[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Computational Problems of Multivariate Hypergeometric Theory

  • Published:
Programming and Computer Software Aims and scope Submit manuscript

Abstract

We consider computational problems of the theory of hypergeometric functions in several complex variables: computation of the holonomic rank of a hypergeometric system of partial differential equations, computing the defining polynomial of the singular hypersurface of such a system and finding its monomial solutions. The presented algorithms have been implemented in the computer algebra system MATHEMATICA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Abramov, S.A., Search of rational solutions to differential and difference systems by means of formal series, Program. Comput. Software, 2015, vol. 42, no. 2, pp. 65–73.

    Article  MathSciNet  MATH  Google Scholar 

  2. Abramov, S.A., Gheffar, A., and Khmelnov, D.E., Rational solutions of linear difference equations: Universal denominators and denominator bounds, Program. Comput. Software, 2011, vol. 37, no. 2, pp. 78–86.

    Article  MathSciNet  MATH  Google Scholar 

  3. Gelfond, A.O., Calculus of Finite Differences, Hindustan Publ. Corp., 1971.

    Google Scholar 

  4. Stanley, R.P., Enumerative Combinatorics, Cambridge University Press, 2010.

    MATH  Google Scholar 

  5. Sadykov, T.M., On a multidimensional system of hypergeometric differential equations, Sib. Math. J., 1998, pp. 986–997.

    Google Scholar 

  6. Dickenstein, A. and Sadykov, T.M., Bases in the solution space of the Mellin system, Sb.: Math., 2007, vol. 198, no. 9, pp. 1277–1298.

    MathSciNet  MATH  Google Scholar 

  7. Dickenstein, A. and Sadykov, T.M., Algebraicity of solutions to the Mellin system and its monodromy, Dokl. Math., 2007, vol. 75, no. 1, pp. 80–82.

    Article  MathSciNet  MATH  Google Scholar 

  8. Krasikov, V.A. and Sadykov, T.M., On the analytic complexity of discriminants, Proc. Steklov Inst. Math., 2012, vol. 279, pp. 78–92.

    Article  MathSciNet  MATH  Google Scholar 

  9. Kulikov, V.R. and Stepanenko, V.A., On solutions and Waring’s formulas for the system of algebraic equations with unknowns, St. Petersburg Math. J., 2015, vol. 26, no. 5, pp. 839–848.

    Article  MathSciNet  MATH  Google Scholar 

  10. Sadykov, T.M. and Tanabé, S., Maximally reducible monodromy of bivariate hypergeometric systems, Izv.: Math., 2016, vol. 80, no. 1, pp. 221–262.

    Article  MathSciNet  MATH  Google Scholar 

  11. Sadykov, T.M. and Tsikh, A.K., Hypergeometric and Algebraic Functions in Several Variables, Moscow: Nauka, 2014 (in Russian).

    MATH  Google Scholar 

  12. Abramov, S.A., Barkatou, M.A., van Hoeij, M., and Petkovsek, M., Subanalytic solutions of linear difference equations and multidimensional hypergeometric sequences, J. Symbolic Comput., 2011, vol. 46, no. 11, pp. 1205–1228.

    Article  MathSciNet  MATH  Google Scholar 

  13. Bousquet-Mélou, M. and Petkovšek, M., Linear recurrences with constant coefficients: the multivariate case, Discrete Math., 2000, vol. 225, pp. 51–75.

    Article  MathSciNet  MATH  Google Scholar 

  14. Cattani, E., Dickenstein, A., and Rodriguez Villegas, F., The structure of bivariate rational hypergeometric functions, Int. Math. Res. Notices, 2011, no. 11, pp. 2496–2533.

    MathSciNet  MATH  Google Scholar 

  15. Cattani, E., Dickenstein, A., and Sturmfels, B., Rational hypergeometric functions, Compositio Mathematica, 2001, vol. 128, no. 2, pp. 217–240.

    Article  MathSciNet  MATH  Google Scholar 

  16. Grayson, D.R. and Stillman, M.E., Macaulay2, a software system for research in algebraic geometry. http://www.math.uiuc.edu/Macaulay2/.

  17. Noro, M., A computer algebra system: Risa/Asir, Algebra, Geometry and Software Systems, 2003, pp. 147–162.

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. M. Sadykov.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sadykov, T.M. Computational Problems of Multivariate Hypergeometric Theory. Program Comput Soft 44, 131–137 (2018). https://doi.org/10.1134/S0361768818020093

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0361768818020093

Navigation