[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Robust D-Decomposition for a Polynomial Dependence of the Coefficients of a Polynomial on Two Parameters

  • ROBUST, ADAPTIVE AND NETWORK CONTROL
  • Published:
Automation and Remote Control Aims and scope Submit manuscript

Abstract

A method for constructing the interval stability set of a polynomial with interval coefficients polynomially depending on two parameters is proposed. The method is based on approximating the interval stability set with a given accuracy by a union of rectangles and does not require analyzing and constructing the boundaries of the D-decomposition. The convergence of the method is proved. The efficiency of the method is illustrated by examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. Polyak, B.T. and Shcherbakov, P.S., Robastnaya ustoichivost’ i upravlenie (Robust Stability and Control), Moscow: Nauka, 2002.

    Google Scholar 

  2. Metody klassicheskoi i sovremennoi teorii avtomaticheskogo upravleniya (Methods of Classical and Modern Automatic Control Theory), Pupkov, K.A., Ed., Moscow: Izd. MGTU im. N.E. Baumana, 2004, vol. 3.

  3. Teoriya avtomaticheskogo upravleniya (Automatic Control Theory), Moscow: Vyssh. Shkola, 2005.

  4. Rotach, V.Ya., Teoriya avtomaticheskogo upravleniya (Automatic Control Theory), Moscow: MEI, 2008.

    Google Scholar 

  5. Polyak, B.T., Khlebnikov, M.V., and Rapoport, L.B., Matematicheskaya teoriya avtomaticheskogo upravleniya (Mathematical Automatic Control Theory), Moscow: URSS, 2019.

    Google Scholar 

  6. Omorov, R.O., Algebraic method for studying the robustness of interval dynamical systems, Nauchno-Tekh. Vestn. Inf. Tekhnol. Mekh. Opt., 2020, vol. 20, no. 3, pp. 364–370.

    Article  Google Scholar 

  7. Kim, D.P., Teoriya avtomaticheskogo upravleniya. Lineinye sistemy (Automatic Control Theory. Linear Systems), Moscow: Yurait, 2021.

    Google Scholar 

  8. Gu Da-Wei, Petko, Hr.P., and Konstantinov, M.M., Robust Control Design with Matlab, London: Springer, 2005.

  9. Lin, F., Robust Control Design. An Optimal Control Approach, Chichester: John Wiley & Sons, 2007.

    Book  Google Scholar 

  10. Sinha, A.K., Linear Systems. Optimal and Robust Control, Boca Raton: CRC Press, 2007.

    Book  Google Scholar 

  11. Belmiloudi, A., Stabilization, Optimal and Robust Control: Theory and Applications in Biological and Physical Sciences, London: Springer, 2008.

    Book  Google Scholar 

  12. Bartoszewicz, A., Robust Control, Theory and Applications, Rijeka, Croatia: InTech, 2011.

    Book  Google Scholar 

  13. Levine, W.S., The Control Systems Handbook. Control System Advanced Methods, Boca Raton: CRC Press, 2011.

    Google Scholar 

  14. Yedavalli, R.K., Robust Control of Uncertain Dynamic Systems. A Linear State Space Approach, New York: Springer, 2014.

    Book  Google Scholar 

  15. Dodds, S.J., Feedback Control. Linear, Nonlinear and Robust Techniques and Design with Industrial Applications, London: Springer, 2015.

    MATH  Google Scholar 

  16. Liu, K.-Z. and Yao, Y., Robust Control. Theory and Applications, Singapore: John Wiley & Sons, 2016.

    Book  Google Scholar 

  17. Feng, Y. and Yagoubi, M., Robust Control of Linear Descriptor Systems, Singapore: Springer, 2017.

    Book  Google Scholar 

  18. Garcia-Sanz, M., Robust Control Engineering. Practical QFT solutions, Boca Raton: CRC Press, 2017.

    Book  Google Scholar 

  19. Golnarachi, F. and Kuo, B., Automatic Control Systems, New York: McGraw-Hill, 2017.

    Google Scholar 

  20. Franklin, G.F., Powell, J.D., and Emami-Naeini, A., Feedback Control of Dynamic Systems, London: Pearson Educ., 2020.

    MATH  Google Scholar 

  21. Astrom, K.J. and Murray, R.M., Feedback Systems: An Introduction for Scientists and Engineers, Princeton: Princeton Univ. Press, 2021.

    MATH  Google Scholar 

  22. Baillieul, J. and Samad, T., Encyclopedia of Systems and Control, London: Springer, 2021.

    Book  Google Scholar 

  23. Dorf, R. and Bishop, R., Modern Control Systems, London: Pearson Educ., 2022.

    MATH  Google Scholar 

  24. Fortuna, L., Frasca, M., and Buscarino, A., Optimal and Robust Control Advanced Topics with MATLAB, Boca Raton: CRC Press, 2022.

    MATH  Google Scholar 

  25. Petrov, N.P. and Polyak, B.T., Robust D-decomposition, Autom. Remote Control, 1991, vol. 52, no. 11, pp. 1513–1523.

    Google Scholar 

  26. Neimark, Yu.I., Ustoichivost’ linearizovannykh sistem (Stability of Linearized Systems), Leningrad: LKVVIA, 1949.

    Google Scholar 

  27. Neimark, Yu.I., Dinamicheskie sistemy i upravlyaemye protsessy (Dynamic Systems and Controlled Processes), Moscow: Nauka, 1978.

    Google Scholar 

  28. Kharitonov, V.L., On the asymptotic stability of the equilibrium position of a family of systems of linear differential equations, Differ. Uravn., 1978, vol. 14, no. 11, pp. 2086–2088.

    Google Scholar 

  29. Polyak, B.T. and Tsypkin, Ya.Z., Frequency domain criteria for robust stability and aperiodicity of linear systems, Autom. Remote Control, 1990, vol. 51, no. 9, pp. 1192–1201.

    MATH  Google Scholar 

  30. Pryashnikova, P.F., D-decomposition in the case of polynomial dependence of the coefficients of a polynomial on two parameters, Autom. Remote Control, 2021, vol. 82, no. 3, pp. 398–409.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. F. Pryashnikova.

Additional information

Translated by V. Potapchouck

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pryashnikova, P.F. Robust D-Decomposition for a Polynomial Dependence of the Coefficients of a Polynomial on Two Parameters. Autom Remote Control 83, 1078–1092 (2022). https://doi.org/10.1134/S0005117922070050

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0005117922070050

Keywords

Navigation