Abstract
A survey is presented of the so-called program schemata technique for proving the decidability of propositional program logics. This method is based on the reduction to versions of the problem of relative totality for nondeterministic Yanov schemata.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Ball, T., Podelski, A., and Rajamani, S.K., Boolean and Cartesian abstraction for model checking C programs, Microsoft Research, 2000, MSR-TR-2000-115. http://researchmicrosoftcom/apps/pubs/defaultaspx?idi821.
Ben-Ari, M., Halpern, J.Y., and Pnueli, A., Deterministic propositional dynamic logic: Finite models, complexity, and completeness, J. Comput. Syst.Sci., 1982, vol. 25, no. 3, pp. 402–417.
Bradfield, J., and Stirling, C., Modal mu-calculi, in The Handbook of Modal Logic, Blackburn, P., van Benthem, J., and Wolter, F., Eds., Elsevier, 2006, pp. 721–756.
Bruse, F., Friedmann, O., and Lange, M., Guarded transformation for the modal mu-calculus. http://arxiv. org/abs/1305.0648).
Buchi Weak Second Order Arithmetic and Finite Automata: The Collected Works of J. Richard Buchi, New York: Springer, 1990, pp. 398–424.
Chagrov, A. and Zakharyaschev, M., Modal Logic, Oxford: Oxford Univ. Press, 1997.
Clarke, E.M., Grumberg, O., and Peled, D., Model Checking, MIT Press, 1999.
Cleaveland, R., Tableau-based model checking in the propositional mu-calculus, Acta Informatica, 1990, vol. 27, pp. 725–747.
Emerson, E.A. and Jutla, C.J., The complexity of tree automata and logics of programs, SIAM J. Comput., 1999, vol. 29, pp. 132–158.
Fischer, M., and Ladner, R., Propositional dynamic logic of regular programs, J. Comput. Syst. Sci., 1979, vol. 18, pp. 194–211.
Harel, D., Kozen, D., and Tiuryn, J., Dynamic Logic, MIT Press, 2000.
Kozen, D., Results on the propositional mu-calculus, Theor. Comput. Sci., 1983, vol. 27, pp. 333–354.
Nepomniaschy, V.A., and Shilov, N.V., Non-deterministic program schemata and their relation to dynamic logic, Int. Conf. on Math. Logic and Its Applications, Plenum Press, 1987, pp. 137–147.
Podlovchenko, R.I., A.A. Lyapunov and A.P. Ershov in the theory of program schemes and the development of its logic concepts, Lect. Notes Comput. Sci., 2001, vol. 2244, pp. 8–23.
Rabin, M.O., Decidability of second order theories and automata on infinite trees, Trans. ASM, 1969, vol. 141, pp. 1–35.
Rutledge, J.D., On Ianovs program schemata, JACM, 1964, vol. 11, no. 1, pp. 1–9.
Rutledge, J.D., Program schemata as automata. Part I, J.Comput. Syst. Sci., 1973, vol. 7, no. 6, pp. 543–578.
Shilov, N.V., Program schemata vs. automata for decidability of program logics, Theor. Comput. Sci., 1997, vol. 175, pp. 15–27.
Shilov, N.V., An approach to design of automata-based axiomatization for propositional program and temporal logics (by example of linear temporal logic), in Logic, Computation, Hierarchies. Series: Ontos Mathematical Logic, Brattka, V., Diener, H., and Spreen, D., Eds., Ontos-Verlag/De Gruyter, 2014, vol. 4, pp. 297–324.
Shilov, N.V., Program schemata technique to solve propositional program logics revised, Post-Proceedings of 10th Ershov Informatics Conference PSI-2015 (25–27 August 2015, Innopolis, Kazan, Russia). To appear in Springer Lect. Notes Comput. Sci., 2016, vol. 9609.
Stirling, C., Modal and temporal logics, in Handbook of Logic in Computer Science, Abramsky, S., Gabbay, D.M., and Maibaum, S.E., Eds., Oxford: Oxford Univ. Press, 1992, vol. 2, pp. 477–563.
Streett, R., Propositional dynamic logic of looping and converse is elementary decidable, Inf. Control, 1982, vol. 54, pp. 121–141.
Tarski, A., A lattice-theoretical fixpoint theorem and its applications, Pac. J. Math., 1955, vol. 5, pp. 285–309.
The Description Logic Handbook: Theory, Implementation, Applications, Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D., and Patel-Schneider, P.F., Eds., Cambridge: Cambridge Univ. Press, 2003.
Schlingloff, B.-H., On the expressive power of modal logics on trees, Lect. Notes Comput. Sci., 1992, vol. 620, pp. 441–451.
Valiev, M.K., Decision complexity of variants of propositional dynamic logic, Lect. Notes Comput. Sci., 1980, vol. 88, pp. 656–664.
Vardi, M.Y. and Wolper, P., Automata-theoretic techniques for modal logics of programs, J. Comput. Syst. Sci., 1986, vol. 32, no. 2, pp. 183–221.
Walukiewicz, I., A complete deductive system for the mu-calculus, Proc. IEEE LICS’93, 1993, pp. 136–147.
Walukiewicz, I., Completeness of Kozen’s axiomatisation of the propositional Mu-calculus, Information and Computation, 2000, vol. 157, pp. 142–182.
Zakharov, V.A., An efficient and unified approach to the decidability of equivalence of propositional programs, Lect. Notes Comput. Sci., 1998, vol. 1443, pp. 247–258.
Bodin, E.V., Shilov, N.V., and Ii, K.O., Programs logics made simple, in System Informatics: Collection of Scientific Works, Novosibirsk: Nauka, 2003, issue 8, pp. 206–249.
Ershov, A.P., On Yanov’s operator schemata, in Problems of Cybernatics: Collection of Scientific Works, Moscow: Nauka, 1968, issue 20, pp. 181–200.
Ershov, A.P., Introduction to Theoretical Programming (Talks on a Method): A Textbook, Moscow: Nauka, 1977. Engl. transl. Origins of Programming: Discourses on Methodology, New York: Springer, 1990.
Karpov, Yu.G., Model Checking: Verification of Parallel and Distributed Program Schemata, St. Petersburg: BKhV-Peterburg, 2009.
Kotov, V.E. and Sabel’fel’d, V.K., Theory of Program Schemata, Moscow: Nauka, 1991.
Kfuri, A.D., Stolboushkin, A.P., and Uzhichin, P., Some open problems in the theory of program schemata and dynamical logics, Usp. Mat. Nauk, 1989, vol. 44. no. 1 (265), pp. 35–55.
Nepomnyashchii, V.A. and Ryakin, O.M., Applied Methods of Program Verification, Moscow: Radio i Svyaz’, 1988.
Nepomnyashchii, V.A., and Shilov, N.V., Nondeterministic program schemata and their relation to dynamical logic, Kibernetika, 1988, no. 3, pp. 12–19.
Odintsov, S.P., Speranskii, S.O., and Drobyshevich, S.A., Introduction to Nonclassical Logics: A Textbook for Novosibirsk State University, Novosibirsk: RITs Novosibirsk. Gos. Univ., 2014.
Podlovchenko, R.I., From Yanov schemata to the theory of program models, Mathematical Problems of Cybernetics, Yablonskii, S.V., Ed., Moscow: Nauka, Fizmatlit, 1998, issue 7, pp 281–302.
Shilov, N.V., Formalisms and tools for designing and maintaining ontology, System Informatics, Marchuk, A.G., Ed., Novosibirsk: Sib. Otd. Ross. Akad. Nauk, 2009, issue 11, pp. 10–48.
Shilov, N.V., Principles of Syntax, Semantics, Translation, and Verification of Programs, Novosibirsk: Novosibirsk. Gos. Univ., 2011.
Shilov, N.V., Bernshtein, A.Yu., and Shilova, S.O., Application of nondeterministic monadic program schemata to the study of the properties of program logics with fixed points, International Conference Mal’tsev Meeting, Novosibirsk, November 11–15, 2013, Novosibirsk: Inst. Mat., Sib. Otd., Ross. Akad. Nauk, 2013, p. 58. http://wwwmathnscru/conference/malmeet/ 13/maltsev13pdf.
Shilov, N.V., Shilova, S.O., and Bernshtein, A.Yu., Generalized totality of nondeterministic Yanov schemata and decidability of a program logic with fixed points, Modern Information Technologies and IT-Education: Collection of Selected Works from the IX International Research and Practice Conference, Moscow State University, November 14–16, 2013, Sukhomlin, V.A., Ed., Moscow: Mosk. Gos. Univ., 2014.
Yanov, Yu.I., On logical algorithmic schemata, in Problems of Cybernetics: Collection of Scientific Works, Moscow: Nauka, 1958, issue 1, pp. 75–127.
Yanov, Yu.I., On local transformations of algorithmic schemata, in Problems of Cybernetics: Collection of Scientific Works, Moscow: Nauka, 1968, issue 20, pp. 201–216.
Author information
Authors and Affiliations
Corresponding author
Additional information
Original Russian Text © N.V. Shilov, S.O. Shilova, A.Yu. Bernshtein, 2016, published in Programmirovanie, 2016, Vol. 42, No. 4.
Rights and permissions
About this article
Cite this article
Shilov, N.V., Shilova, S.O. & Bernshtein, A.Y. Program schemata technique for propositional program logics: A 30-year history. Program Comput Soft 42, 239–256 (2016). https://doi.org/10.1134/S036176881604006X
Received:
Published:
Issue Date:
DOI: https://doi.org/10.1134/S036176881604006X