[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Pseudo-Boolean Conditional Optimization Models for a Class of Multiple Traveling Salesmen Problems

  • Published:
Automation and Remote Control Aims and scope Submit manuscript

Abstract

We consider knowledge-oriented models, problems, and algorithms for routing traveling salesmen in complex networks. The formalization leads to models of pseudo-Boolean discrete optimization with constraints that take into account the specifics of the multiple traveling salesmen problem. We consider a class of problems that can be represented in the form of pseudo-Boolean optimization models with separable objective functions (monotone, linear) and constraints in the form of disjunctive normal forms (DNFs). We demonstrate the possibility of an approximate synthesis of DNF constraints based on precedent information. The methodology, theoretical principles, and algorithms for solving problems of this class are presented. It is shown that the solution of routing problems can be based on the application of a multiagent approach in combination with clustering of the original problem, pseudo-Boolean optimization algorithms with disjunctive constraints, and metaheuristics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Antamoshkin, A.A. and Masich, I.S., Search algorithms for pseudo-Boolean optimization, Sist. Upr. Svyazi Bezop., 2016, pp. 103–145.

  2. Germanchuk, M.S., Kozlova, M.G., and Luk’yanenko, V.A., Knowledge-oriented routing models of many traveling salesmen, Intellektualizatsiya obrabotki informatsii. Tez. dokl. 13-i Mezhdunar. konf. (Intellectualization of Information Processing. Proc. 13th Int. Conf.) (Moscow, 2020), pp. 352–355.

  3. Donskoi, V.I. and Bashta, A.I., Diskretnye modeli prinyatiya reshenii pri nepolnoi informatsii (Discrete Decision-Making Models with Incomplete Information), Simferopol: Tavriya, 1992.

    Google Scholar 

  4. Donskoi, V.I., Pseudo-Boolean optimization with a disjunctive constraint, Comput. Math. Math. Phys., 1994, vol. 34, no. 3, pp. 389–398.

    MathSciNet  Google Scholar 

  5. Donskoy, V. and Perekhod, I., Multiple criteria models with the linear pseudoboolean functions and disjunctive restrictions, in Multiple Criteria Decision Making. Lecture Notes in Economics and Mathematical Systems. Vol. 448, Fandel, G. and Gal, T., Eds., Berlin–Heidelberg: Springer, 1997. https://doi.org/10.1007/978-3-642-59132-7_2

  6. Donskoy, V.I., A Synthesis of pseudo-Boolean empirical models by precedential information, Bull. SUSU MMCS, 2018, vol. 11, no. 2, pp. 96–107.

    Article  Google Scholar 

  7. Kozlova, M.G., Knowledge-oriented decision making models, Uchen. Zap. Simferopol. Gos. Univ., 1998, no. 7(46), pp. 76–83.

  8. Kozlova, M.G., Multicriteria decision-making models with linear pseudo-Boolean functions and disjunctive constraints, Iskusstv. Intellekt, 2000, no. 2, pp. 67–73.

  9. Kozlova, M.G., Synthesis of tapering requests, Din. Sist., 2000, no. 16, pp. 208–211.

  10. Masich, I.S., Poiskovye algoritmy uslovnoi optimizatsii: monografiya (Search Algorithms for Conditional Optimization: a Monograph), Krasnoyarsk: SibGAU, 2013.

    Google Scholar 

  11. Melamed, I.I., Sergeev, S.I., and Sigal, I.K., The traveling salesman problem. Issues in theory, Autom. Remote Control, 1989, vol. 50, no. 9, pp. 1147–1173.

    MathSciNet  MATH  Google Scholar 

  12. Melamed, I.I., Sergeev, S.I., and Sigal, I.K., The traveling salesman problem. Exact methods, Autom. Remote Control, 1989, vol. 50, no. 10, pp. 1303–1324.

    MathSciNet  MATH  Google Scholar 

  13. Melamed, I.I., Sergeev, S.I., and Sigal, I.K., The traveling salesman problem. Approximate algorithms, Autom. Remote Control, 1989, vol. 50, no. 11, pp. 1459–1479.

    MathSciNet  MATH  Google Scholar 

  14. Germanchuk, M.S., Lemtyuzhnikova, D.V., and Luk’yanenko, V.A., Metaheuristic algorithms for multiagent routing problems, Probl. Upr., 2020, vol. 6, pp. 3–13.

    Google Scholar 

  15. Grama, Y. and Hammer, P.L., Boolean Functions: Theory, Algorithms and Applications, New York: Cambridge Univ. Press, 2011.

    Google Scholar 

  16. Hammer, P.L. and Rudeanu, S., Boolean Methods in Operations Research and Related Areas, Berlin–Heidelberg–New York: Springer-Verlag, 1968.

    Book  Google Scholar 

  17. Foldes, S. and Hammer, P.L., Disjunctive and cojunctive normal forms of pseudo-Boolean functions, Discrete Appl. Math., 2000, no. 107, pp. 1–26.

  18. Boros, E. and Hammer, P.L., Pseudo-Boolean optimization, Discrete Appl. Math., 2002, no. 123, pp. 155–225.

  19. Hammer, P.L., Pseudo-Boolean remarks on balanced graphs, Int. Ser. Numer. Math., 1977, no. 36, pp. 69–78.

  20. Ebenegger, Ch., Hammer, P.L., and de Werra, D., Pseudo-Boolean functions and stability of graphs, Ann. Discrete Math., 1984, no. 19, pp. 83–97.

  21. Zhuravlev, Yu.I., Local algorithms over disjunctive normal forms, Dokl. Akad. Nauk SSSR, 1979, vol. 245, no. 2, pp. 289–292.

    MathSciNet  MATH  Google Scholar 

  22. Zhuravlev, Yu.I. and Kogan, A.Yu., Implementation of Boolean functions with a small number of zeros by disjunctive normal forms and related problems, Dokl. Akad. Nauk SSSR, 1985, vol. 285, no. 4, pp. 795–799.

    MathSciNet  Google Scholar 

  23. Hammer, P.L. and Rudeanu, S., Pseudo-Boolean methods for bivalent programming, Lect. Notes Math., September 2–7, 1966.

  24. Sapozhenko, A.A., On the search for the maximum upper zero of monotone functions on ranked sets, U.S.S.R. Comput. Math. Math. Phys., 1991, vol. 31, no. 12, pp. 79–89.

    MATH  Google Scholar 

  25. Germanchuk, M.S., Kozlova, M.G., and Luk’yanenko, V.A., Practical routing problems, Analiz, modelirovanie, upravlenie, razvitie sotsial’no-ekonomicheskikh sistem. Sb. nauch. tr. XI Mezhdunar. shkoly-simpoziuma AMUR (Analysis, Modeling, Management, Development of Socio-Economic Systems. Proc. XI Int. School-Symp. AMUR) (2017), pp. 116–120.

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M. S. Germanchuk, M. G. Kozlova or V. A. Lukianenko.

Additional information

Translated by V. Potapchouck

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Germanchuk, M.S., Kozlova, M.G. & Lukianenko, V.A. Pseudo-Boolean Conditional Optimization Models for a Class of Multiple Traveling Salesmen Problems. Autom Remote Control 82, 1651–1667 (2021). https://doi.org/10.1134/S0005117921100040

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0005117921100040

Keywords

Navigation