[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

On laplace and Dini transformations for multidimensional equations with a decomposable principal symbol

  • Published:
Programming and Computer Software Aims and scope Submit manuscript

Abstract

Algorithms for solving linear PDEs implemented in modern computer algebra systems are usually limited to equations with two independent variables. In this paper, we propose a generalization of the theory of Laplace transformations to second-order partial differential operators in ℝ3 (and, generally, ℝn) with a principal symbol decomposable into the product of two linear (with respect to derivatives) factors. We consider two algorithms of generalized Laplace transformations and describe classes of operators in ℝ3 to which these algorithms are applicable. We correct a mistake in [8] and show that Dini-type transformations are in fact generalized Laplace transformations for operators with coefficients in a skew (noncommutative) Ore field. Keywords: computer algebra, partial differential equations, algorithms for solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Darboux, G., Le-cons sur la the-orie ge-ne-rale des surfaces et les applications ge-ome-triques du calcul infinite-simal, Paris: Gauthier-Villars, 1889, vol. 2.

    Google Scholar 

  2. Zhiber, A.V. and Startsev, S.Ya., Integrals, Solutions, and Existence Problems for Laplace Transformations of Linear Hyperbolic Systems, Math. Notes, 2003, vol. 74, nos. 5–6, pp. 803–811.

    Article  MathSciNet  MATH  Google Scholar 

  3. Athorne, C.A., A Z 2 × R 3 Toda System, Phys. Lett. A, 1995, vol. 206, pp. 162–166.

    Article  MathSciNet  MATH  Google Scholar 

  4. Petrén, L., Extension de la méthode de Laplace aux équations \(\sum\nolimits_{i = 0}^{n - 1} {A_{1i} \frac{{\partial ^{i + 1} z}} {{\partial x\partial y^i }}} + \sum\nolimits_{i = 0}^n {A_{0i} \frac{{\partial ^i z}} {{\partial y^i }}}\), Lund Univ. Arsskrift, 1911, vol. 7, no. 3, pp. 1–166.

    Google Scholar 

  5. Pisati, L., Sulla estensione del metodo di Laplace alle equazioni con due variabili, Rend. Circ. Mat. Palermo, vol. 20, pp. 344–374.

  6. Taimanov, I. and Tsarev, S., Two-Dimensional Rational Solitons and Their Blowup via the Moutard Transformation, Theor. Math. Phys., 2008, vol. 157, no. 2., pp. 1525–1541. doi 10.1007/s11232-008-0127-37.

    Article  MathSciNet  MATH  Google Scholar 

  7. Tsarev, S.P., On Darboux Integrable Nonlinear Partial Differential Equations, Proc. Steklov Inst. Math., 1999, vol. 225, pp. 372–381.

    MathSciNet  Google Scholar 

  8. Tsarev, S.P., On Factorization and Solution of Multidimensional Linear Differential Equations, in Computer Algebra 2006. Latest Advances in Symbolic Algorithms, Proc. Waterloo Workshop, Canada, 10–12 April, 2006 World Scientific, 2007, pp. 181–192. http://arxiv.org/abs/cs/0609075v2

  9. Tsarev, S.P., Generalized Laplace Transformations and Integration of Hyperbolic Systems of Linear Partial Differential Equations, Proc. ISSAC’2005 (July 24–27, 2005, Beijing, China), ACM, 2005, pp. 325–331. http: //arxiv.org/abs/cs/0501030v1

  10. Ganzha, E.I., Loginov V.M., and Tsarev S.P., Exact Solutions of Hyperbolic Systems of Kinetic Equations. Application to Verhulst Model with Random Perturbation, Math. Comput., 2008, vol. 1, no. 3, pp. 459–472. http://arxiv.org/abs/math/0612793v1

    Article  MathSciNet  MATH  Google Scholar 

  11. Kaptsov, O.V., Metody integrirovaniya uravnenii s chastnymi proizvodnymi (Integration Methods for Partial Differential Equations), Moscow: Fizmatlit, 2009.

    Google Scholar 

  12. Schwarz, F., ALLTYPES: An ALgebraic Language and TYPE System. http://www.alltypes.de/

  13. Ore, O., Theory of Non-Commutative Polynomials, Ann. Math., 1933, vol. 34, pp. 480–508.

    Article  MathSciNet  MATH  Google Scholar 

  14. Ore, O., Linear Equations in Non-Commutative Fields, Ann. Math., 1931, vol. 32, pp. 463–477.

    Article  MathSciNet  Google Scholar 

  15. REDUCE. http://reduce-algebra.sourceforge.net/

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. I. Ganzha.

Additional information

Original Russian Text © E.I. Ganzha, 2012, published in Programmirovanie, 2012, Vol. 38, No. 3.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ganzha, E.I. On laplace and Dini transformations for multidimensional equations with a decomposable principal symbol. Program Comput Soft 38, 150–155 (2012). https://doi.org/10.1134/S0361768812030012

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0361768812030012

Keywords

Navigation