Abstract
Na,K-ATPase maintains sodium and potassium homeostasis. It is the only known receptor for cardiotonic steroids such as ouabain. Binding of ouabain to Na,K-ATPase leads to the activation of Src kinase and the subsequent initiation of intracellular signaling pathways, including the induction of apoptosis. Changes in Na,K-ATPase activity is one of the earliest responses to hypoxia and is most critical for cell survival. However, it is not known how the hypoxia affects the functioning of Na,K-ATPase as a receptor. We have shown that, under the conditions of hypoxia and ischemia, ouabain is less toxic for murine fibroblast cells (SC-1 cell line) and ouabain does not cause an increase in the level of reactive oxygen species, which is typically observed at 20% pO2. Under hypoxia, the treatment of cells with ouabain also does not lead to the activation of Na,K-ATPase-associated Src kinase. Thus, at low oxygen content, the receptor function of Na,K-ATPase is altered, and cells become less sensitive to cardiotonic steroids. The decrease in sensitivity to cardiotonic steroids, which is evident at hypoxic conditions, should be taken into account in clinical practice. At the same time, in the presence of ouabain the cells are less sensitive to hypoxia, which indicates that cardiotonic steroids can be protective in acute ischemia.
Similar content being viewed by others
Abbreviations
- CTS:
-
cardiotonic steroid
- ROS:
-
reactive oxygen species
- PBS:
-
phosphate buffered saline
- DMSO:
-
dimethyl sulfoxide
References
Kaplan J.H. 2002. Biochemistry of Na, K-ATPase. Annu. Rev. Biochem. 71, 511–535.
Reinhard L., Tidow H., Clausen M.J., Nissen P. 2013. Na+, K+-ATPase as a docking station: protein-protein complexes of the Na+, K+-ATPase. Cell. Mol. Life Sci. 70, 205–222.
Laursen M., Yatime L., Nissen P., Fedosova N.U. 2013. Crystal structure of the high-affinity Na+, K+-ATPase-ouabain complex with Mg2+ bound in the cation binding site. Proc. Natl. Acad. Sci. U. S. A. 110, 10958–10963.
Cornelius F., Kanai R., Toyoshima C. 2013. A structural view on the functional importance of the sugar moiety and steroid hydroxyls of cardiotonic steroids in binding to Na, K-ATPase. J. Biol. Chem. 288, 6602–6616.
Kharkevich D.A. 2010. Farmakologiya (Pharmacology). Moscow: GEOTAR-Media.
De Angelis C., Haupert G.T., Jr. 1998. Hypoxia triggers release of an endogenous inhibitor of Na+, K+-ATPase from midbrain and adrenal. Am. J. Physiol. 274, F182–F188.
Ludens J.H., Clark M.A., Du Charme D.W., Harris D.W., Lutzke B.S., Mandel F., Mathews W.R., Sutter D.M., Hamlyn J.M. 1991. Purification of an endogenous digitalislike factor from human plasma for structural analysis. Hypertension. 17, 923–929.
Fedorova O.V., Doris P.A., Bagrov A.Y. 1998. Endogenous marinobufagenin-like factor in acute plasma volume expansion. Clin. Exp. Hypertens. 20, 581–591.
Haas M., Wang H., Tian J., Xie Z. 2002. Src-mediated inter-receptor cross-talk between the Na+/K+-ATPase and the epidermal growth factor receptor relays the signal from ouabain to mitogen-activated protein kinases. J. Biol. Chem. 277, 18694–18702.
Knock G.A., Snetkov V.A., Shaifta Y., Drndarski S., Ward J.P., Aaronson P.I. 2008. Role of src-family kinases in hypoxic vasoconstriction of rat pulmonary artery. Cardiovasc. Res. 80, 453–462.
MacAuley A., Cooper J.A. 1989. Structural differences between repressed and derepressed forms of p60c-src. Mol. Cell. Biol. 9, 2648–2656.
Xu W., Harrison S.C., Eck M.J. 1997. Three-dimensional structure of the tyrosine kinase c-Src. Nature. 385, 595–602.
Cowan-Jacob S.W., Fendrich G., Manley P.W., Jahnke W., Fabbro D., Liebetanz J., Meyer T. 2005. The crystal structure of a c-Src complex in an active conformation suggests possible steps in c-Src activation. Structure. 13, 861–871.
Tian J., Cai T., Yuan Z., Wang H., Liu L., Haas M., Maksimova E., Huang X.Y., Xie Z.J. 2006. Binding of Src to Na+/K+-ATPase forms a functional signaling complex. Mol. Biol. Cell. 17, 317–326.
Pasdois P., Quinlan C.L., Rissa A., Tariosse L., Vinassa B., Costa A.D., Pierre S.V., Dos Santos P., Garlid K.D. 2007. Ouabain protects rat hearts against ischemia–reperfusion injury via pathway involving src kinase, mitoKATP, and ROS. Am. J. Physiol. Heart Circ. Physiol. 292, H1470–1478.
Bogdanova A., Petrushanko I., Boldyrev A., Gassmann M. 2006. Oxygen-and redox-induced regulation of the Na/K-ATPase. Curr. Enzyme Inhibition. 2, 37–59.
Petrushanko I.Y., Bogdanov N.B., Lapina N., Boldyrev A.A., Gassmann M., Bogdanova A.Y. 2007. Oxygen-induced regulation of Na/K-ATPase in cerebellar granule cells. J. Gen. Physiol. 130, 389–398.
Petrushanko I., Bogdanov N., Bulygina E., Grenacher B., Leinsoo T., Boldyrev A., Gassmann M., Bogdanova A. 2006. Na-K-ATPase in rat cerebellar granule cells is redox sensitive. Am. J. Physiol. Regul. Integr. Comp. Physiol. 290, R916–925.
Rasmussen H.H., Hamilton E.J., Liu C.C., Figtree G.A. 2010. Reversible oxidative modification: Implications for cardiovascular physiology and pathophysiology. Trends Cardiovasc. Med. 20, 85–90.
Petrushanko I.Y., Yakushev S., Mitkevich V.A., Kamanina Y.V., Ziganshin R.H., Meng X., Anashkina A.A., Makhro A., Lopina O.D., Gassmann M., Makarov A.A., Bogdanova A. 2012. S-glutathionylation of the Na, KATPase catalytic alpha subunit is a determinant of the enzyme redox sensitivity. J. Biol. Chem. 287, 32195–32205.
Petrushanko I.Yu., Simonenko O.V., Burnysheva K.M., Klimanova E.A., Dergousova E.A., Mitkevich V.A., Lopina O.D., Makarov A.A. 2015. The ability of cells to adapt to low-oxygen conditions is associated with glutathionylation of Na, K-ATPase. Mol. Biol. (Moscow). 49 (1), 153–160.
Smolyaninova L.V., Dergalev A.A., Kulebyakin K.Y., Carpenter D.O., Boldyrev A.A. 2013. Carnosine prevents necrotic and apoptotic death of rat thymocytes via ouabain-sensitive Na/K-ATPase. Cell. Biochem. Funct. 31, 30–35.
Kominato R., Fujimoto S., Mukai E., Nakamura Y., Nabe K., Shimodahira M., Nishi Y., Funakoshi S., Seino Y., Inagaki N. 2008. Src activation generates reactive oxygen species and impairs metabolism-secretion coupling in diabetic Goto-Kakizaki and ouabaintreated rat pancreatic islets. Diabetologia. 51, 1226–1235.
Hernansanz-Agustin P., Izquierdo-Alvarez A., Sanchez-Gomez F.J., Ramos E., Villa-Pina T., Lamas S., Bogdanova A., Martinez-Ruiz A. 2014. Acute hypoxia produces a superoxide burst in cells. Free Radic. Biol. Med. 71, 146–156.
Author information
Authors and Affiliations
Corresponding author
Additional information
Original Russian Text © V.A. Lakunina, K.M. Burnysheva, V.A. Mitkevich, A.A. Makarov, I.Y. Petrushanko, 2017, published in Molekulyarnaya Biologiya, 2017, Vol. 51, No. 1, pp. 172–179.
Rights and permissions
About this article
Cite this article
Lakunina, V.A., Burnysheva, K.M., Mitkevich, V.A. et al. Changes in the receptor function of Na,K-ATPase during hypoxia and ischemia. Mol Biol 51, 148–154 (2017). https://doi.org/10.1134/S0026893317010101
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1134/S0026893317010101