[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

On selection of nonmultiplicative prolongations in computation of Janet bases

  • Published:
Programming and Computer Software Aims and scope Submit manuscript

Abstract

We consider three modifications of our basic involutive algorithm for computing polynomial Janet bases. These modifications, which are related to degree-compatible monomial orders, yield specific selection strategies for nonmultiplicative prolongations. Using a standard database of benchmarks designed for testing programs computing Gröbner bases, we compare these algorithmic modifications (in terms of their efficiency) with Faugére’s F 4 algorithm, which is built in the Magma computer algebra system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Gerdt, V. P. and Blinkov, Yu. A., Involutive Bases of Polynomial Ideals, Math. Comput. Simulation, 1998, vol. 45, pp. 519–542, http://arXiv.org/math.AC/9912027; Minimal Involutive Bases, Math. Comput. Simulation, 1998, vol. 45, pp. 543–560, http://arXiv.org/math.AC/9912029.

    Article  MATH  MathSciNet  Google Scholar 

  2. Gerdt, V. P. and Blinkov, Yu. A., Involutive Division of Monomials, Programmirovanie, 1998, vol. 24, no. 6, pp. 283–285.

    MATH  MathSciNet  Google Scholar 

  3. Janet, M., Leçons sur les systémes d’equations aux dérivées partielles, Cahiers Scientifiques, IV, Paris: Gauthier-Villars, 1929.

    Google Scholar 

  4. Gerdt, V. P., Blinkov, Yu. A., and Yanovich, D. A., Construction of Janet Bases. I. Monomial Bases, Proc. of the 4th Int. Conf. Computer Algebra in Scientific Computing CASC-2001 (Konstanz, Germany, 2001), Ganzha, V. G., Mayr, E. W., and Vorozhtsov, E. V., Eds., Berlin: Springer, 2001, pp. 233–247; II. Polynomial Bases, pp. 249–263.

    Google Scholar 

  5. Gerdt, V. P., Involutive Algorithms for Computing Gröbner Bases, Computational Commutative and Non-Commutative Algebraic Geometry, Cojocaru, S., Pfister, G., and Ufnarovski, V., Eds., NATO Science Series, IOS, 2005, vol. 196, pp. 199–225; http://arXiv.org/math.AC/0501111.

  6. Gerdt, V. P. and Blinkov, Yu. A., Janet-Like Monomial Division. Janet-Like Gröbner Bases, Lecture Notes in Computer Science (Proc. of the 8th Int. Conf. Computer Algebra in Scientific Computing CASC-2005), Berlin: Springer, 2005, pp. 174–195.

    Google Scholar 

  7. http://www-sop.inria.fr/saga/POL.

  8. http://www.math.uic.edu/:_jan/demo.html.

  9. Buchberger, B., Gröbner Bases: An Algorithmic Method in Polynomial Ideal Theory, in Recent Trends in Multidimensional System Theory, Bose, N.K., Ed., Dordrecht: Reidel, 1985, pp. 184–232.

    Google Scholar 

  10. Giovinni, A., Mora, T., Niesi, G., Robbiano, L., and Traverso, C., One Sugar Cube, Please, or Selection Strategies in the Buchberger Algorithm, Proc. of ISSAC’91, New York: ACM, 1991, pp. 49–54.

    Google Scholar 

  11. Gerdt, V. P. and Blinkov, Yu. A., On Computing Janet Bases for Degree-Compatible Orderings, Proc. of 10th Rhine Workshop on Computer Algebra (Basel, Switzerland, 2006), Basel, 2006, pp. 107–117, http://arXiv.org/math.AC/0603161.

  12. Faugère, J. C., Gianni, P., Lazard, D., and Mora, T., Efficient Computation of Zero-Dimensional Gröbner Bases by Change of Ordering, J. Symbolic Computation, 1993, vol. 16, pp. 329–344.

    Article  MATH  Google Scholar 

  13. Collart, S., Kalkbrener, M., and Mall, D., Converting Bases with the Gröbner Walk, J. Symbolic Computation, 1997, vol. 24, pp. 465–469.

    Article  MATH  MathSciNet  Google Scholar 

  14. http://magma.maths.usyd.edu.au/magma/.

  15. Faugère, J. C., A New Efficient Algorithm for Computing Gröbner Bases (F 4), J. Pure Applied Algebra, 1999, vol. 139, nos. 1–3, pp. 61–68.

    Article  MATH  Google Scholar 

  16. http://www.singular.uni-kl.de.

  17. http://invo.jinr.ru.

  18. Bigatti, A. M., La Scala, R., and Robbiano, L., Computing Toric Ideals, J. Symbolic Computation, 1999, vol. 27, pp. 351–365.

    Article  MATH  Google Scholar 

  19. Conti, P. and Traverso, C., Buchberger Algorithm and Integer Programming, Lecture Notes in Computer Science (Proc. AAECC-9), Berlin: Springer, 1991, vol. 539, pp. 130–139.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © V.P. Gerdt, Yu.A. Blinkov, 2007, published in Programmirovanie, 2007, Vol. 33, No. 3.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gerdt, V.P., Blinkov, Y.A. On selection of nonmultiplicative prolongations in computation of Janet bases. Program Comput Soft 33, 147–153 (2007). https://doi.org/10.1134/S0361768807030048

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0361768807030048

Keywords

Navigation