[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Optimal Control of Maximum Output Deviations of a Linear Time-Varying System on a Finite Horizon

  • Topical Issue
  • Published:
Automation and Remote Control Aims and scope Submit manuscript

Abstract

The maximum output deviation of a linear time-varying system is defined as the worst-case measure of the maximum value of the output Euclidean norm over a finite horizon provided that the sum of the squared energy of an external disturbance and a quadratic form of the initial state is 1. Maximum deviation is characterized in terms of solutions to differential matrix equations or inequalities. A modified concept of the boundedness of the system on a finite horizon under an external and initial disturbances is introduced and its connection with the concept of maximum deviation is established. Necessary and sufficient conditions for the boundedness of the system on a finite horizon are obtained. It is demonstrated that optimal controllers (including the multiobjective ones that minimize the maximum deviations of several outputs) as well as controllers ensuring the boundedness of the system can be designed using linear matrix inequalities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Feldbaum, A.A., On the Arrangement of Roots for Characteristic Equation of Control Systems, Avtom. Telemekh., 1948, no. 4, pp. 2530–279.

    Google Scholar 

  2. Izmailov, R.N., The Peak Effect in Stationary Linear Systems with Scalar Inputs and Outputs, Autom. Remote Control, 1987, vol. 48, no. 8, pp. 10180–1024.

    Google Scholar 

  3. Bulgakov, B.V., On Accumulation of Disturbances in Linear Oscillating Systems with Constant Parameters, Dokl. Akad. Nauk SSSR, 1946, vol. 51, no. 5, pp. 3390–342.

    Google Scholar 

  4. Aleksandrov, V.V., About Bulgakov's Problem on Accumulation of Disturbances, Dokl. Akad. Nauk SSSR, Kibern. Teor. Regulirovaniya, 1969, vol. 186, no. 3, pp. 5260–528.

    Google Scholar 

  5. Zhermolenko, V.N., On Maximal Deviation of Linear System, Autom. Remote Control, 2012, vol. 73, no. 7, pp. 11170–1125.

    Article  MathSciNet  Google Scholar 

  6. Moler, C. and van Loan, C., Nineteen Dubious Ways to Compute the Exponential of a Matrix, Twenty-Five Years Later, SIAM Rev., 2003, vol. 45, no. 1, pp. 30–49.

    Article  MathSciNet  Google Scholar 

  7. Boyd, S., El Ghaoui, L., Feron, E., and Balakrishnan, V., Linear Matrix Inequalities in Systems and Control Theory, Philadelphia: SIAM, 1994.

    Book  Google Scholar 

  8. Whidborne, J.F. and McKernan, J., On Minimizing Maximum Transient Energy Growth, IEEE Trans. Autom. Control, 2007, vol. 52, no. 9, pp. 17620–1767.

    Article  Google Scholar 

  9. Polyak, B.T., Tremba, A., Khlebnikov, M.V., Shcherbakov, P.S., and Smirnov, G.V., Large Deviations in Linear Control Systems with Nonzero Initial Conditions, Autom. Remote Control, 2015, vol. 76, no. 6, pp. 9570–976.

    Article  MathSciNet  Google Scholar 

  10. Polyak, B.T. and Smirnov, G., Large Deviations for Non-zero Initial Conditions in Linear Systems, Automatica, 2016, vol. 74, pp. 2970–307.

    Article  MathSciNet  Google Scholar 

  11. Ahiyevich, U.M., Parsegov, S.E., and Shcherbakov, P.S., Upper Bounds on Peaks in Discrete-Time Linear Systems, Autom. Remote Control, 2018, vol. 79, no. 11, pp. 19760–1988.

    Article  Google Scholar 

  12. Wilson, D.A., Convolution and Hankel Operator Norms for Linear Systems, IEEE Trans. Autom. Control, 1989, vol. 34, pp. 940–97.

    Article  MathSciNet  Google Scholar 

  13. Wilson, D.A., Extended Optimality Properties of the Linear Quadratic Regulator and Stationary Kalman Filter, IEEE Trans. Autom. Control, 1990, vol. 35, pp. 5830–585.

    Article  MathSciNet  Google Scholar 

  14. Kim, J.H. and Hagiwara, T., Upper/Lower Bounds of Generalized H 2 Norms in Sampled-Data Systems with Convergence Rate Analysis and Discretization Viewpoint, Syst. Control Lett., 2017, vol. 107, pp. 280–35.

    Article  Google Scholar 

  15. Rotea, M.A., The Generalized H 2 Control Problem, Automatica, 1993, vol. 29, no. 2, pp. 3730–385.

    Article  Google Scholar 

  16. Wilson, D.A., Nekoui, M.A., and Halikias, G.D., An LQR Weight Selection Approach to the Discrete Generalized H 2 Control Problem, Int. J. Control, 1998, vol. 71, no. 1, pp. 930–101.

    Article  Google Scholar 

  17. Balandin, D.V. and Kogan, M.M., Linear Control Design under Phase Constraints, Autom. Remote Control, 2009, vol. 70, no. 6, pp. 9580–966.

    Article  Google Scholar 

  18. Kogan, M.M. and Krivdina, L.N., Synthesis of Multipurpose Linear Control Laws of Discrete Objects under Integral and Phase Constraints, Autom. Remote Control, 2011, vol. 72, no. 7, pp. 14270–1439.

    Article  Google Scholar 

  19. Balandin, D.V. and Kogan, M.M., Pareto Optimal Generalized H 2-control and Vibroprotection Problems, Autom. Remote Control, 2017, vol. 78, no. 8, pp. 14170–1429.

    Article  Google Scholar 

  20. Balandin, D.V. and Kogan, M.M., Multi-Objective Generalized H 2 Control, Automatica, 2019, vol. 99, no. 1, pp. 3170–322.

    Google Scholar 

  21. Barabanov, A.E. and Granichin, O.N., An Optimal Controller for a Linear Plant with Bounded Noise, Autom. Remote Control, 1984, vol. 45, part 1, no. 5, pp. 5780–584.

    MathSciNet  MATH  Google Scholar 

  22. Dahleh, M.A. and Diaz-Bobillo, I.J., Control of Uncertain Systems: A Linear Programming Approach, Englewood Cliffs: Prentice-Hall, 1995.

    MATH  Google Scholar 

  23. Amato, F., Ariola, M., Cosentino, C., Abdallah, C.T., and Dorato, P., Necessary and Sufficient Conditions for Finite-Time Stability of Linear Systems, Proc. Am. Control Conf., Denver, USA, 2003, pp. 44520–4456.

    Google Scholar 

  24. Garcia, G., Tarbouriech, S., and Bernussou, J., Finite-Time Stabilization of Linear Time-Varying Continuous Systems, IEEE Trans. Autom. Control, 2009, vol. 54, no. 2, pp. 3640–369.

    Article  MathSciNet  Google Scholar 

  25. Amato, F., Carannante, G., De Tommasi, G., and Pironti, A., Input0-Output Finite-Time Stability of Linear Systems: Necessary and Sufficient Conditions, IEEE Trans. Autom. Control, 2012, vol. 57, no. 12, pp. 30510–3063.

    Article  Google Scholar 

  26. Amato, F., Ariola, M., and Cosentino, C., Finite-time Control of Linear Time-Varying Systems via Output Feedback, Proc. Am. Control Conf., Portland, USA, 2005, pp. 47220–4726.

    Google Scholar 

  27. Khargonekar, P.P., Nagpal, K.M., and Poolla, K.R., H Control with Transients, SIAM J. Control Optim., 1991, vol. 29, no. 6, pp. 13730–1393.

    Article  MathSciNet  Google Scholar 

  28. Lu, W.W., Balas, G.J., and Lee, E.B., A Variational Approach to H Control with Transients, IEEE Trans. Autom. Control, 1999, vol. 44, no. 10, pp. 18750–1879.

    Article  MathSciNet  Google Scholar 

  29. Balandin, D.V. and Kogan, M.M., Generalized H -optimal Control as a Trade-off between the H -optimal and ψ-optimal Controls, Autom. Remote Control, 2010, vol. 71, no. 6, pp. 9930–1010.

    Article  Google Scholar 

  30. Balandin, D.V. and Kogan, M.M., LMI Based H -optimal Control with Transients, Int. J. Control, 2010, vol. 83, no. 8, pp. 16640–1673.

    Article  MathSciNet  Google Scholar 

  31. Germeier, Yu.B., Vvedenie v teoriyu issledovaniya operatsii (Introduction to Operations Research), Moscow: Nauka, 1971.

    Google Scholar 

  32. Horn, R.A. and Johnson, C.R., Matrix Analysis, Cambridge: Cambridge Univ. Press, 1986.

    Google Scholar 

Download references

Acknowledgements

This work was supported by the Russian Foundation for Basic Research, projects nos. 18-41-520002, 19-01-00289. We are grateful to B.T. Polyak for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. V. Balandin.

Additional information

Russian Text © The Author(s), 2019, published in Avtomatika i Telemekhanika, 2019, No. 10, pp. 37–61.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Balandin, D.V., Biryukov, R.S. & Kogan, M.M. Optimal Control of Maximum Output Deviations of a Linear Time-Varying System on a Finite Horizon. Autom Remote Control 80, 1783–1802 (2019). https://doi.org/10.1134/S0005117919100023

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0005117919100023

Keywords

Navigation