[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Minimax Rate of Testing in Sparse Linear Regression

  • Topical Issue
  • Published:
Automation and Remote Control Aims and scope Submit manuscript

Abstract

We consider the problem of testing the hypothesis that the parameter of linear regression model is 0 against an s-sparse alternative separated from 0 in the l2-distance. We show that, in Gaussian linear regression model with p < n, where p is the dimension of the parameter and n is the sample size, the non-asymptotic minimax rate of testing has the form \(\sqrt {\left( {s/n} \right)\log \left( {\sqrt p /s} \right)}\). We also show that this is the minimax rate of estimation of the l2-norm of the regression parameter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ingster, Y.I., Some Problems of Hypothesis Testing Leading to Infinitely Divisible Distributions, Math. Methods Statist., 1997, no. 6, pp. 470–49.

    Google Scholar 

  2. Donoho, D.L. and Jin, J., Higher Criticism for Detecting Sparse Heterogeneous Mixtures, Ann. Statist., 2004, no. 32, pp. 9620–994.

    Google Scholar 

  3. Baraud, Y., Non Asymptotic Minimax Rates of Testing in Signal Detection, Bernoulli, 2002, no. 8, pp. 5770–606.

    Google Scholar 

  4. Collier, O., Comminges, L., and Tsybakov, A.B., Minimax Estimation of Linear and Quadratic Functionals under Sparsity Constraints, Ann. Statist., 2017, no. 45, pp. 9230–958.

    Google Scholar 

  5. Ingster, Y.I., Tsybakov, A.B., and Verzelen, N., Detection Boundary in Sparse Regression, Electron. J. Stat., 2010, no. 4, pp. 14760–1526.

    Google Scholar 

  6. Arias-Castro, E., Candes, E., and Plan, Y., Global Testing under Sparse Alternatives: ANOVA, Multiple Comparisons and the Higher Criticism, Ann. Statist., 2011, no. 39, pp. 25330–2556.

    Google Scholar 

  7. Verzelen, N., Minimax Risks for Sparse Regressions: Ultra-High Dimensional Phenomenons, Electron. J. Stat., 2012, no. 6, pp. 380–90.

    Google Scholar 

  8. Ingster, Y.I. and Suslina, I.A., Nonparametric Goodness-of-Fit Testing under Gaussian Models, New York: Springer, 2003.

    Book  Google Scholar 

  9. Davidson, K.R. and Szarek, S.J., Local Operator Theory, Random Matrices and Banach Spaces, in Handbook of the Geometry of Banach Spaces, Johnson, W.B. and Lindenstrauss, J., Eds., 2001, vol. 1, pp. 317–366.

    Article  MathSciNet  Google Scholar 

  10. Vershynin, R., Introduction to the Non-Asymptotic Analysis of Random Matrices, in Compressed Sensing, Cambridge: Cambridge Univ. Press, 2012, pp. 210–268.

    Chapter  Google Scholar 

  11. Tao, T. and Vu, V., Random Matrices: Universality of ESDs and the Circular Law, Ann. Probab., 2010, vol. 38, no. 5, pp. 2023–2065.

    Article  MathSciNet  Google Scholar 

  12. Bordenave, C. and Chafaï, D., Around the Circular Law, Probab. Surv., 2012, no. 9, pp. 1–89.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Carpentier.

Additional information

Russian Text © The Author(s), 2019, published in Avtomatika i Telemekhanika, 2019, No. 10, pp. 78–99.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Carpentier, A., Collier, O., Comminges, L. et al. Minimax Rate of Testing in Sparse Linear Regression. Autom Remote Control 80, 1817–1834 (2019). https://doi.org/10.1134/S0005117919100047

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0005117919100047

Keywords

Navigation