[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

A symbolic-numerical algorithm for the computation of matrix elements in the parametric eigenvalue problem

  • Published:
Programming and Computer Software Aims and scope Submit manuscript

Abstract

A symbolic-numerical algorithm for the computation of the matrix elements in the parametric eigenvalue problem to a prescribed accuracy is presented. A procedure for calculating the oblate angular spheroidal functions that depend on a parameter is discussed. This procedure also yields the corresponding eigenvalues and the matrix elements (integrals of the eigenfunctions multiplied by their derivatives with respect to the parameter). The efficiency of the algorithm is confirmed by the computation of the eigenvalues, eigenfunctions, and the matrix elements and by the comparison with the known data and the asymptotic expansions for small and large values of the parameter. The algorithm is implemented as a package of programs in Maple-Fortran and is used for the reduction of a singular two-dimensional boundary value problem for the elliptic second-order partial differential equation to a regular boundary value problem for a system of second-order ordinary differential equations using the Kantorovich method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Friedrich, H., Theoretical Atomic Physics, New York: Springer, 1991.

    Google Scholar 

  2. Dimova, M.G., Kaschiev, M.S., and Vinitsky, S.I., The Kantorovich Method for High-Accuracy Calculations of a Hydrogen Atom in a Strong Magnetic Field: Low-Lying Excited States, J. Phys. B: At. Mol. Phys., 2005, vol. 38, pp. 2337–2352.

    Article  Google Scholar 

  3. Kantorovich, L. V. and Krylov, V.I. Priblizhennye metody vysshego analiza (Approximate Methods in Higher Analysis), Moscow: Gostekhizdat, 1952.

    Google Scholar 

  4. Abramowitz, M. and Stegun, I.A., Handbook of Mathematical Functions, New York: Dover, 1965. Translated under the title Spravochnik po spetsial’nym funktsiyam s formulami, grafikami i matemeticheskimi tablitsami, Moscow: Nauka, 1979.

    Google Scholar 

  5. Chuluunbaatar, O. et al., On an Effective Approximation of the Kantorovich Method for Calculations of a Hydrogen Atom in a Strong Magnetic Field, Proc. SPIE, 2006, vol. 6165, pp. 66–82.

    Google Scholar 

  6. Gusev, A.A. et al., A Symbolic-Numerical Algorithm for Solving the Eigenvalue Problem for a Hydrogen Atom in a Magnetic Field, Proc. of the 9th Workshop on Computer Algebra in Scientific Computing, CASC-2006, Chisinau, Moldova, 2006.

    Google Scholar 

  7. Courant, R. and Hilbert, D., Methoden der matematischen Physik, 2 vols., Berlin: Springer, 1931–1937. Translated under the title Metody matematicheskoi fiziki, Moscow: GIITL, 1951, vol. 1.

    Google Scholar 

  8. Hodge, D.B., Eigenvalues and Eigenfunctions of the Spheroidal Wave Equation, J. Math. Phys., 1970, vol. 11, pp. 2308–2312.

    Article  MATH  MathSciNet  Google Scholar 

  9. http://mathworld.wolfram.com/SpheroidalWaveFunction.html.

  10. http://www.netlib.org/eispack/.

  11. http://www.nag.co.uk/numeric/numerical_libraries.asp.

  12. Oguchi, T., Eigenvalues of Spheroidal Wave Functions and Their Branch Points for Complex Values of Propagation Constants, Radio Sci., 1970, vol. 5, pp. 1207–1214.

    Google Scholar 

  13. Skorokhodov, S.L. and Khristoforov D.V., Calculation of the Branch Points of the Eigenvalues Corresponding to Wave Spheroidal Functions, Zh. Vychils. Mat. Mat. Phys., 2006, vol. 46, no. 7, pp. 1195–1210.

    Google Scholar 

  14. Dumburg, R.J. and Propin, R.Kh., On Asymptotic Expansions of Electronic Terms of the Molecular Ion H +2 , J. Phys., B: At. Mol. Phys., 1968, vol. 1, pp. 681–691.

    Article  Google Scholar 

  15. Sarkisyan, H.A., Electronic States in a Cylindrical Quantum Dot in the Presence of Parallel Electrical and Magnetic Fields, J. Mod. Phys. Lett., B, 2002, vol. 16, pp. 835–841.

    Article  Google Scholar 

  16. Chuluunbaatar, O. et al., Benchmark Kantorovich Calculations for Three Particles on a Line, J. Phys., B: At. Mol. Phys., 2006, vol. 39, pp. 243–269.

    Article  Google Scholar 

  17. Vinitsky, S.I., Gerdt, V.P., Gusev, A.A., Kaschiev, M.S., Rostovtsev, V.A., Tyupikova, T.V., and Uwano, Y., A Symbolic Algorithm for the Factorization of the Evolution Operator for the Time-Dependent Schrödinger Equation, Programmirovanie, 2006, no. 2, pp. 58–70.

  18. Chuluunbaatar, O. et al., On the Kantorovich Approach for Calculations of the Hydrogen Atom States Affected by a Train of Short Pulses, Proc. SPIE, 2006, vol. 6165, pp. 83–98.

    Google Scholar 

  19. Gusev, A.A., Samoilov, V.N., Rostovtsev, V.A., and Vinitsky, S.I., Algebraic Perturbation Theory for Hydrogen Atom in Weak Electric Fields, Programmirovanie, 2001, no. 1, pp. 27–31.

  20. Gusev, A.A., Chekanov, N.A., Rostovtsev, V. A., Vinitsky, S.I., and Uwano, Y., A Comparison of Algorithms for the Normalization and Quantization of Polynomial Hamiltonians, Programmirovanie, 2004, no. 2, pp. 27–35.

  21. The Physics of Quantum Information, Bouwmeester, D., Ekert, A., and Zeilinger, A., Eds., Berlin: Springer, 2000.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © S.I. Vinitsky, V.P. Gerdt, A.A. Gusev, M.S. Kaschiev, V.A. Rostovtsev, V.N. Samoilov, T.V. Tyupikova, O. Chuluunbaatar, 2007, published in Programmirovanie, 2007, Vol. 33, No. 2.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vinitsky, S.I., Gerdt, V.P., Gusev, A.A. et al. A symbolic-numerical algorithm for the computation of matrix elements in the parametric eigenvalue problem. Program Comput Soft 33, 105–116 (2007). https://doi.org/10.1134/S0361768807020089

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0361768807020089

Keywords

Navigation