[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Using Neural Networks to Detect Anomalies in X-Ray Images Obtained with Full-Body Scanners

  • THEMATIC ISSUE
  • Published:
Automation and Remote Control Aims and scope Submit manuscript

Abstract

In this paper, we solve the problem of detecting anomalies in X-ray images obtained by full-body scanners (FBSs). The paper describes the sequence and description of image preprocessing methods used to convert the original images obtained with an FBS to images with visually distinguishable anomalies. Examples of processed images are given. The first (preliminary) results of using a neural network for anomaly detection are shown.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

Similar content being viewed by others

REFERENCES

  1. Sharma, N. and Aggarwal, L.M., Automated medical image segmentation techniques, J. Med. Phys., 2010, vol. 35, no. 1, pp. 3–14.

    Article  Google Scholar 

  2. Mansoor, A., Bagci, U., Foster, B., et al., Segmentation and image analysis of abnormal lungs at CT: Current approaches, challenges, and future trends, Radiographics, 2015, vol. 35, no. 4, pp. 1056–1076.

    Article  Google Scholar 

  3. Badrinarayanan, V., Handa, A., and Cipolla, R., Segnet: A deep convolutional encoder-decoder architecture for robust semantic pixel-wise labeling, 2015. arXiv:1505.07293

  4. Badrinarayanan, V., Kendall, A., and Cipolla, R., Segnet: a deep convolutional encoder-decoder architecture for image segmentation, IEEE Trans. Pattern Anal. Mach. Intell., 2017, vol. 39, no. 12, pp. 2481–2495.

    Article  Google Scholar 

  5. Aylett-Bullock, J., Cuesta-Lázaro, C., and Quera-Bofarull, A., XNet: a convolutional neural network (CNN) implementation for medical X-Ray image segmentation suitable for small datasets, Proc. SPIE. Med. Imaging 2019: Biomed. Appl. Mol. Struct. Funct. Imaging (2019), vol. 10953.

  6. Ronneberger, O., Fischer, P., and Brox, T., U-Net: convolutional networks for biomedical image segmentation, in Medical Image Computing and Computer-Assisted Intervention—MICCAI 2015 , vol. 9351 of Lect. Notes Comput. Sci., Navab, N., Hornegger, J., Wells, W., and Frangi, A., Eds., 2015, pp. 234–241.

  7. Ciresan, D., Giusti, A., Gambardella, L.M., and Schmidhuber, J., Deep neural networks segment neuronal membranes in electron microscopy images, in Advances in Neural Information Processing Systems 25, Pereira, F., Burges, C.J.C., Bottou, L., and Weinberger, K.Q., Eds., Curran Assoc., 2012, pp. 2843–2851.

  8. Arganda-Carreras, I., Turaga, S.C., Berger, D.R., et al., Crowdsourcing the creation of image segmentation algorithms for connectomics, Front. Neuroanat., 2015, vol. 9, no. 142.

  9. Xuebin, Q., Zhang, Z., Huang, C., et al., U2-Net: Going deeper with nested U-structure for salient object detection, Pattern Recognit., 2020, vol. 106, p. 107404.

    Article  Google Scholar 

  10. https://docs.opencv.org/3.4/db/d8e/tutorial_threshold.html.

  11. https://docs.opencv.org/3.4/d6/dc7/group_imgproc_hist.html.

  12. OpenCV. https://opencv.org/.

  13. LabelMe. http://labelme.csail.mit.edu/Release3.0/.

  14. Yandex Toloka. https://toloka.ai/.

  15. Kingma, D.P. and Ba, J.L., Adam: A method for stochastic optimization, 2017. arXiv:1412.6980.

  16. https://id.wikipedia.org/wiki/Indeks_Jaccard.

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. S. Markov, E. Yu. Kotlyarov, N. P. Anosova, V. A. Popov, Ya. M. Karandashev or D. E. Apushkinskaya.

Additional information

Translated by V. Potapchouck

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Markov, A.S., Kotlyarov, E.Y., Anosova, N.P. et al. Using Neural Networks to Detect Anomalies in X-Ray Images Obtained with Full-Body Scanners. Autom Remote Control 83, 1507–1516 (2022). https://doi.org/10.1134/S00051179220100034

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S00051179220100034

Keywords

Navigation