[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Advertisement

Plant phenols and autophagy

  • Review
  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Many plant phenols (stilbenes, curcumins, catechins, flavonoids, etc.) are effective antioxidants and protect cells during oxidative stress. Extensive clinical studies on the potential of phenolic compounds for treatment of cardiovascular, neurodegenerative, oncological, and inflammatory diseases are now being conducted. In addition to direct antioxidant effect, plant phenols may provide a protective effect via activation of the Keap1/Nrf2/ARE redox-sensitive signaling system and regulation of autophagy. In this review, mechanisms of effects of the most common plant phenols on autophagy are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

Akt:

protein kinase B (or PKB)

AMPK:

AMP-activated protein kinase

ARE:

antioxidant respons(iv)e element

Atg:

AuTophaGy-related genes

BAX:

Bcl-2-associated X protein

Bcl-2:

B-cell lymphoma 2

BNIP3:

Bcl-2/adenovirus E1B nineteen kDa interacting protein 3

Cu,Zn-SOD:

copper- and zinc-containing superoxide dismutase

eIF4E-BP1:

eukaryotic initiation factor 4E binding protein 1

ER:

endoplasmic reticulum

ERK1/2:

extracellular signal-regulated protein kinase 1/2

FOXO1:

forkhead box protein O1

GABARAP:

gamma-aminobutyric acid receptor-associated protein

HIF-1α:

hypoxia-inducible factor 1α

HMGB1:

high mobility group box 1

IRE1:

inositol requiring kinase 1

JAK:

Janus kinase

JNK:

c-Jun N-terminal kinases

Keap1:

Kelch-like ECH-associating protein 1

LC3:

microtubule-associated protein 1A/1B-light chain 3

LDL:

low-density lipoproteins

MAPK:

mitogen-activated protein kinases

Mn-SOD:

manganese-dependent superoxide dismutase

mTOR:

mammalian target of rapamycin (serine/threonine protein kinase)

mTORC1/2:

mammalian target of rapamycin complex 1/2

Nrf2:

NF-E2-related factor 2

p62/SQSTM1:

ubiquitin-binding protein p62, or sequestosome 1

p70S6K:

p70S6 kinase (serine/threonine protein kinase)

PERK:

protein kinase-like endoplasmic reticulum kinase

PI3K:

phosphatidylinositol 3-kinase

Ras:

rat sarcoma protein

ROS:

reactive oxygen species

SIRT1:

sirtuin 1

TSC2:

tuberous sclerosis complex 2

ULK1/ULK2:

Unc51-like kinase 1/2 (serine/threonine protein kinase)

Vps34:

vacuolar protein sorting-associated protein 34 (PI3K class III)

Wnt:

wingless/integration signaling pathway

References

  1. Menshchikova, E. B., Zenkov, N. K., Lankin, V. Z., Bondar, I. A., and Trufakin, V. A. (2008) Oxidative Stress. Pathological Conditions and Diseases [in Russian], ARTA, Novosibirsk.

    Google Scholar 

  2. Menshchikova, E. B., Lankin, V. Z., and Kandalintseva, N. V. (2012) Phenolic Antioxidants in Biology and Medicine, LAP Lambert Academic Publishing, Saarbrucken.

    Google Scholar 

  3. Macedo, D., Tavares, L., McDougall, G. J., Vicente Miranda, H., Stewart, D., Ferreira, R. B., Tenreiro, S., Outeiro, T. F., and Santos, C. N. (2015) (Poly)phenols protect from α-synuclein toxicity by reducing oxidative stress and promoting autophagy, Hum. Mol. Genet., 24, 1717–1732.

    Article  CAS  PubMed  Google Scholar 

  4. Murakami, A., and Ohnishi, K. (2012) Target molecules of food phytochemicals: food science bound for the next dimension, Food Funct., 3, 462–476.

    Article  CAS  PubMed  Google Scholar 

  5. Zhang, S. F., Wang, X. L., Yang, X. Q., and Chen, N. (2014) Autophagy-associated targeting pathways of natural products during cancer treatment, Asian Pac. J. Cancer Prev., 15, 10557–10563.

    Article  PubMed  Google Scholar 

  6. Dodson, M., Redmann, M., Rajasekaran, N. S., Darley-Usmar, V., and Zhang, J. (2015) KEAP1-NRF2 signalling and autophagy in protection against oxidative and reductive proteotoxicity, Biochem. J., 469, 347–355.

    Article  CAS  PubMed  Google Scholar 

  7. Giordano, S., Darley-Usmar, V., and Zhang, J. (2014) Autophagy as an essential cellular antioxidant pathway in neurodegenerative disease, Redox Biol., 2, 82–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Hasima, N., and Ozpolat, B. (2014) Regulation of autophagy by polyphenolic compounds as a potential therapeutic strategy for cancer, Cell Death Dis., 5, e1509.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Pallauf, K., and Rimbach, G. (2013) Autophagy, polyphenols and healthy ageing, Ageing Res. Rev., 12, 237–252.

    Article  CAS  PubMed  Google Scholar 

  10. Menshchikova, E. B., Tkachev, V. O., and Zenkov, N. K. (2010) Redox-dependent signaling system Nrf2/ARE in inflammation, Mol. Biol. (Moscow), 44, 343–357.

    Article  CAS  Google Scholar 

  11. Pall, M. L., and Levine, S. (2015) Nrf2, a master regulator of detoxification and also antioxidant, anti-inflammatory and other cytoprotective mechanisms, is raised by health promoting factors, Acta Physiol. Sin., 67, 1–18.

    CAS  Google Scholar 

  12. De Duve, C. (1963) The lysosome, Sci. Am., 208, 64–72.

    Article  Google Scholar 

  13. Parkhitko, A. A., Favorova, O. O., and Henske, E. P. (2013) Autophagy: mechanisms, regulation, and its role in tumorigenesis, Biochemistry (Moscow), 78, 355–367.

    Article  CAS  Google Scholar 

  14. Fedorova, M., Bollineni, R. C., and Hoffmann, R. (2014) Protein carbonylation as a major hallmark of oxidative damage: update of analytical strategies, Mass Spectrom. Rev., 33, 79–97.

    Article  CAS  PubMed  Google Scholar 

  15. Filomeni, G., De Zio, D., and Cecconi, F. (2015) Oxidative stress and autophagy: the clash between damage and metabolic needs, Cell Death Differ., 22, 377–388.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Rhee, S. G., and Bae, S. H. (2015) The antioxidant function of sestrins is mediated by promotion of autophagic degradation of Keap1 and Nrf2 activation and by inhibition of mTORC1, Free Radic. Biol. Med., 88, 205–211.

    Article  CAS  PubMed  Google Scholar 

  17. Beevers, C. S., Zhou, H., and Huang, S. (2013) Hitting the golden TORget: curcumin’s effects on mTOR signaling, Anticancer Agents Med. Chem., 13, 988–994.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Stolz, A., Ernst, A., and Dikic, I. (2014) Cargo recognition and trafficking in selective autophagy, Nat. Cell Biol., 16, 495–501.

    Article  CAS  PubMed  Google Scholar 

  19. Sanchez-Wandelmer, J., Ktistakis, N. T., and Reggiori, F. (2015) ERES: sites for autophagosome biogenesis and maturation? J. Cell Sci., 128, 185–192.

    Article  CAS  PubMed  Google Scholar 

  20. Russell, R. C., Tian, Y., Yuan, H., Park, H. W., Chang, Y. Y., Kim, J., Kim, H., Neufeld, T. P., Dillin, A., and Guan, K. L. (2013) ULK1 induces autophagy by phosphorylating Beclin-1 and activating VPS34 lipid kinase, Nat. Cell Biol., 15, 741–750.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Dooley, H. C., Razi, M., Polson, H. E., Girardin, S. E., Wilson, M. I., and Tooze, S. A. (2014) WIPI2 links LC3 conjugation with PI3P, autophagosome formation, and pathogen clearance by recruiting Atg12-5-16L1, Mol. Cell, 55, 238–252.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Nakatogawa, H. (2013) Two ubiquitinlike conjugation systems that mediate membrane formation during autophagy, Essays Biochem., 55, 39–50.

    Article  CAS  PubMed  Google Scholar 

  23. Shaid, S., Brandts, C. H., Serve, H., and Dikic, I. (2013) Ubiquitination and selective autophagy, Cell Death Differ., 20, 21–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Nixon, R. A. (2013) The role of autophagy in neurodegenerative disease, Nat. Med., 19, 983–997.

    Article  CAS  PubMed  Google Scholar 

  25. Gupta, S. C., Prasad, S., Kim, J. H., Patchva, S., Webb, L. J., Priyadarsini, I. K., and Aggarwal, B. B. (2011) Multitargeting by curcumin as revealed by molecular interaction studies, Nat. Prod. Rep., 28, 1937–1955.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Trujillo, J., Granados-Castro, L. F., Zazueta, C., Anderica-Romero, A. C., Chirino, Y. I., and Pedraza-Chaverri, J. (2014) Mitochondria as a target in the therapeutic properties of curcumin, Arch. Pharm., 347, 873–884.

    Article  CAS  Google Scholar 

  27. Wu, J., Li, Q., Wang, X., Yu, S., Li, L., Wu, X., Chen, Y., Zhao, J., and Zhao, Y. (2013) Neuroprotection by curcumin in ischemic brain injury involves the Akt/Nrf2 pathway, PLoS One, 8, e59843.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Zenkov, N. K., Menshchikova, E. B., and Tkachev, V. O. (2013) Keap1/Nrf2/ARE redoxsensitive system as a pharmacological target, Biochemistry (Moscow), 78, 19–36.

    Article  CAS  Google Scholar 

  29. Magesh, S., Chen, Y., and Hu, L. (2012) Small molecule modulators of Keap1-Nrf2-ARE pathway as potential preventive and therapeutic agents, Med. Res. Rev., 32, 687–726.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Hernandez-Damian, J., Anderica-Romero, A. C., and Pedraza-Chaverri, J. (2014) Paradoxical cellular effects and biological role of the multifaceted compound nordihydroguaiaretic acid, Arch. Pharm., 347, 685–697.

    Article  CAS  Google Scholar 

  31. Qu, W., Xiao, J., Zhang, H., Chen, Q., Wang, Z., Shi, H., Gong, L., Chen, J., Liu, Y., Cao, R., and Lv, J. (2013) B19, a novel monocarbonyl analogue of curcumin, induces human ovarian cancer cell apoptosis via activation of endoplasmic reticulum stress and the autophagy signaling pathway, Int. J. Biol. Sci., 9, 766–777.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Zhou, G. Z., Cao, F. K., Chang, J. M., Sun, G. C., and Chen, X. B. (2014) Mechanism of curcumin analog MHMD-induced cell death in A549 lung cancer cells, Eur. Rev. Med. Pharmacol. Sci., 18, 3134–3138.

    PubMed  Google Scholar 

  33. Wu, J. C., Lai, C. S., Badmaev, V., Nagabhushanam, K., Ho, C. T., and Pan, M. H. (2011) Tetrahydrocurcumin, a major metabolite of curcumin, induced autophagic cell death through coordinative modulation of PI3K/AktmTOR and MAPK signaling pathways in human leukemia HL-60 cells, Mol. Nutr. Food Res., 55, 1646–1654.

    Article  CAS  PubMed  Google Scholar 

  34. Xu, J. H., Yang, H. P., Zhou, X. D., Wang, H. J., Gong, L., and Tang, C. L. (2015) Autophagy accompanied with bisdemethoxycurcumininduced apoptosis in nonsmall cell lung cancer cells, Biomed. Environ. Sci., 28, 105–115.

    PubMed  Google Scholar 

  35. Kim, J. Y., Cho, T. J., Woo, B. H., Choi, K. U., Lee, C. H., Ryu, M. H., and Park, H. R. (2012) Curcumin-induced autophagy contributes to the decreased survival of oral cancer cells, Arch. Oral. Biol., 57, 1018–1025.

    Article  CAS  PubMed  Google Scholar 

  36. Lee, Y. J., Kim, N. Y., Suh, Y. A., and Lee, C. (2011) Involvement of ROS in curcumin-induced autophagic cell death, Korean J. Physiol. Pharmacol., 15, 1–7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Chatterjee, S. J., and Pandey, S. (2011) Chemoresistant melanoma sensitized by tamoxifen to low dose curcumin treatment through induction of apoptosis and autophagy, Cancer Biol. Ther., 11, 216–228.

    Article  CAS  PubMed  Google Scholar 

  38. Gibellini, L., Bianchini, E., De Biasi, S., Nasi, M., Cossarizza, A., and Pinti, M. (2015) Natural compounds modulating mitochondrial functions, Evid. Based Complement. Alternat. Med., 527209.

    Google Scholar 

  39. Shanmugam, M. K., Rane, G., Kanchi, M. M., Arfuso, F., Chinnathambi, A., Zayed, M. E., Alharbi, S. A., Tan, B. K., Kumar, A. P., and Sethi, G. (2015) The multifaceted role of curcumin in cancer prevention and treatment, Molecules, 20, 2728–2769.

    Article  PubMed  CAS  Google Scholar 

  40. Mosieniak, G., Adamowicz, M., Alster, O., Jaskowiak, H., Szczepankiewicz, A. A., Wilczynski, G. M., Ciechomska, I. A., and Sikora, E. (2012) Curcumin induces permanent growth arrest of human colon cancer cells: link between senescence and autophagy, Mech. Ageing Dev., 133, 444–455.

    Article  CAS  PubMed  Google Scholar 

  41. Xiao, K., Jiang, J., Guan, C., Dong, C., Wang, G., Bai, L., Sun, J., Hu, C., and Bai, C. (2013) Curcumin induces autophagy via activating the AMPK signaling pathway in lung adenocarcinoma cells, J. Pharmacol. Sci., 123, 102–109.

    Article  CAS  PubMed  Google Scholar 

  42. Yamauchi, Y., Izumi, Y., Asakura, K., Hayashi, Y., and Nomori, H. (2012) Curcumin induces autophagy in ACCMESO-1 cells, Phytother. Res., 26, 1779–1783.

    Article  CAS  PubMed  Google Scholar 

  43. Zhuang, W., Long, L., Zheng, B., Ji, W., Yang, N., Zhang, Q., and Liang, Z. (2012) Curcumin promotes differentiation of glioma-initiating cells by inducing autophagy, Cancer Sci., 103, 684–690.

    Article  CAS  PubMed  Google Scholar 

  44. Aoki, H., Takada, Y., Kondo, S., Sawaya, R., Aggarwal, B. B., and Kondo, Y. (2007) Evidence that curcumin suppresses the growth of malignant gliomas in vitro and in vivo through induction of autophagy: role of Akt and extracellular signal-regulated kinase signaling pathways, Mol. Pharmacol., 72, 29–39.

    Article  CAS  PubMed  Google Scholar 

  45. Jia, Y. L., Li, J., Qin, Z. H., and Liang, Z. Q. (2009) Autophagic and apoptotic mechanisms of curcumininduced death in K562 cells, J. Asian Nat. Prod. Res., 11, 918–928.

    Article  CAS  PubMed  Google Scholar 

  46. Han, J., Pan, X. Y., Xu, Y., Xiao, Y., An, Y., Tie, L., Pan, Y., and Li, X. J. (2012) Curcumin induces autophagy to protect vascular endothelial cell survival from oxidative stress damage, Autophagy, 8, 812–825.

    Article  CAS  PubMed  Google Scholar 

  47. Huang, Z., Ye, B., Dai, Z., Wu, X., Lu, Z., Shan, P., and Huang, W. (2015) Curcumin inhibits autophagy and apoptosis in hypoxia/reoxygenation-induced myocytes, Mol. Med. Rep., 11, 4678–4684.

    CAS  PubMed  Google Scholar 

  48. Akkoc, Y., Berrak, O., Arisan, E. D., Obakan, P., Coker-Gurkan, A., and Palavan-Unsal, N. (2015) Inhibition of PI3K signaling triggered apoptotic potential of curcumin which is hindered by Bcl-2 through activation of autophagy in MCF-7 cells, Biomed. Pharmacother., 71, 161–171.

    Article  CAS  PubMed  Google Scholar 

  49. Ghosh, H. S., McBurney, M., and Robbins, P. D. (2010) SIRT1 negatively regulates the mammalian target of rapamycin, PLoS One, 5, e9199.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Morselli, E., Maiuri, M. C., Markaki, M., Megalou, E., Pasparaki, A., Palikaras, K., Criollo, A., Galluzzi, L., Malik, S. A., Vitale, I., Michaud, M., Madeo, F., Tavernarakis, N., and Kroemer, G. (2010) Caloric restriction and resveratrol promote longevity through the sirtuin-1-dependent induction of autophagy, Cell Death Dis., 1, e10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Chen, M. L., Yi, L., Jin, X., Liang, X. Y., Zhou, Y., Zhang, T., Xie, Q., Zhou, X., Chang, H., Fu, Y. J., Zhu, J. D., Zhang, Q. Y., and Mi, M. T. (2013) Resveratrol attenuates vascular endothelial inflammation by inducing autophagy through the cAMP signaling pathway, Autophagy, 9, 2033–2045.

    Article  CAS  PubMed  Google Scholar 

  52. Guo, H., Chen, Y., Liao, L., and Wu, W. (2013) Resveratrol protects HUVECs from oxidized-LDL induced oxidative damage by autophagy upregulation via the AMPK/SIRT1 pathway, Cardiovasc. Drugs Ther., 27, 189–198.

    Article  CAS  PubMed  Google Scholar 

  53. Zhang, J., Chiu, J., Zhang, H., Qi, T., Tang, Q., Ma, K., Lu, H., and Li, G. (2013) Autophagic cell death induced by resveratrol depends on the Ca2+/AMPK/mTOR pathway in A549 cells, Biochem. Pharmacol., 86, 317–328.

    Article  CAS  PubMed  Google Scholar 

  54. Yan, H. W., Hu, W. X., Zhang, J. Y., Wang, Y., Xia, K., Peng, M. Y., and Liu, J. (2014) Resveratrol induces human K562 cell apoptosis, erythroid differentiation, and autophagy, Tumour Biol., 35, 5381–5388.

    Article  CAS  PubMed  Google Scholar 

  55. Puissant, A., Robert, G., Fenouille, N., Luciano, F., Cassuto, J. P., Raynaud, S., and Auberger, P. (2010) Resveratrol promotes autophagic cell death in chronic myelogenous leukemia cells via JNK-mediated p62/SQSTM1 expression and AMPK activation, Cancer Res., 70, 1042–1052.

    Article  CAS  PubMed  Google Scholar 

  56. Ge, J., Liu, Y., Li, Q., Guo, X., Gu, L., Ma, Z. G., and Zhu, Y. P. (2013) Resveratrol induces apoptosis and autophagy in T-cell acute lymphoblastic leukemia cells by inhibiting Akt/mTOR and activating p38-MAPK, Biomed. Environ. Sci., 26, 902–911.

    CAS  PubMed  Google Scholar 

  57. Lv, X. C., and Zhou, H. Y. (2012) Resveratrol protects H9c2 embryonic rat heart derived cells from oxidative stress by inducing autophagy: role of p38 mitogen-activated protein kinase, Can. J. Physiol. Pharmacol., 90, 655–662.

    Article  CAS  PubMed  Google Scholar 

  58. Wang, B., Yang, Q., Sun, Y. Y., Xing, Y. F., Wang, Y. B., Lu, X. T., Bai, W. W., Liu, X. Q., and Zhao, Y. X. (2014) Resveratrol-enhanced autophagic flux ameliorates myocardial oxidative stress injury in diabetic mice, J. Cell. Mol. Med., 18, 1599–1611.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Filippi-Chiela, E. C., Villodre, E. S., Zamin, L. L., and Lenz, G. (2011) Autophagy interplay with apoptosis and cell cycle regulation in the growth inhibiting effect of resveratrol in glioma cells, PLoS One, 6, e20849.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Selvaraj, S., Sun, Y., Sukumaran, P., and Singh, B. B. (2015) Resveratrol activates autophagic cell death in prostate cancer cells via downregulation of STIM1 and the mTOR pathway, Mol. Carcinog., doi: 10.1002/mc.22324.

    Google Scholar 

  61. Fu, Y., Chang, H., Peng, X., Bai, Q., Yi, L., Zhou, Y., Zhu, J., and Mi, M. (2014) Resveratrol inhibits breast cancer stemlike cells and induces autophagy via suppressing Wnt/beta-catenin signaling pathway, PLoS One, 9, e102535.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Miki, H., Uehara, N., Kimura, A., Sasaki, T., Yuri, T., Yoshizawa, K., and Tsubura, A. (2012) Resveratrol induces apoptosis via ROS-triggered autophagy in human colon cancer cells, Int. J. Oncol., 40, 1020–1028.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Wang, M., Yu, T., Zhu, C., Sun, H., Qiu, Y., Zhu, X., and Li, J. (2014) Resveratrol triggers protective autophagy through the ceramide/Akt/mTOR pathway in melanoma B16 cells, Nutr. Cancer, 66, 435–440.

    Article  CAS  PubMed  Google Scholar 

  64. Armour, S. M., Baur, J. A., Hsieh, S. N., Land-Bracha, A., Thomas, S. M., and Sinclair, D. A. (2009) Inhibition of mammalian S6 kinase by resveratrol suppresses autophagy, Aging, 1, 515–528.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Yamamoto, M., Suzuki, S. O., and Himeno, M. (2010) Resveratrol-induced autophagy in human U373 glioma cells, Oncol. Lett., 1, 489–493.

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Scarlatti, F., Maffei, R., Beau, I., Codogno, P., and Ghidoni, R. (2008) Role of non-canonical beclin 1-independent autophagy in cell death induced by resveratrol in human breast cancer cells, Cell Death Differ., 15, 1318–1329.

    Article  CAS  PubMed  Google Scholar 

  67. Zhang, Y., Chen, M. L., Zhou, Y., Yi, L., Gao, Y. X., Ran, L., Chen, S. H., Zhang, T., Zhou, X., Zou, D., Wu, B., Wu, Y., Chang, H., Zhu, J. D., Zhang, Q. Y., and Mi, M. T. (2015) Resveratrol improves hepatic steatosis by inducing autophagy through the cAMP signaling pathway, Mol. Nutr. Food Res., 59, 1443–1457.

    Article  CAS  PubMed  Google Scholar 

  68. Ko, C. P., Lin, C. W., Chen, M. K., Yang, S. F., Chiou, H. L., and Hsieh, M. J. (2015) Pterostilbene induce autophagy on human oral cancer cells through modulation of Akt and mitogen-activated protein kinase pathway, Oral Oncol., 51, 593–601.

    Article  CAS  PubMed  Google Scholar 

  69. Siedlecka-Kroplewska, K., Jozwik, A., Boguslawski, W., Wozniak, M., Zauszkiewicz-Pawlak, A., Spodnik, J. H., Rychlowski, M., and Kmiec, Z. (2013) Pterostilbene induces accumulation of autophagic vacuoles followed by cell death in HL60 human leukemia cells, J. Physiol. Pharmacol., 64, 545–556.

    CAS  PubMed  Google Scholar 

  70. Hsieh, M. J., Lin, C. W., Yang, S. F., Sheu, G. T., Yu, Y. Y., Chen, M. K., and Chiou, H. L. (2014) A combination of pterostilbene with autophagy inhibitors exerts efficient apoptotic characteristics in both chemosensitive and chemoresistant lung cancer cells, Toxicol. Sci., 137, 65–75.

    Article  CAS  PubMed  Google Scholar 

  71. Chen, R. J., Ho, C. T., and Wang, Y. J. (2010) Pterostilbene induces autophagy and apoptosis in sensitive and chemoresistant human bladder cancer cells, Mol. Nutr. Food Res., 54, 1819–1832.

    Article  CAS  PubMed  Google Scholar 

  72. Chakraborty, A., Bodipati, N., Demonacos, M. K., Peddinti, R., Ghosh, K., and Roy, P. (2012) Long term induction by pterostilbene results in autophagy and cellular differentiation in MCF-7 cells via ROS dependent pathway, Mol. Cell. Endocrinol., 355, 25–40.

    Article  CAS  PubMed  Google Scholar 

  73. Zhang, L., Cui, L., Zhou, G., Jing, H., Guo, Y., and Sun, W. (2013) Pterostilbene, a natural small-molecular compound, promotes cytoprotective macroautophagy in vascular endothelial cells, J. Nutr. Biochem., 24, 903–911.

    Article  CAS  PubMed  Google Scholar 

  74. Tiwari, R. V., Parajuli, P., and Sylvester, P. W. (2014) Tocotrienol-induced autophagy in malignant mammary cancer cells, Exp. Biol. Med., 239, 33–44.

    Article  CAS  Google Scholar 

  75. Tiwari, R. V., Parajuli, P., and Sylvester, P. W. (2015) Tocotrienol-induced endoplasmic reticulum stress and autophagy act concurrently to promote breast cancer cell death, Biochem. Cell Biol., 93, 306–320.

    Article  CAS  PubMed  Google Scholar 

  76. Zhao, L., Ha, J. H., Okla, M., and Chung, S. (2014) Activation of autophagy and AMPK by tocotrienol suppresses the adipogenesis in human adipose derived stem cells, Mol. Nutr. Food Res., 58, 569–579.

    Article  CAS  PubMed  Google Scholar 

  77. Jiang, Q., Rao, X., Kim, C. Y., Freiser, H., Zhang, Q., Jiang, Z., and Li, G. (2012) Gamma-tocotrienol induces apoptosis and autophagy in prostate cancer cells by increasing intracellular dihydrosphingosine and dihydroceramide, Int. J. Cancer, 130, 685–693.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Kim, H. S., Montana, V., Jang, H. J., Parpura, V., and Kim, J. A. (2013) Epigallocatechin gallate (EGCG) stimulates autophagy in vascular endothelial cells: a potential role for reducing lipid accumulation, J. Biol. Chem., 288, 22693–22705.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Li, W., Zhu, S., Li, J., Assa, A., Jundoria, A., Xu, J., Fan, S., Eissa, N. T., Tracey, K. J., Sama, A. E., and Wang, H. (2011) EGCG stimulates autophagy and reduces cytoplasmic HMGB1 levels in endotoxin-stimulated macrophages, Biochem. Pharmacol., 81, 1152–1163.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Hashimoto, K., and Sakagami, H. (2008) Induction of apoptosis by epigallocatechin gallate and autophagy inhibitors in a mouse macrophage-like cell line, Anticancer Res., 28, 1713–1718.

    CAS  PubMed  Google Scholar 

  81. Zhang, Y., Yang, N. D., Zhou, F., Shen, T., Duan, T., Zhou, J., Shi, Y., Zhu, X. Q., and Shen, H. M. (2012) (–)-Epigallocatechin-3-gallate induces non-apoptotic cell death in human cancer cells via ROS-mediated lysosomal membrane permeabilization, PLoS One, 7, e46749.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Liu, J., Tang, Y., Feng, Z., Hou, C., Wang, H., Yan, J., Shen, W., Zang, W., and Long, J. (2014) Acetylated FoxO1 mediates high-glucose induced autophagy in H9c2 cardiomyoblasts: regulation by a polyphenol (–)-epigallocatechin-3-gallate, Metabolism, 63, 1314–1323.

    Article  CAS  PubMed  Google Scholar 

  83. Zhou, J., Farah, B. L., Sinha, R. A., Wu, Y., Singh, B. K., Bay, B. H., Yang, C. S., and Yen, P. M. (2014) Epigallocatechin-3-gallate (EGCG), a green tea polyphenol, stimulates hepatic autophagy and lipid clearance, PLoS One, 9, e87161.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. Wang, K., Liu, R., Li, J., Mao, J., Lei, Y., Wu, J., Zeng, J., Zhang, T., Wu, H., Chen, L., Huang, C., and Wei, Y. (2011) Quercetin induces protective autophagy in gastric cancer cells: involvement of Akt-mTORand hypoxiainduced factor 1α-mediated signaling, Autophagy, 7, 966–978.

    Article  CAS  PubMed  Google Scholar 

  85. Psahoulia, F. H., Moumtzi, S., Roberts, M. L., Sasazuki, T., Shirasawa, S., and Pintzas, A. (2007) Quercetin mediates preferential degradation of oncogenic Ras and causes autophagy in Ha-RAS-transformed human colon cells, Carcinogenesis, 28, 1021–1031.

    Article  CAS  PubMed  Google Scholar 

  86. Klappan, A. K., Hones, S., Mylonas, I., and Bruning, A. (2012) Proteasome inhibition by quercetin triggers macroautophagy and blocks mTOR activity, Histochem. Cell Biol., 137, 25–36.

    Article  CAS  PubMed  Google Scholar 

  87. Wang, Y., Zhang, W., Lv, Q., Zhang, J., and Zhu, D. (2015) The critical role of quercetin in autophagy and apoptosis in HeLa cells, Tumour Biol., doi: 10.1007/s13277-015-38904.

    Google Scholar 

  88. Prietsch, R. F., Monte, L. G., da Silva, F. A., Beira, F. T., Del Pino, F. A., Campos, V. F., Collares, T., Pinto, L. S., Spanevello, R. M., Gamaro, G. D., and Braganhol, E. (2014) Genistein induces apoptosis and autophagy in human breast MCF-7 cells by modulating the expression of proapoptotic factors and oxidative stress enzymes, Mol. Cell. Biochem., 390, 235–242.

    Article  CAS  PubMed  Google Scholar 

  89. Suzuki, R., Kang, Y., Li, X., Roife, D., Zhang, R., and Fleming, J. B. (2014) Genistein potentiates the antitumor effect of 5-fluorouracil by inducing apoptosis and autophagy in human pancreatic cancer cells, Anticancer Res., 34, 4685–4692.

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Nakamura, Y., Yogosawa, S., Izutani, Y., Watanabe, H., Otsuji, E., and Sakai, T. (2009) A combination of indol-3carbinol and genistein synergistically induces apoptosis in human colon cancer HT-29 cells by inhibiting Akt phosphorylation and progression of autophagy, Mol. Cancer, 8, 100.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  91. Gossner, G., Choi, M., Tan, L., Fogoros, S., Griffith, K. A., Kuenker, M., and Liu, J. R. (2007) Genistein-induced apoptosis and autophagocytosis in ovarian cancer cells, Gynecol. Oncol., 105, 23–30.

    Article  CAS  PubMed  Google Scholar 

  92. Wang, Y. F., Li, T., Tang, Z. H., Chang, L. L., Zhu, H., Chen, X. P., Wang, Y. T., and Lu, J. J. (2015) Baicalein triggers autophagy and inhibits the protein kinase B/mammalian target of rapamycin pathway in hepatocellular carcinoma HepG2 cells, Phytother. Res., 29, 674–679.

    Article  CAS  PubMed  Google Scholar 

  93. Aryal, P., Kim, K., Park, P. H., Ham, S., Cho, J., and Song, K. (2014) Baicalein induces autophagic cell death through AMPK/ULK1 activation and downregulation of mTORC1 complex components in human cancer cells, FEBS J., 281, 4644–4658.

    Article  CAS  PubMed  Google Scholar 

  94. Wang, Z., Jiang, C., Chen, W., Zhang, G., Luo, D., Cao, Y., Wu, J., Ding, Y., and Liu, B. (2014) Baicalein induces apoptosis and autophagy via endoplasmic reticulum stress in hepatocellular carcinoma cells, Biomed. Res. Int., 732516.

  95. Suh, Y., Afaq, F., Khan, N., Johnson, J. J., Khusro, F. H., and Mukhtar, H. (2010) Fisetin induces autophagic cell death through suppression of mTOR signaling pathway in prostate cancer cells, Carcinogenesis, 31, 1424–1433.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Khan, N., Afaq, F., Khusro, F. H., Mustafa Adhami, V., Suh, Y., and Mukhtar, H. (2012) Dual inhibition of phosphatidylinositol 3-kinase/Akt and mammalian target of rapamycin signaling in human nonsmall cell lung cancer cells by a dietary flavonoid fisetin, Int. J. Cancer, 130, 1695–1705.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Syed, D. N., Lall, R. K., Chamcheu, J. C., Haidar, O., and Mukhtar, H. (2014) Involvement of ER stress and activation of apoptotic pathways in fisetin induced cytotoxicity in human melanoma, Arch. Biochem. Biophys., 563, 108–117.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Doan, K. V., Ko, C. M., Kinyua, A. W., Yang, D. J., Choi, Y. H., Oh, I. Y., Nguyen, N. M., Ko, A., Choi, J. W., Jeong, Y., Jung, M. H., Cho, W. G., Xu, S., Park, K. S., Park, W. J., Choi, S. Y., Kim, H. S., Moh, S. H., and Kim, K. W. (2015) Gallic acid regulates body weight and glucose homeostasis through AMPK activation, Endocrinology, 156, 157–168.

    Article  PubMed  CAS  Google Scholar 

  99. Shailasree, S., Venkataramana, M., Niranjana, S. R., and Prakash, H. S. (2015) Cytotoxic effect of p-coumaric acid on neuroblastoma, N2a cell via generation of reactive oxygen species leading to dysfunction of mitochondria inducing apoptosis and autophagy, Mol. Neurobiol., 51, 119–130.

    Article  CAS  PubMed  Google Scholar 

  100. Bian, Z., Furuya, N., Zheng, D. M., Oliva-Trejo, J. A., Tada, N., Ezaki, J., and Ueno, T. (2013) Ferulic acid induces mammalian target of rapamycin inactivation in cultured mammalian cells, Biol. Pharm. Bull., 36, 120–124.

    Article  CAS  PubMed  Google Scholar 

  101. Luo, C., Li, Y., Wang, H., Cui, Y., Feng, Z., Li, H., Wang, Y., Wurtz, K., Weber, P., Long, J., and Liu, J. (2013) Hydroxytyrosol promotes superoxide production and defects in autophagy leading to anti-proliferation and apoptosis on human prostate cancer cells, Curr. Cancer Drug Targets, 13, 625–639.

    Article  CAS  PubMed  Google Scholar 

  102. Feng, Z., Bai, L., Yan, J., Li, Y., Shen, W., Wang, Y., Wertz, K., Weber, P., Zhang, Y., Chen, Y., and Liu, J. (2011) Mitochondrial dynamic remodeling in strenuous exercise-induced muscle and mitochondrial dysfunction: regulatory effects of hydroxytyrosol, Free Radic. Biol. Med., 50, 1437–1446.

    Article  CAS  PubMed  Google Scholar 

  103. Gupta, S. C., Kismali, G., and Aggarwal, B. B. (2013) Curcumin, a component of turmeric: from farm to pharmacy, Biofactors, 39, 2–13.

    Article  CAS  PubMed  Google Scholar 

  104. Cuomo, J., Appendino, G., Dern, A. S., Schneider, E., Mc Kinnon, T. P., Brown, M. J., Togni, S., and Dixon, B. M. (2011) Comparative absorption of a standardized curcuminoid mixture and its lecithin formulation, J. Nat. Prod., 74, 664–669.

    Article  CAS  PubMed  Google Scholar 

  105. Belcaro, G., Cesarone, M. R., Dugall, M., Pellegrini, L., Ledda, A., Grossi, M. G., Togni, S., and Appendino, G. (2010) Efficacy and safety of Meriva(R), a curcumin–phosphatidylcholine complex, during extended administration in osteoarthritis patients, Altern. Med. Rev., 15, 337–344.

    PubMed  Google Scholar 

  106. Appendino, G., Belcaro, G., Cornelli, U., Luzzi, R., Togni, S., Dugall, M., Cesarone, M. R., Feragalli, B., Ippolito, E., Errichi, B. M., Pellegrini, L., Ledda, A., Ricci, A., Bavera, P., Hosoi, M., Stuard, S., Corsi, M., Errichi, S., and Gizzi, G. (2011) Potential role of curcumin phytosome (Meriva) in controlling the evolution of diabetic microangiopathy. A pilot study, Panminerva Med., 53, 43–49.

    CAS  PubMed  Google Scholar 

  107. Turan, B., Tuncay, E., and Vassort, G. (2012) Resveratrol and diabetic cardiac function: focus on recent in vitro and in vivo studies, J. Bioenerg. Biomembr., 44, 281–296.

    Article  CAS  PubMed  Google Scholar 

  108. Reinisalo, M., Karlund, A., Koskela, A., Kaarniranta, K., and Karjalainen, R. O. (2015) Polyphenol stilbenes: molecular mechanisms of defence against oxidative stress and aging-related diseases, Oxid. Med. Cell. Longev., 2015, 340520.

    Article  PubMed  PubMed Central  Google Scholar 

  109. Jimenez-Osorio, A. S., Gonzalez-Reyes, S., and Pedraza-Chaverri, J. (2015) Natural Nrf2 activators in diabetes, Clin. Chim. Acta, 448, 182–192.

    Article  CAS  PubMed  Google Scholar 

  110. Cardozo, L. F., Pedruzzi, L. M., Stenvinkel, P., Stockler-Pinto, M. B., Daleprane, J. B., Leite, M., and Mafra, D. (2013) Nutritional strategies to modulate inflammation and oxidative stress pathways via activation of the master antioxidant switch Nrf2, Biochimie, 95, 1525–1533.

    Article  CAS  PubMed  Google Scholar 

  111. Lin, D., Dai, F., Sun, L. D., and Zhou, B. (2015) Toward an understanding of the role of a catechol moiety in cancer chemoprevention: the case of copperand o-quinonedependent Nrf2 activation by a catechol-type resveratrol analog, Mol. Nutr. Food Res., doi: 10.1002/mnfr. 201500297.

    Google Scholar 

  112. Liu, Y., Chan, F., Sun, H., Yan, J., Fan, D., Zhao, D., An, J., and Zhou, D. (2011) Resveratrol protects human keratinocytes HaCaT cells from UVA-induced oxidative stress damage by downregulating Keap1 expression, Eur. J. Pharmacol., 650, 130–137.

    Article  CAS  PubMed  Google Scholar 

  113. Zghonda, N., Yoshida, S., Araki, M., Kusunoki, M., Mliki, A., Ghorbel, A., and Miyazaki, H. (2011) Greater effectiveness of epsilon-viniferin in red wine than its monomer resveratrol for inhibiting vascular smooth muscle cell proliferation and migration, Biosci. Biotechnol. Biochem., 75, 1259–1267.

    Article  CAS  PubMed  Google Scholar 

  114. Demidenko, Z. N., and Blagosklonny, M. V. (2009) At concentrations that inhibit mTOR, resveratrol suppresses cellular senescence, Cell Cycle, 8, 1901–1904.

    Article  CAS  PubMed  Google Scholar 

  115. Chung, S., Yao, H., Caito, S., Hwang, J. W., Arunachalam, G., and Rahman, I. (2010) Regulation of SIRT1 in cellular functions: role of polyphenols, Arch. Biochem. Biophys., 501, 79–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Ng, F., and Tang, B. L. (2013) Sirtuins’ modulation of autophagy, J. Cell. Physiol., 228, 2262–2270.

    Article  CAS  PubMed  Google Scholar 

  117. Xia, N., Forstermann, U., and Li, H. (2014) Resveratrol and endothelial nitric oxide, Molecules, 19, 16102–16121.

    Article  PubMed  CAS  Google Scholar 

  118. Pietrocola, F., Marino, G., Lissa, D., Vacchelli, E., Malik, S. A., Niso-Santano, M., Zamzami, N., Galluzzi, L., Maiuri, M. C., and Kroemer, G. (2012) Pro-autophagic polyphenols reduce the acetylation of cytoplasmic proteins, Cell Cycle, 11, 3851–3860.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Xu, Q., and Si, L. Y. (2012) Resveratrol role in cardiovascular and metabolic health and potential mechanisms of action, Nutr. Res., 32, 648–658.

    Article  CAS  PubMed  Google Scholar 

  120. Chiou, Y. S., Tsai, M. L., Nagabhushanam, K., Wang, Y. J., Wu, C. H., Ho, C. T., and Pan, M. H. (2011) Pterostilbene is more potent than resveratrol in preventing azoxymethane (AOM)-induced colon tumorigenesis via activation of the NF-E2-related factor 2 (Nrf2)-mediated antioxidant signaling pathway, J. Agric. Food Chem., 59, 2725–2733.

    Article  CAS  PubMed  Google Scholar 

  121. Riche, D. M., McEwen, C. L., Riche, K. D., Sherman, J. J., Wofford, M. R., Deschamp, D., and Griswold, M. (2013) Analysis of safety from a human clinical trial with pterostilbene, J. Toxicol., 2013, 463595.

    PubMed  PubMed Central  Google Scholar 

  122. Choi, S. H., Gonen, A., Diehl, C. J., Kim, J., Almazan, F., Witztum, J. L., and Miller, Y. I. (2015) SYK regulates macrophage MHC-II expression via activation of autophagy in response to oxidized LDL, Autophagy, 11, 785–795.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Park, J., Pyee, J., and Park, H. (2014) Pinosylvin at a high concentration induces AMPK-mediated autophagy for preventing necrosis in bovine aortic endothelial cells, Can. J. Physiol. Pharmacol., 92, 993–999.

    Article  CAS  PubMed  Google Scholar 

  124. Cai, W., Zhang, L., Song, Y., Zhang, B., Cui, X., Hu, G., and Fang, J. (2011) 3,4,4′-Trihydroxy-trans-stilbene, an analogue of resveratrol, is a potent antioxidant and cytotoxic agent, Free Radic. Res., 45, 1379–1387.

    Article  CAS  PubMed  Google Scholar 

  125. Zhang, L., Dai, F., Sheng, P. L., Chen, Z. Q., Xu, Q. P., and Guo, Y. Q. (2015) Resveratrol analogue 3,4,4′-trihydroxy-trans-stilbene induces apoptosis and autophagy in human non-small-cell lung cancer cells in vitro, Acta Pharmacol. Sin., 36, 1256–1265.

    Article  CAS  PubMed  Google Scholar 

  126. Yeh, C. H., Ma, K. H., Liu, P. S., Kuo, J. K., and Chueh, S. H. (2015) Baicalein decreases hydrogen peroxideinduced damage to NG108-15 cells via upregulation of Nrf2, J. Cell. Physiol., 230, 1840–1851.

    Article  CAS  PubMed  Google Scholar 

  127. Stefani, M., and Rigacci, S. (2014) Beneficial properties of natural phenols: highlight on protection against pathological conditions associated with amyloid aggregation, Biofactors, 40, 482–493.

    Article  CAS  PubMed  Google Scholar 

  128. Na, H. K., and Surh, Y. J. (2008) Modulation of Nrf2mediated antioxidant and detoxifying enzyme induction by the green tea polyphenol EGCG, Food Chem. Toxicol., 46, 1271–1278.

    Article  CAS  PubMed  Google Scholar 

  129. Kim, H. S., Quon, M. J., and Kim, J. A. (2014) New insights into the mechanisms of polyphenols beyond antioxidant properties; lessons from the green tea polyphenol, epigallocatechin 3-gallate, Redox Biol., 2, 187–195.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Hsieh, T. C., Elangovan, S., and Wu, J. M. (2010) Differential suppression of proliferation in MCF-7 and MDA-MB-231 breast cancer cells exposed to alpha, gammaand delta-tocotrienols is accompanied by altered expression of oxidative stress modulatory enzymes, Anticancer Res., 30, 4169–4176.

    CAS  PubMed  Google Scholar 

  131. Hou, L., Li, Y., Song, H., Zhang, Z., Sun, Y., Zhang, X., and Wu, K. (2015) Protective macroautophagy is involved in vitamin E succinate effects on human gastric carcinoma cell line SGC-7901 by inhibiting mTOR axis phosphorylation, PLoS One, 10, e0132829.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  132. Rickmann, M., Vaquero, E. C., Malagelada, J. R., and Molero, X. (2007) Tocotrienols induce apoptosis and autophagy in rat pancreatic stellate cells through the mitochondrial death pathway, Gastroenterology, 132, 2518–2532.

    Article  CAS  PubMed  Google Scholar 

  133. Vaquero, E. C., Rickmann, M., and Molero, X. (2007) Tocotrienols: balancing the mitochondrial crosstalk between apoptosis and autophagy, Autophagy, 3, 652–654.

    Article  CAS  PubMed  Google Scholar 

  134. Peng, S., Zhang, B., Yao, J., Duan, D., and Fang, J. (2015) Dual protection of hydroxytyrosol, an olive oil polyphenol, against oxidative damage in PC12 cells, Food Funct., 6, 2091–2100.

    Article  CAS  PubMed  Google Scholar 

  135. Fu, D. G. (2015) Regulation of redox signalling and autophagy during cardiovascular diseases-role of resveratrol, Eur. Rev. Med. Pharmacol. Sci., 19, 1530–1536.

    PubMed  Google Scholar 

  136. Xu, J., Zhou, Q., Xu, W., and Cai, L. (2012) Endoplasmic reticulum stress and diabetic cardiomyopathy, Exp. Diabetes Res., 2012, 827971.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  137. Bhullar, K. S., and Rupasinghe, H. P. (2013) Polyphenols: multipotent therapeutic agents in neurodegenerative diseases, Oxid. Med. Cell. Longev., 2013, 891748.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  138. Park, W., Amin, A. R., Chen, Z. G., and Shin, D. M. (2013) New perspectives of curcumin in cancer prevention, Cancer Prev. Res., 6, 387–400.

    Article  CAS  Google Scholar 

  139. Costa, G., Francisco, V., Lopes, M. C., Cruz, M. T., and Batista, M. T. (2012) Intracellular signaling pathways modulated by phenolic compounds: application for new anti-inflammatory drugs discovery, Curr. Med. Chem., 19, 2876–2900.

    Article  CAS  PubMed  Google Scholar 

  140. Wang, S., Moustaid-Moussa, N., Chen, L., Mo, H., Shastri, A., Su, R., Bapat, P., Kwun, I., and Shen, C. L. (2014) Novel insights of dietary polyphenols and obesity, J. Nutr. Biochem., 25, 1–18.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  141. Zingg, J. M., Hasan, S. T., and Meydani, M. (2013) Molecular mechanisms of hypolipidemic effects of curcumin, Biofactors, 39, 101–121.

    Article  CAS  PubMed  Google Scholar 

  142. Lukosz, M., Jakob, S., Buchner, N., Zschauer, T. C., Altschmied, J., and Haendeler, J. (2010) Nuclear redox signaling, Antioxid. Redox Signal., 12, 713–742.

    Article  CAS  PubMed  Google Scholar 

  143. Kaminskyy, V. O., and Zhivotovsky, B. (2014) Free radicals in cross talk between autophagy and apoptosis, Antioxid. Redox Signal., 21, 86–102.

    Article  CAS  PubMed  Google Scholar 

  144. Tan, H. K., Moad, A. I., and Tan, M. L. (2014) The mTOR signalling pathway in cancer and the potential mTOR inhibitory activities of natural phytochemicals, Asian Pac. J. Cancer Prev., 15, 6463–6475.

    Article  PubMed  Google Scholar 

  145. Beevers, C. S., Chen, L., Liu, L., Luo, Y., Webster, N. J., and Huang, S. (2009) Curcumin disrupts the mammalian target of rapamycin–raptor complex, Cancer Res., 69, 1000–1008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Liu, M., Wilk, S. A., Wang, A., Zhou, L., Wang, R. H., Ogawa, W., Deng, C., Dong, L. Q., and Liu, F. (2010) Resveratrol inhibits mTOR signaling by promoting the interaction between mTOR and DEPTOR, J. Biol. Chem., 285, 36387–36394.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Hardie, D. G., Ross, F. A., and Hawley, S. A. (2012) AMPK: a nutrient and energy sensor that maintains energy homeostasis, Nat. Rev. Mol. Cell Biol., 13, 251–262.

    Article  CAS  PubMed  Google Scholar 

  148. Xu, L., and Ash, J. D. (2016) The role of AMPK pathway in neuroprotection, Adv. Exp. Med. Biol., 854, 425–430.

    Article  PubMed  Google Scholar 

  149. Maiese, K. (2015) SIRT1 and stem cells: in the forefront with cardiovascular disease, neurodegeneration and cancer, World J. Stem Cells, 7, 235–242.

    Article  PubMed  PubMed Central  Google Scholar 

  150. Zhang, Y., and Manning, B. D. (2015) mTORC1 signaling activates NRF1 to increase cellular proteasome levels, Cell Cycle, 14, 2011–2017.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. B. Menshchikova.

Additional information

Original Russian Text © N. K. Zenkov, A. V. Chechushkov, P. M. Kozhin, N. V. Kandalintseva, G. G. Martinovich, E. B. Menshchikova, 2016, published in Biokhimiya, 2016, Vol. 81, No. 4, pp. 429-447.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zenkov, N.K., Chechushkov, A.V., Kozhin, P.M. et al. Plant phenols and autophagy. Biochemistry Moscow 81, 297–314 (2016). https://doi.org/10.1134/S0006297916040015

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297916040015

Keywords