[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

On large deviations for Poisson stochastic integrals

  • Large Systems
  • Published:
Problems of Information Transmission Aims and scope Submit manuscript

Abstract

We obtain asymptotically exact estimates for large deviations of Poisson stochastic integrals. We also find a region where such an integral can be approximated by the corresponding Gaussian random variable. In of all these results, we obtain nonasymptotic estimates for remainder terms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chernoff, H., A Measure of Asymptotic Efficiency for Tests of a Hypothesis Based on the Sum of Observations, Ann. Math. Stat., 1952, vol. 23, no. 4, pp. 493–507.

    Article  MathSciNet  MATH  Google Scholar 

  2. Kolmogoroff, A., Grundbegriffe der Wahrscheinlichkeitsrechnung. Berlin: Springer, 1933. Translated under the title Osnovnye ponyatiya teorii veroyatnostei, Moscow-Leningrad: ONTI, 1934.

    Google Scholar 

  3. Cramér, H., Sur un nouveau théor`eme-limite de la théorie des probabilités, in Actualités Scientifiques et Industrielles, no. 736, Colloque consacré `a la théorie des probabilités, Paris: Hermann, 1938, pp. 5–23.

    Google Scholar 

  4. Kutoyants, Yu.A., Parameter Estimation for Stochastic Processes, Berlin: Heldermann, 1984.

    MATH  Google Scholar 

  5. Feller, W., An Introduction to Probability Theory and Its Applications, New York: Wiley, 1971, vol. 2, 2nd ed. Translated under the title Vvedenie v teoriyu veroyatnostei i ee prilozheniya, 2 vols., Moscow: Mir, 1984, 2nd ed.

    MATH  Google Scholar 

  6. Itô, K. and McKean, H.P., Jr., Diffusion Processes and Their Sample Paths, Berlin: Springer, 1965. Translated under the title Diffuzionnye protsessy i ikh traektorii, Moscow: Mir, 1968.

    MATH  Google Scholar 

  7. Burnashev, M.V. and Kutoyants, Yu.A., On the Sphere-Packing Bound, Capacity, and Similar Results for Poisson Channels, Probl. Peredachi Inf., 1999, vol. 35, no. 2, pp. 3–22 [Probl. Inf. Trans. (Engl. Transl.), 1999, vol. 35, no. 2, pp. 95–111].

    MathSciNet  Google Scholar 

  8. Petrov, V.V., Summy nezavisimykh sluchainykh velichin, Moscow: Nauka, 1972. Translated under the title Sums of Independent Random Variables, Berlin: Springer, 1975.

    Google Scholar 

  9. van Beek, P., An Approximation of Fourier Methods to the Problem of Sharpening the Berry-Esseen Inequality, Z. Wahrscheinlichkeitstheorie verw. Gebiete, 1972, vol. 23, no. 3, pp. 187–196.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. V. Burnashev.

Additional information

Original Russian Text © M.V. Burnashev, Yu.A. Kutoyants, 2012, published in Problemy Peredachi Informatsii, 2012, Vol. 48, No. 1, pp. 64–79.

Supported in part by the Russian Foundation for Basic Research, project no. 09-01-00536.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Burnashev, M.V., Kutoyants, Y.A. On large deviations for Poisson stochastic integrals. Probl Inf Transm 48, 56–69 (2012). https://doi.org/10.1134/S0032946012010061

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0032946012010061

Keywords

Navigation