity for Maize Seedling Root, Cand. (Biol.) Dissertation, Moscow: Mosk. Ped. Gos. Univ., 1999.
Antosiewicz, D.M., Study of Calcium-Dependent Lead-Tolerance on Plants Differing in Their Level of Ca-Deficiency Tolerance, Environ. Pollut., 2005, vol. 134, pp. 23–34.
Clemens, S., Antosiewicz, D.M., Ward, J.M., Schachtman, D.P., and Schroeder, J.I., The Plant cDNA LCT1 Mediates the Uptake of Calcium and Cadmium in Yeast, Proc. Natl. Acad. Sci. USA, 1998, vol. 95, pp. 12 043–12 048.
Rogers, E.E., Eide, D.J., and Guerinot, M.L., Altered Selectivity in an Arabidopsis Metal Transporter, Proc. Natl. Acad. Sci. USA, 2000, vol. 97, pp. 12 356–12 360.
Pence, N.S., Larsen, P.B., Ebbs, S.D., Letham, D.L.D., Lasat, M.M., Garvin, D.F., Eide, D., and Kochian, L.V., A Molecular Physiology of Heavy Metal Transport in the Zn/Cd Hyperaccumulator Thlaspi caerulescens, Proc. Natl. Acad. Sci. USA, 2000, vol. 97, pp. 4956–4960.
Kochian, L.V., Molecular Physiology of Mineral Nutrient Acquisition, Transport, and Utilization, Biochemistry and Molecular Biology of Plants, Buchanan, B.B., Gruissem, W., and Jones, R.L., Eds., Rockville: Courier, 2000, pp. 1204–1249.
White, P.J., Calcium Channels in Higher Plants, Biochim. Biophys. Acta, 2000, vol. 1465, pp. 171–189.
Perfus-Barbeoch, L., Leonhardt, N., Vavasseur, A., and Forestier, C., Heavy Metal Toxicity: Cadmium Permeates through Calcium Channels and Disturbs the Plant Water Status, Plant J., 2002, vol. 32, pp. 539–548.
Ehlken, S. and Kirchner, G., Environmental Processes Affecting Plant Root Uptake of Radioactive Trace Elements and Variability of Transfer Factor Data: A Review, J. Environ. Radioactivity, 2002, vol. 58, pp. 97–112.
Kostyuk, P.G., Kal’tsii i kletochnaya vozbudimost’ (Calcium and Cell Excitability), Moscow: Nauka, 1986.
Obroucheva, N.V., Ivanov, V.B., Sobotik, M., Bergmann, H., Antipova, O.V., Bystrova, E.I., Seregin, I.V., and Shpigun, L.K., Lead Effects on Cereal Roots in Terms of Cell Growth, Root Architecture and Metal Accumulation, Recent Advances of Plant Root Structure and Function, Gasparikova, O., et al., Eds., Dordrecht: Kluwer, 2001, pp. 165–170.
Ksiazek, M. and Wozny, A., Lead Movement in Poplar Adventitious Roots, Biol. Plant., 1990, vol. 32, pp. 54–57.
Kocjan, G., Samardakiewicz, S., and Wozny, A., Regions of Lead Uptake in Lemna minor Plants and Localization of This Metal within Selected Parts of the Root, Biol. Plant., 1996, vol. 38, pp. 107–117.
Vodnik, D., Jentschke, G., Fritz, E., Gogala, N., and Godbold, D.L., Root-Applied Cytokinin Reduces Lead Uptake and Affects Its Distribution in Norway Spruce Seedlings, Physiol. Plant., 1999, vol. 106, pp. 75–81.
Zeier, J., Ruel, K., Ryser, U., and Schreiber, L., Chemical Analysis and Immunolocalization of Lignin and Suberin in Endodermal and Hypodermal/Rhizodermal Cell Walls of Developing Maize (Zea mays L.) Primary Roots, Planta, 1999, vol. 209, pp. 1–12.
Samardakiewicz, S., Strawinski, P., and Wozny, A., The Influence of Lead on Callose Formation in Roots of Lemna minor L., Biol. Plant., 1996, vol. 38, pp. 463–467.
Schreiber, L., Hartmann, K., Skrabs, M., and Zeier, J., Apoplastic Barriers in Roots: Chemical Composition of Endodermal and Hypodermal Cell Walls, J. Exp. Bot., 1999, vol. 50, pp. 1267–1280.
Vassilev, A., Yordanov, I., and Tsonev, T., Effects of Cd2+ on the Physiological State and Photosynthetic Activity of Young Barley Plants, Photosynthetica, 1997, vol. 34, pp. 293–302.
Molas, J., Changes in Morphological and Anatomical Structure of Cabbage (Brassica oleracea L.) Outer Leaves and in Ultrastructure of Their Chloroplasts Caused by an In Vitro Excess of Nickel, Photosynthetica, 1997, vol. 34, pp. 513–522.
Obata, H. and Umebayashi, M., Effects of Cadmium on Mineral Nutrient Concentrations in Plant Differing in Tolerance for Cadmium, J. Plant Nutr., 1997, vol. 20, pp. 97–105.
Sridhar, B.B.M., Diehl, S.V., Han, F.X., Monts, D.L., and Su, Y., Anatomical Changes due to Uptake and Accumulation of Zn and Cd in Indian Mustard (Brassica juncea), Environ. Exp. Bot., 2005, vol. 54, pp. 131–141.
Vakhmistrov, D.B., Prostranstvennaya organizatsiya ionnogo transporta v korne. 49-e Timiryazevskoe chtenie (Spatial Organization of Ion Transport in the Root, the 49th Timiryazev Lecture), Moscow: Nauka, 1991.
Seregin, I.V. and Ivanov, V.B., Is the Endodermal Barrier the Only Factor Preventing the Inhibition of Root Branching by Heavy Metal Salts? Russ. J. Plant Physiol., 1997, vol. 44, pp. 797–800.
Sobotik I., Ivanov V.B., Obroucheva N.V., Seregin I.V., Martin M.L., Antipova, O.V., and Bergmann, H., Barrier Role of Root System in Lead-Exposed Plants, Angew. Bot., 1998, vol. 72, pp. 144–147.
Danilova, M.F. and Derteva, E.Yu., Anatomical and Physiological Data about Water and Solute Movement in Root Tissues, Bot. Zh. (Leningrad), 1964, vol. 49, pp. 1347–1365.
Danilova, M.F. and Stamboltsyan, E.Yu., Ultrastructure of Differentiating Cells in Root Primary Xylem and Solute Flux to Tracheal Elements, Bot. Zh. (Leningrad), vol. 60, pp. 913–926.
Carpita, N. and McCann, M., The Cell Wall, Biochemistry and Molecular Biology of Plants, Buchanan, B.B., Gruissem, W., and Jones, R.L., Eds., Rockville: Courier, 2000, pp. 52–108.
Lane, S.D. and Martin, E.S., An Ultrastructural Examination of Lead Localization in Germinating Seeds of Raphanus sativus, Z. Pflanzenphysiol., 1982, vol. 107, pp. 33–40.
Wozny, A., Zatorska, B., and Mlodzianowski, F., Influence of Lead on the Development of Lupine Seedlings and Ultrastructural Localization of This Metal in the Roots, Acta Soc. Bot. Pol., 1982, vol. 51, pp. 345–351.
Malone, C., Koeppe, D.E., and Miller, J., Localization of Lead Accumulated by Corn Plants, Plant Physiol., 1974, vol. 53, pp. 388–394.
Sharpe, V. and Denny, P., Electron Microscope Studies on the Absorption and Localization of Lead in the Leaf Tissue of Potamogeton pectinatus L., J. Exp. Bot., 1976, vol. 27, pp. 1155–1162.
Wierzbicka, M., Ultrastructural Location of Lead in the Cell Walls of Allium cepa L. Roots, Post. Biol. Komorki, 1984, vol. 3–4, pp. 509–512.
Rudakova, E.V., Karakis, K.D., and Sidorshina, E.I., Role of Plant Cell Walls in Metal Absorption and Accumulation, Fiziol. Biokh. Kul’t. Rast., 1988, vol. 20, pp. 3–12.
Ernst, W.H.O., Verkleij, J.A.C., and Schat, H., Metal Tolerance in Plants, Acta Bot. Neerl., 1992, vol. 43, pp. 229–248.
Seregin, I.V. and Ivanov, V.B., The Transport of Cadmium and Lead Ions through Root Tissues, Russ. J. Plant Physiol., 1998, vol. 45, pp. 780–793.
Qureshi, J.A., Collin, H.A., Hardwick, K., and Thurman, D.A., Metal Tolerance in Tissue Cultures of Anthoxanthum odoratum, Plant Cell Rep., 1981, vol. 1, pp. 80–82.
Qureshi, J.A., Hardwick, K., and Collin, H.A., Intracellular Localization of Lead in a Lead Tolerant and Sensitive Clone of Anthoxanthum odoratum, Plant Physiol., 1986, vol. 122, pp. 357–364.
Satake, K. and Miyasaka, K., Evidence of High Mercury Accumulation in the Cell Wall of the Liverwort Jungermannica vulcanicola Steph, to Form Particles of Mercury-Sulphur Compound, J. Bryol., 1984, vol. 13, pp. 101–105.
Seregin, I.V., Pekhov, V.M., and Ivanov, V.B., Plasmolysis as a Tool to Reveal Lead Localization in the Apoplast of Root Cells, Russ. J. Plant Physiol., 2002, vol. 49, pp. 283–285.
Ros, R., Cooke, D.T., Burden, R.S., and James, C.S., Effects of the Herbicide MCPA, and the Heavy Metals, Cadmium and Nickel on the Lipid Composition, Mg2+-ATPase Activity and Fluidity of Plasma Membranes from Rice, Oryza sativa (cv. Bahia) Shoots, J. Exp. Bot., 1990, vol. 41, pp. 457–462.
Meharg, A.A., The Role of Plasmalemma in Metal Tolerance in Angiosperms, Physiol. Plant., 1993, vol. 88, pp. 191–198.
Ouariti, O., Boussama, N., Zarrouk, M., Cherif, A., and Chorbal, M.N., Cadmium and Copper-Induced Changes in Tomato Membrane Lipids, Phytochemistry, 1997, vol. 45, pp. 1343–1350.
Van Assche, F. and Glijsters, H., Effects of Metals on Enzyme Activity in Plants, Plant, Cell Environ., 1990, vol. 13, pp. 195–206.
Salt, D.E. and Wagner, G.J., Cadmium Transport across Tonoplast of Vesicles from Oat Roots. Evidence for a Cd2+/H+ Antiport Activity, J. Biol. Chem., 1993, vol. 268, pp. 12 297–12 302.
Gries, G.E. and Wagner, G.J., Association of Nickel versus Transport of Cadmium and Calcium in Tonoplast Vesicles of Oat Roots, Planta, 1998, vol. 204, pp. 390–396.
Chardonnens, A.N., Laar, T., Koevoets, P.L.M., Kuijper, L.D.J., and Verkleij, J.A.C., Some Notes on Vacuolar Compartmentalization of Cadmium in Relation to the Mechanism of Naturally Selected Cadmium Tolerance in Silene vulgaris, The Role of Vacuolar Compartmentalization in the Mechanism of Naturally Selected Zinc and Cadmium Tolerance, Chardonnens, A.N., Ed., Amsterdam: Vrije Univ., 1999, pp. 31–41.
Clemens, S. and Simm, C., Schizosaccharomyces pombe as a Model for Metal Homeostasis in Plant Cells: The Phytochelatin-Dependent Pathway Is the Main Cadmium Detoxification Mechanism, New Phytol., 2003, vol. 159, pp. 323–330.
Rauser, W.E., Phytochelatins and Related Peptides: Structure, Biosynthesis and Function, Plant Physiol., 1995, vol. 109, pp. 1141–1149.
Zenk, M.H., Heavy Metal Detoxification in Higher Plants — A Review, Gene, 1996, vol. 179, pp. 21–30.
Cobbett, C.S., Phytochelatins and Their Roles in Heavy Metal Detoxification, Plant Physiol., 2000, vol. 123, pp. 825–832.
Seregin, I.V., Phytochelatins and Their Role in Cadmium Detoxification in Higher Plants, Usp. Biol. Khim., 2001, vol. 41, pp. 283–300.
Clemens, S., Palmgren, M.G., and Kramer, U., Along Way Ahead: Understanding and Engineering Plant Metal Accumulation, Trends Plant Sci., 2002, vol. 7, pp. 309–315.
Krotz, R.M., Evangelou, B.P., and Wagner, G.J., Relationships between Cadmium, Zinc, Cd-Peptide, and Organic Acid in Tobacco Suspension Cells, Plant Physiol., 1989, vol. 91, pp. 780–787.
Mazen, A.M.A. and El Maghraby, O.M.O., Accumulation of Cadmium and Strontium, and a Role of Calcium Oxalate in Water Hyacinth Tolerance, Biol. Plant., 1997/98, vol. 40, pp. 411–417.
Rauser, W.E., Structure and Function of Metal Chelators Produced by Plants: The Case for Organic Acids, Amino Acids, Phytin, and Metallothioneins, Cell Biochem. Biophys., 1999, vol. 31, pp. 19–48.
Schat, H., Llugany, M., Vooijs, R., Hartley-Whitaker, J., and Bleeker, P.M., The Role of Phytochelatins in Constitutive and Adaptive Heavy Metal Tolerances in Hyperaccumulator and Non-Hyperaccumulator Metallophytes, J. Exp. Bot., 2002, vol. 53, pp. 2381–2392.
Seregin, I.V., Vooijs, R., Kozhevnikova, A.D., Ivanov, V.B., and Schat, H., Cadmium and Lead Effects on Phytochelatin Accumulation in Shoots and Different Parts of the Maoze Root, Dokl. Akad. Nauk, Biol.Sci., 2007, vol. 415, pp. 304–306.
Grill, E., Loffler, S., Winnacker, E.-L., and Zenk, M.N., Phytochelatins, the Heavy-Metal-Binding Peptides of Plants, Are Synthesized from Glutathione by a Specific γ-Glutamylcysteine Dipeptidyl Transpeptidase (Phytochelatin Synthase), Proc. Natl. Acad. Sci. USA, 1989, vol. 86, pp. 6838–6842.
Chen, J., Zhou, J., and Goldsbrough, P.B., Characterization of Phytochelatin Synthase from Tomato, Physiol. Plant., 1997, vol. 101, pp. 165–172.
Klapheck, S., Fliegner, W., and Zimmer, I., Hydroxymethyl-Phytochelatins [(-Glutamylcysteine)n-serine] Are Metal-Induced Peptides of the Poaceae, Plant Physiol., 1994, vol. 104, pp. 1325–1332.
Wojcik, M. and Tukendorf, A., Cd-Tolerance of Maize, Rye and Wheat Seedlings, Acta Physiol. Plant., 1999, vol. 21, pp. 99–107.
Stolt, J.P., Sneller, F.E.C., Bryngelsson, T., Lundborg, T., and Schat, H., Phytochelatin and Cadmium Accumulation in Wheat, Environ. Exp. Bot., 2003, vol. 49, pp. 21–28.
Tukendorf, A. and Rauser, W.E., Changes in Glutathione and Phytochelatins in Roots of Maize Seedlings Exposed to Cadmium, Plant Sci., 1990, vol. 70, pp. 155–166.
Rauser, W.E., Changes in Glutathione Content of Maize Seedlings Exposed to Cadmium, Plant Sci., 1987, vol. 51, pp. 171–175.
Heiss, S., Schafer, H.J., Haag-Kerwer, A., and Rausch, T., Cloning Sulfur Assimilation Genes of Brassica juncea L.: Cadmium Differentially Affects the Expression of a Putative Low-Affinity Sulfate Transporter and Isoforms of ATP Sulfurylase and APS Reductase, Plant Mol. Biol., 1999, vol. 39, pp. 847–857.
Nocito, F.F., Pirovano, L., Cocucci, M., and Sacchi, G.A., Cadmium-Induced Sulfate Uptake in Maize Roots, Plant Physiol., 2002, vol. 129, pp. 1872–1879.
Gupta, M., Rai, U.N., Tripathi, R.D., and Chandra, P., Lead-Induced Changes in Glutathione and Phytochelatin in Hydrilla verticillata Royle., Chemosphere, 1995, vol. 30, pp. 2011–2020.
Keltjens, W.G. and van Beusichem, M.L., Phytochelatins as Biomarkers for Heavy Metal Stress in Maize (Zea mays L.) and Wheat (Triticum aestivum L.): Combined Effects of Copper and Cadmium, Plant Soil, 1998, vol. 203, pp. 119–126.
Khan, D.N., Duckett, J.G., Frankland, B., and Kirkham, J.B., An X-Ray Microanalytical Study of the Distribution of Cadmium in Roots of Zea mays L., Plant Physiol., 1984, vol. 115, pp. 19–28.
Vazquez, M.D., Barcelo, J., Poschenrieder, Ch., Madico, J., Hatton, P., Baker, A.J.M., and Cope, G.H., Localization of Zinc and Cadmium in Thlaspi caerulescens (Brassicaceae), a Metallophyte That Can Hyperaccumulate Both Metals, J. Plant Physiol., 1992, vol. 140, pp. 350–355.
Kupper, H., Mijovilovich, A., Meyer-Klaucke, W., and Kroneck, P.M.H., Tissue-and Age-Dependent Differences in the Complexation of Cadmium and Zinc in the Cadmium/Zinc Hyperaccumulator Thlaspi caerulescens (Ganges Ecotype) Revealed by X-Ray Absorption Spectroscopy, Plant Physiol., 2004, vol. 134, pp. 748–757.
Rauser, W.E. and Ackerley, C.A., Localization of Cadmium in Granules within Differentiating and Mature Root Cells, Can. J. Bot., 1987, vol. 65, pp. 643–646.
Vazquez, M.D., Poschenrieder, Ch., and Barcelo, J., Ultrastructural Effects and Localization of Low Cadmium Concentrations in Bean Roots, New Phytol., 1992, vol. 120, pp. 215–226.
Carrier, P., Baryla, A., and Havaux, M., Cadmium Distribution and Microlocalization in Oilseed Rape (Brassica napus) after Long-Term Growth on Cadmium-Contaminated Soil, Planta, 2003, vol. 216, pp. 939–950.
Liu, D. and Kottke, I., Subcellular Localization of Cd in the Root Cells of Allium sativum by Electron Energy Loss Spectroscopy, J. BioSci., 2003, vol. 28, pp. 471–478.
Cosio, C., DeSantis, L., Frey, B., Diallo, S., and Keller, C., Distribution of Cadmium in Leaves of Thlaspi caerulescens, J. Exp. Bot., 2005, vol. 56, pp. 765–775.
Hose, E., Clarkson, D.T., Steudle, E., Schreiber, L., and Hartung, W., The Exodermis: A Variable Apoplastic Barrier, J. Exp. Bot., 2001, vol. 52, pp. 2245–2264.
Derteva, E.Yu., Structure and Functions of Endodermis, Bot. Zh. (Leningrad, 1965, vol. 50, pp. 1327–1337.
Grymaszewscka, G. and Golinowski, W., The Structure of Endodermis during the Development of Wheat (Triticum aestivum L.) Roots, Acta Soc. Bot. Pol., 1987, vol. 56, pp. 3–10.
Kopsinska, J. and Golinowski, W., The Structure of Endodermis during the Development of Pea (Pisum sativum L.) Roots, Acta Soc. Bot. Pol., 1987, vol. 56, pp. 11–18.
Ma, F. and Peterson, C.A., Development of Cell Wall Modifications in the Endodermis and Exodermis of Allium cepa Roots, Can. J. Bot., 2001, vol. 79, pp. 621–634.
Danilova, M.F. and Stamboltsyan, E.Yu., Structure of “Caspari Belt” (Barrier Function of Endodermis), Bot. Zh. (Leningrad), 1969, vol. 54, pp. 1288–1291.
Haas, D.L. and Carothers, L.B., Some Ultrastructural Observations on Endodermal Cell Development in Zea mays Roots, Am. J. Bot., 1975, vol. 62, pp. 336–348.
Zeier, J. and Schreiber, L., Chemical Composition of Hypodermal and Endodermal Cell Walls and Xylem Vessels Isolated from Clivia miniata, Plant Physiol., 1997, vol. 113, pp. 1223–1231.
Zeier, J., Goll, A., Yokoyama, M., Karahara, I., and Schreiber, L., Structure and Chemical Composition of Endodermal and Rhizodermal/Hypodermal Walls of Several Species, Plant, Cell Environ., 1999, vol. 22, pp. 271–279.
Punz, W.F. and Sieghardt, H., The Response of Roots of Herbaceous Plant Species to Heavy Metals, Environ. Exp. Bot., 1993, vol. 33, pp. 85–95.
Vakmistrov, D.B., Specialization of Root Tissues in Ion Transport, Structure and Function of Plant Roots, Brouwer, R., et al., Ed., Hague, 1981, pp. 203–208.
Esau, K., Plant Anatomy, New York: John Wiley and Sons, 1953.
Danilova, M.F., Mazel’, Yu.Ya., Telepova, M.N., and Zhitneva, N.N., Development of Systems for Accumulation and Ion Transport in the Zea mays Root: Root Anatomy and Ultrastructure, Sov. Plant Physiol., 1990, vol. 37, pp. 629–635.
Ivanov, V.B., Bystrova, E.I., and Seregin, I.V., Comparative Impacts of Heavy Metals on Root Growth as Related to Their Specificity and Selectivity, Russ. J. Plant Physiol., 2003, vol. 50, pp. 398–406.
Samantaray, S., Rout, G.R., and Das, P., Tolerance of Rice to Nickel in Nutrient Solution, Biol. Plant., 1997, vol. 40, pp. 295–298.
Ivanov, V.B., Root Growth Responses to Chemicals, Sov. Sci. Rev., Ser. D, 1994, pp. 1–70.
McCully, M.E. and Canny, M.J., Pathways and Processes of Water and Nutrient Movement in Roots, Plant Soil, 1988, vol. 111, pp. 159–170.
Pielichowska, M. and Wierzbicka, M., Uptake and Localization of Cadmium by Biscutella laevigata, a Cadmium Hyperaccumulator, Acta Biol. Gracoviensia, 2004, vol. 46, pp. 57–63.
McCully, M., How Do Real Roots Work? Some New Views of Root Structure, Plant Physiol., 1995, vol. 109, pp. 1–6.
Kersten, W.J., Brooks, R.R., Reeves, R.D., and Jaffre, T., Nature of Nickel Complexes in Psychotria douarrei and Other Nickel-Accumulating Plants, Phytochemistry, 1980, vol. 19, pp. 1963–1965.
Cataldo, D.A., McFadden, K.M., Garland, T.R., and Wildung, R.E., Organic Constituents and Complexation of Nickel (II), Iron (III), Cadmium (II) and Plutonium (IV) in Soybean Xylem Exudates, Plant Physiol., 1988, vol. 86, pp. 734–739.
Homer, F.A., Reeves, R.D., Brooks, R.R., and Baker, A.J.M., Characterization of the Nickel-Rich Extract from the Nickel Hyperaccumulator Dichapetalum gelonioides, Phytochemistry, 1991, vol. 30, pp. 2141–2145.
Kramer, U., Cotter-Howells, J.D., Charnock, J.M., Baker, A.J.M., and Smith, A.C., Free Histidine as a Metal Chelator in Plants That Accumulate Nickel, Lett. Nature, 1996, vol. 379, pp. 635–638.
Persans, M.W., Yan, X., Patnoe, J.M., Kramer, U., and Salt, D.E., Molecular Dissection of the Role of Histidine in Nickel Hyperaccumulation in Thlaspi goesingense (Halacsy), Plant Physiol., 1999, vol. 121, pp. 1117–1126.
Zeller, S. and Feller, U., Redistribution of Cobalt and Nickel in Detached Wheat Shoots: Effects of Steam-Girdling and of Cobalt and Nickel Supply, Biol. Plant., 1998, vol. 41, pp. 427–434.
Koranda, J.J. and Robison, W.L., Accumulation of Radionuclides by Plants as a Monitor System, Environ. Health Perspect., 1978, vol. 27, pp. 165–179.
Zeller, S. and Feller, U., Long-Distance Transport of Alkali Metals in Maturing Wheat, Biol. Plant., 2000, vol. 43, pp. 523–528.
Karley, A.J., Leigh, R.A., and Sanders, D., Differential Ion Accumulation and Ion Fluxes in the Mesophyll and Epidermis of Barley, Plant Physiol., 2000, vol. 122, pp. 835–844.
Karley, A.J., Leigh, R.A., and Sanders, D., Where Do All the Ions Go? The Cellular Basis of Differential Ion Accumulation in Leaf Cells, Trends Plant Sci., 2000, vol. 5, pp. 465–470.
Bhatia, N.P., Walsh, K.B., Orlic, I., Siegele, R., Ashwath, N., and Baker, A.J.M., Studies on Spatial Distribution of Nickel in Leaves and Stems of the Metal Hyperaccumulator Stackhousia tryonii Using Nuclear Microprobe (Micro-PIXE) and EDXS Techniques, Funct. Plant Biol., 2004, vol. 31, pp. 1061–1074.
Broadhurst, C.L., Chaney, R.L., Angle, J.S., Maugel, T.K., Erbe, E.F., and Murphy, C.A., Simultaneous Hyperaccumulation of Nickel, Manganese, and Calcium in Alyssum Leaf Trichomes, Environ. Sci. Technol., 2004, vol. 38, pp. 5797–5802.
MacNear, D.H., Peltier, E., Everhart, J., Chaney, R.L., Sutton, S., Newville, M., Rivers, M., and Sparks, D.L., Application of Quantitative Fluorescence and Absorption-Edge Computed Microtomography to Image Metal Compartmentalization in Alyssum murale, Environ. Sci. Technol., 2005, vol. 39, pp. 2210–2218.
Solereder, H., Systematische Anatomie der Dicotyledonen, Stuttgart: Verlag von Ferdinand Enke, 1899, pp. 67–77.
Metcalfe, C.R. and Chalk, L., Leaves, Stem, and Wood in Relation to Taxanomy with Notes on Economic Uses, Anatomy of the Dikotyledons., Oxford: Clarendon, 1950, vol. 1, pp. 83–91.
Mazel’, Yu.Ya., Development of the Systems for Accumulation and Ion Transport in Plants (as Exemplified by Potassium and Calcium), Doctoral (Biol.) Dissertation, Moscow: Mosk. Timiryazev. Agric. Acad., 1989.
Author information
Authors and Affiliations
Corresponding author
Additional information
Original Russian Text © I.V. Seregin, A.D. Kozhevnikova, 2008, published in Fiziologiya Rastenii, 2008, Vol. 55, No. 1, pp. 3–26.
Rights and permissions
About this article
Cite this article
Seregin, I.V., Kozhevnikova, A.D. Roles of root and shoot tissues in transport and accumulation of cadmium, lead, nickel, and strontium. Russ J Plant Physiol 55, 1–22 (2008). https://doi.org/10.1134/S1021443708010019
Received:
Published:
Issue Date:
DOI: https://doi.org/10.1134/S1021443708010019