[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

p-Adic Representation of Subsets of a Bounded Number Set

  • Published:
Programming and Computer Software Aims and scope Submit manuscript

Abstract

In this paper, we show that a ring of p-adic integers Zp can be used to represent subsets of a bounded number set. We propose an approach to define a set of p-adic balls. The union of their images is a subset of the bounded number set. The cover of the set of p-adic balls and the p-adic density of the subset of the bounded number set are defined. We also define the operations of p-adic intersection, union, and complement over sets of p-adic balls that can generate the corresponding algebra.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

REFERENCES

  1. Oganov, A.R., USPEX: When the form is determined by the content, Nauka Pervykh Ruk, 2012, vol. 43, no. 1, pp. 52–60.

    Google Scholar 

  2. Khel’, I., How a mathematician helped biologists make an important discovery. https://hi-news.ru/science/kak-matematik-pomog-biologam-sovershit-vazhnoe-otkrytie.html.

  3. Frauenfelder, H., The connection between low-temperature kinetics and life, Protein Structure: Molecular and Electronic Reactivity, Austin, R.H., Eds., New York: Springer, 1987.

    Google Scholar 

  4. Vilenkin, A., The World of Many Worlds: Physicists in Search for Other Universes, Astrel’, 2009.

    Google Scholar 

  5. Becker, O.M. and Karplus, M., The topology of multidimensional protein energy surfaces: Theory and application to peptide structure and kinetics, J. Chem. Phys., 1997, vol. 106, pp. 1495–1517.

    Article  Google Scholar 

  6. Avetisov, A., Bikulov, A.Kh., and Osipov, V.A., p-Adic models of ultrasonic diffusion in the conformational dynamics of macromolecules, Tr. Mat. Inst. im. V.A. Steklova, 2004, vol. 245, pp. 55–64.

    Google Scholar 

  7. Courant, R. and Robbins, H., What is Mathematics? An Elementary Approach to Ideas and Methods, Oxford University Press, 1996, 2nd ed.

    MATH  Google Scholar 

  8. Vladimirov, V.S., Volovich, I.V., and Zelenov, E.I., p‑Adic analysis and mathematical physics, Ser. Sov. East Eur. Math., 1994, vol. 1.

  9. Izotov, A.D. and Mavrikidi, F.I., Fraktaly: Delimost’ veshchestva kak stepen' svobody v materialovedenii (Fractals: Divisibility of Substance as a Degree of Freedom in Materials Science), Samara: Izd. Samar. Gos. Aerokosm. Univ., 2011.

  10. Katok, S., p-Adic Analysis Compared with Real, American Mathematical Society, 2007.

  11. Volovich, I.V. and Kozyrev, S.V., p-Adic mathematical physics: Basic constructs, applications to complex and nanoscopic systems, Proc. Int. Conf. Mathematical Physics and Its Applications, Samara, 2009. http://www.mi.ras.ru/noc/irreversibility/p-adicMF1.pdf.

  12. Khrennikov, A.Yu., Modelirovanie protsessov myshleniya v p-adicheskikh sistemakh koordinat (Modeling of Thinking Processes in p-Adic Coordinate Systems), Moscow: Fizmatlit, 2004.

  13. Kozyrev, S.V., Wavelet theory as p-adic spectral analysis, Izv. Ross. Acad. Nauk, Ser. Mat., 2002, vol. 66, no. 2, pp. 149–158.

    Google Scholar 

  14. Kononyuk, A.E., Obobshchennaya teoriya modelirovaniya. Kniga 2. Chisla: kolichestvennye otsenki parametrov modeli (Generalized Modeling Theory. Book 2. Numbers: Quantitative Estimates of Model Parameters), Kiev: Osvita Ukraïni, 2012.

  15. Deza, M.-M. and Deza, E., Encyclopedia of Distances, Berlin: Springer, 2008.

    MATH  Google Scholar 

  16. Veselovskaya, A.Z. and Shepelyavaya, R.B., Matematika: Logika, mnozhestva, otobrazheniya. Izbrannye aspekty v elementarnom izlozhenii (Mathematics: Logic, Sets, Maps. Selected Aspects in an Elementary Presentation), St. Petersburg: Izd. S.-Peterb. Univ., 2014, 2nd ed.

  17. Stoll, R.R., Set Theory and Logic, NewYork: Dover, 1979.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to V. P. Bocharnikov or S. V. Sveshnikov.

Additional information

Translated by Yu. Kornienko

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bocharnikov, V.P., Sveshnikov, S.V. p-Adic Representation of Subsets of a Bounded Number Set. Program Comput Soft 47, 225–234 (2021). https://doi.org/10.1134/S0361768821040022

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0361768821040022

Navigation