Abstract
A symbolic algorithm for the decomposition of the unitary evolution operator is developed. This algorithm allows one to generate multilayer implicit schemes for solution of the time-dependent Schrödinger equation. Some additional gauge transformations are also implemented in the algorithm. This allows one to distinguish symmetric operators, which are required for constructing efficient evolutionary schemes. The efficiency of the generated schemes is demonstrated by integrable models.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Derbov, V.L., Melnikov, L.A., Umansky, I.M., and Vinitsky, S.I., Multipulse Laser Spectroscopy of p-bartHe+: Measurement and Control of the Metastable State Populations, Phys. Rev. A, 1997, vol. 55, pp. 3394–3400.
Butkovskiy, A.G. and Samoilenko, Yu.I., Control of Quantum-Mechanical Processes and Systems, Dordrecht Hardbound: Kluwer, 1990.
Bankov, N.G., Kaschiev, M.S., and Vinitsky, S.I., Adaptive Method for Solving the Time-Dependent Schrödinger Equation, Comptes rendus de l’Akademie bulgare des Sciences, 2002, vol. 55, pp. 25–30.
Derbov, V.L., Kaschiev, M.S., Serov, V.V., Gusev, A.A., and Vinitsky, S.I., Adaptive Numerical Methods for Time-Dependent Schroedinger Equation in Atomic and Laser Physics, Proc. SPIE, 2003, vol. 5069, pp. 52–60.
Marchuk, G.I., Partial Differential Equations: II SYNSPADE-1970, New York: Academic, 1971.
Samarskii, A.A., Teoriya raznostnykh skhem (The Theory of Difference Schemes), Moscow: Nauka, 1977.
Strang, G. and Fix, G., An Analysis of the Finite Element Method, Englewood Cliffs: Prentice-Hall, 1973.
Bathe, K.J., Finite Element Procedures in Engineering Analysis, New York: Englewood Cliffs, Prentice Hall, 1982.
Abrashkevich, A.G., Abrashkevich, D.G., Kaschiev, M.S., and Puzynin, I.V., Finite-Element Solution of the Coupled-Channel Schrödinger Equation Using High-Order Accuracy Approximations, Comput. Phys. Commun., 1995, vol. 85, pp. 40–65.
Abrashkevich, A.G., Kaschiev, M.S., and Vinitsky, S.I., A New Method for Solving an Eigenvalue Problem for a System of Three Coulomb Particles within the Hyperspherical Adiabatic Representation, J. Comput. Phys., 2000, vol. 163, pp. 328–348.
Gusev, A.A., Chekanov, N.A., Rostovtsev, V.A., Vinitsky, S.I., and Uwano, Y., A Comparison of Algorithms for the Normalization and Quantization of Polynomial Hamiltonians, Programmirovanie, 2004, vol. 30, no. 2, pp. 27–36 [Programming and Comput. Software. (Engl. Transl.), 2004, vol. 30, no. 2, pp. 75–82].
Ukolov, Yu.A., Chekanov, N.A., Gusev, A.A., Rostovtsev, V.A., Vinitsky, S.I., and Uwano, Y., LINA01: A REDUCE Program for the Normalization of Polynomial Hamiltonians, Comput. Phys. Commun., 2005, vol. 166, pp. 66–80.
Puzynin, I.V., Selin, A.V., and Vinitsky, S.I., A High-Order Accuracy Method for Numerical Solving of the Time-Dependent Schrödinger Equation, Comput. Phys. Commun., 1999, vol. 123, pp. 1–6.
Puzynin, I.V., Selin, A.V., and Vinitsky, S.I., Magnus-Factorized Method for Numerical Solving the Time-Dependent Schrödinger Equation, Comput. Phys. Commun., 2000, vol. 126, pp. 158–161.
Selin, A.V., A Method for Approximate Analysis of a Linear Evolutionary Equation in a Hilbert Space, Zh. Vychisl. Mat. Mat. Fiz., 2002, vol. 42, pp. 937–949 [Comp. Math. Math. Phys. (Engl. Transl.), 2002, vol. 42, pp. 901–914].
Wilcox, R.M., Exponential Operators and Parameter Differentiation in Quantum Physics, J. Math. Phys., 1967, vol. 8, pp. 962–982.
Magnus, W., On the Exponential Solution of Differential Equations for a Linear Operator, Commun. Pure Appl. Math., 1954, vol. 7, pp. 649–673.
Crank, J. and Nicholson, P., A Practical Method for Numerical Evaluation of Solutions of Partial Differential Equations of the Heat Conduction Type, Proc. Cambridge Philos. Soc., 1947, vol. 43, pp. 50–67.
Berezin, I.S. and Zhidkov, N.P., Metody vychislenii (Numerical Analysis), vol. 1, Moscow: Fizmatlit, 1959.
Flügge, S., Practical Quantum Mechanics, Heidelberg: Springer, 1971.
Kalitkin, N.N., Chislennye metody (Numerical Analysis), Moscow: Nauka, 1978.
Jannussis, A., Quantum Equations of Motion in the Finite-Difference Approach, Lett. al Nuovo Cim., 1984, vol. 40, pp. 250–256.
Jannussis, A., Difference Equations in the Lie-Admissible Formulation, Lett. al Nuovo Cim., 1985, vol. 42, pp. 129–133.
Fizicheskaya entsiklopediya (Encyclopedia of Physics), vol. 5, Moscow: Bol’shaya Rossiiskaya entsiklopediya, 1998.
Olver, P.J., Application of Lie Groups to Differential Equations, New York: Springer, 1986.
Author information
Authors and Affiliations
Additional information
Original Russian Text © S.I. Vinitsky, V.P. Gerdt, A.A. Gusev, M.S. Kaschiev, V.A. Rostovtsev, V.N. Samoylov, T.V. Tupikova, Y. Uwano, 2006, published in Programmirovanie, 2006, Vol. 32, No. 2.
Rights and permissions
About this article
Cite this article
Vinitsky, S.I., Gerdt, V.P., Gusev, A.A. et al. Symbolic algorithm for factorization of the evolution operator of the time-dependent Schrödinger equation. Program Comput Soft 32, 103–113 (2006). https://doi.org/10.1134/S0361768806020083
Received:
Issue Date:
DOI: https://doi.org/10.1134/S0361768806020083