[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Implementing a Method for Stochastization of One-Step Processes in a Computer Algebra System

  • Published:
Programming and Computer Software Aims and scope Submit manuscript

Abstract

When modeling such phenomena as population dynamics, controllable flows, etc., a problem arises of adapting the existing models to a phenomenon under study. For this purpose, we propose to derive new models from the first principles by stochastization of one-step processes. Research can be represented as an iterative process that consists in obtaining a model and its further refinement. The number of such iterations can be extremely large. This work is aimed at software implementation (by means of computer algebra) of a method for stochastization of one-step processes. As a basis of the software implementation, we use the SymPy computer algebra system. Based on a developed algorithm, we derive stochastic differential equations and their interaction schemes. The operation of the program is demonstrated on the Verhulst and Lotka–Volterra models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Gardiner, C., Stochastic Methods: A Handbook for the Natural and Social Sciences, Springer, 2009, 4th ed.

    MATH  Google Scholar 

  2. Van Kampen, N.G., Stochastic Processes in Physics and Chemistry, Elsevier, 2011.

    MATH  Google Scholar 

  3. Korolkova, A.V., Eferina, E.G., Laneev, E.B., Gudkova, I.A., Sevastianov, L.A., and Kulyabov, D.S., Stochastization of one-step processes in the occupations number representation, Proc. 30th Eur. Conf. Modeling and Simulation, 2016, pp. 698–704.

    Google Scholar 

  4. Eferina, E.G., Hnatich, M., Korolkova, A.V., Kulyabov, D.S., Sevastianov, L.A., and Velieva, T.R., Diagram representation for the stochastization of singlestep processes, Communications in Computer and Information Science, Vishnevskiy, V.M., Samouylov, K.E., Kozyrev, D.V., Eds., Springer, 2016, vol. 678, pp. 483–497.

    Article  Google Scholar 

  5. Hnatific, M., Eferina, E.G., Korolkova, A.V., Kulyabov, D.S., and Sevastyanov, L.A., Operator approach to the master equation for the one-step process, EPJ Web of Conferences, 2015, vol. 108, pp. 58–59.

    Google Scholar 

  6. Gevorkyan, M.N., Demidova, A.V., Zaryadov, I.S., Sobolewski, R., Korolkova, A.V., Kulyabov, D.S., and Sevastianov, L.A., Approaches to stochastic modeling of wind turbines, Proc. 31st Eur. Conf. Modeling and Simulation (ECMS), Varadi, K., Vidovics-Dancs, A., Radics, J.P., Paprika, Z.Z., Zwierczyk, P.T., and Horak, P., Eds., Budapest: European Council for Modeling and Simulation, 2017, pp. 622–627.

    Google Scholar 

  7. Gevorkyan, M.N., Velieva, T.R., Korolkova, A.V., Kulyabov, D.S., and Sevastyanov, L.A., Stochastic Runge–Kutta software package for stochastic differential equations, Dependability Engineering and Complex Systems, Springer, 2016, vol. 470, pp. 169–179.

    Google Scholar 

  8. Grassberger, P. and Scheunert, M., Fock-space methods for identical classical objects, Fortschritte der Physik, 1980, vol. 28, no. 10, pp. 547–578.

    Article  MathSciNet  Google Scholar 

  9. Täuber, U.C., Field-theory approaches to nonequilibrium dynamics, Ageing Glass Transition, 2005, vol. 716, pp. 295–348.

    Article  MathSciNet  MATH  Google Scholar 

  10. Janssen, H.-K. and Täuber, U.C., The field theory approach to percolation processes, Ann. Phys., 2005, vol. 315, no. 1, pp. 147–192.

    Article  MathSciNet  MATH  Google Scholar 

  11. Mobilia, M., Georgiev, I.T., and Täuber, U.C., Fluctuations and correlations in lattice models for predator–prey interaction, Phys. Rev. E, 2006, vol. 73, no. 4, p. 040903.

    Article  Google Scholar 

  12. Penrose, R. and Rindler, W., Spinors and Space-Time: Volume 1, Two-Spinor Calculus and Relativistic Fields, Cambridge Univ. Press, 1987.

    MATH  Google Scholar 

  13. Demidova, A.V., Korolkova, A.V., Kulyabov, D.S., and Sevastyanov, L.A., The method of constructing models of peer to peer protocols, Proc. 6th Int. Congr. Ultra Modern Telecommunications and Control Systems and Workshops (ICUMT), IEEE Computer Society, 2015, pp. 557–562.

    Google Scholar 

  14. Bainov, D.D. and Hristova, S.G., Differential Equations with Maxima, Chapman and Hall/CRC, 2011.

    MATH  Google Scholar 

  15. Timberlake, T. K. and Mixon, J. W., Classical mechanics with maxima, Undergraduate Lecture Notes in Physics, New York: Springer, 2016.

    Book  MATH  Google Scholar 

  16. Jenks, R.D. and Sutor, R.S., AXIOM: The Scientific Computation System, Springer, 1992.

    MATH  Google Scholar 

  17. Eferina, E.G., Korolkova, A.V., Gevorkyan, M.N., Kulyabov, D.S., and Sevastyanov, L.A., One-step stochastic processes simulation software package, Bull. Peoples’ Friendship Univ. Russia, Ser. Math., Inf. Sci., Phys., 2014, no. 3, pp. 46–59.

    Google Scholar 

  18. Hindley, R., The principal type-scheme of an object in combinatory logic, Trans. Am. Math. Soc., 1969, vol. 146, p. 29.

    MathSciNet  MATH  Google Scholar 

  19. Milner, R., A theory of type polymorphism in programming, J. Comput. Syst. Sci., 1978, vol. 17, no. 3, pp. 348–375.

    Article  MathSciNet  MATH  Google Scholar 

  20. Lamy, R., Instant SymPy Starter, Packt Publishing, 2013, p. 52.

    Google Scholar 

  21. Eferina, E.G. and Kulyabov, D.S., Implementation of diagram technique for statistical systems in Sympy, Proc. 6th Int. Conf. Problems of Mathematical Physics and Mathematical Modeling, Moscow: NRNU MEPhI, 2017, pp. 125–127.

    Google Scholar 

  22. Perez, F. and Granger, B.E., IPython: A system for interactive scientific computing, Comput. Sci. Eng., 2007, vol. 9, no. 3, pp. 21–29.

    Article  Google Scholar 

  23. Oliphant, T.E., Python for scientific computing, Comput. Sci. Eng., 2007, vol. 9, no. 3, pp. 10–20.

    Article  Google Scholar 

  24. Oliphant, T.E., Guide to NumPy, CreateSpace Independent Publishing, 2015, 2nd ed.

    Google Scholar 

  25. Verhulst, P.F., Notice sur la loi que la population suit dans son accroissement, 1838, vol. 10, pp. 113–117.

    Google Scholar 

  26. Feller, W., Die Grundlagen der Volter-raschen Theorie des Kampfes ums Dasein in wahrscheinlichkeitstheoretischer Behandlung, Acta Biotheoretica, 1939, vol. 5, no. 1, pp. 11–40.

    Article  MathSciNet  MATH  Google Scholar 

  27. Feller, W., On the theory of stochastic processes, with particular reference to applications, Proc. 1st Berkeley Symp. Mathematical Statistics and Probability, 1949, pp. 403–432.

    Google Scholar 

  28. Lotka, A.J., Contribution to the theory of periodic reaction, J. Phys. Chem. A, 1910, vol. 14, no. 3, pp. 271–274.

    Article  Google Scholar 

  29. Lotka, A.J., Elements of Physical Biology, Williams and Wilkins Company, 1925.

    MATH  Google Scholar 

  30. Volterra, V., Variations and fluctuations of the number of individuals in animal species living together, Journal du Conseil permanent International pour l' Exploration de la Mer, 1928, vol. 3, no. 1, pp. 3–51.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. N. Gevorkyan.

Additional information

Original Russian Text © M.N. Gevorkyan, A.V. Demidova, T.R. Velieva, A.V. Korol’kova, D.S. Kulyabov, L.A. Sevast’yanov, 2018, published in Programmirovanie, 2018, Vol. 44, No. 2.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gevorkyan, M.N., Demidova, A.V., Velieva, T.R. et al. Implementing a Method for Stochastization of One-Step Processes in a Computer Algebra System. Program Comput Soft 44, 86–93 (2018). https://doi.org/10.1134/S0361768818020044

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0361768818020044

Navigation