[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Corrosion Electrochemical Behavior of Nickel in Molten Lithium and Potassium Chlorides Containing Additives of Substances of Various Chemical Origins

  • Published:
Russian Metallurgy (Metally) Aims and scope

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract—Electrochemical diagnostics is carried out for nickel electrodes in the LiCl–KCl eutectic melt containing up to 0.2 wt % Li2O, 10 vol % О2, and 2% LaCl3 at 500°C in an inert argon atmosphere. Both silver chloride and lithium dynamic electrodes are used as reference electrodes. The latter is certified by thermodynamic analysis and recording of cyclic voltammograms along with the potential decay curves under the chronopotentiometric conditions for which the following most optimum parameters of the galvanostatic pulse are selected: a pulse duration of 4 s at a current density of 0.6 A/cm2. Under these conditions, the stability time of a lithium dynamic reference electrode is 59.5 ± 1.2 s. The electrochemical diagnostics of a nickel–molten salt electrolyte system with artificially added oxygen-containing impurities affecting the redox potential of the corrosion-active medium is carried out. The introduction of oxygen anions into the system shifts the nickel potential to the cathodic region, which decreases the corrosion activity of the medium. An increase in the oxygen concentration in the system shifts the nickel potential to the anodic region, indicating a more aggressive salt medium. The addition of lanthanum chloride to the melt affects the potential only if the system contains O2, which is due to their interactions. The corrosion potentials of nickel obtained at both the silver chloride and lithium dynamic reference electrodes correlate to each other. This fact allows one to extend the applicability of the lithium dynamic reference electrode to any halide melts, including fluoride ones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. H. G. MacPherson, “The molten salt reactor adventure,” Nucl. Sci. Eng. 90 (4), 374–380 (1985).

    Article  CAS  Google Scholar 

  2. J. C. Ard, J. A. Yingling, K. E. Johnson, J. Schorne-Pinto, M. Aziziha, C. M. Dixon, M. S. Christian, J. W. McMurray, and T. M. Besmann, “Development of the molten salt thermal properties database—thermochemical (MSTDB—TC), example applications, and LiCl–RbCl and UF3–UF4 system assessments,” J. Nucl. Mater. 563, 153631 (2022). https://doi.org/10.1016/j.jnucmat.2022.153631

    Article  CAS  Google Scholar 

  3. J. Serp, M. Allibert, O. Beneš, S. Delpech, O. Feynberg, V. Ghetta, D. Heuer, D. Holcomb, V. Ignatiev, J. L. Kloosterman, L. Luzzi, E. Merle-Lucotte, J. Uhlíř, R. Yoshioka, and D. Zhimin, “The molten salt reactor (MSR) in generation IV: overview and perspectives,” Progress in Nuclear Energy 77, 308–319 (2014). https://doi.org/10.1016/j.pnucene.2014.02.014

    Article  CAS  Google Scholar 

  4. Y. Wang, K. Sridharan, and A. Couet, “Method for identification of redox control parameters for corrosion mitigation in molten fluoride salts,” J. Nucl. Mater. 543, 152624 (2021). https://doi.org/10.1016/j.jnucmat.2020.152624

  5. L. Swain, G. Pakhui, A. Jain, and S. Ghosh, “Electrochemical behaviour of LiCl–KCl eutectic melts containing moisture as impurity. Part II: uranium electrode,” J. Electroanal. Chem. 907, 115969 (2022). https://doi.org/10.1016/j.jelechem.2021.115969

    Article  CAS  Google Scholar 

  6. L. Swain, S. Ghosh, G. Pakhui, and B. P. Reddy, “Redox behaviour of moisture in LiCl–KCl eutectic melts: A cyclic voltammetry study,” Nucl. Technol. 207 (1), 119–146 (2021).

    Article  Google Scholar 

  7. J. Serp, M. Allibert, O. Beneš, S. Delpech, O. Feynberg, V. Ghetta, D. Heuer, D. Holcomb, V. Ignatiev, J. L. Kloosterman, L. Luzzi, E. Merle-Lucotte, J. Uhlíř, R. Yoshioka, and D. Zhimin, “The molten salt reactor (MSR) in generation IV: overview and perspectives,” Progress in Nuclear Energy 77, 308–319 (2014). https://doi.org/10.1016/j.pnucene.2014.02.014

    Article  CAS  Google Scholar 

  8. Q. Liu, H. Sun, H. Yin, L. Guo, J. Qiu, J. Lin, and Z. Tang, “Corrosion behaviour of 316H stainless steel in molten FLiNaK eutectic salt containing graphite particles,” Corrosion Science 160, 108174 (2019). https://doi.org/10.1016/j.corsci.2019.108174

    Article  CAS  Google Scholar 

  9. W. H. Doniger and K. Sridharan, “Application of voltammetry for quantitative analysis of chromium in molten 2LiF–BeF2 (FLiBe) salt,” J. Electroanal. Chem. 838, 73–81 (2019).

    Article  CAS  Google Scholar 

  10. V. K. Afonichkin, A. L. Bovet, and A. L. Zherebtsov, “Dynamic reference electrode for investigation of fluoride melts containing beryllium difluoride,” J. Fluorine Chem., 130 (1), 83–88 (2009).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. V. Nikitina.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by E. Yablonskaya

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karfidov, E.A., Nikitina, E.V. Corrosion Electrochemical Behavior of Nickel in Molten Lithium and Potassium Chlorides Containing Additives of Substances of Various Chemical Origins. Russ. Metall. 2022, 978–983 (2022). https://doi.org/10.1134/S0036029522080262

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036029522080262