[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Stabilization of Nonlinear Fornasini–Marchesini Systems

  • Large Scale Systems Control
  • Published:
Automation and Remote Control Aims and scope Submit manuscript

Abstract

This paper considers the 2D systems described by the Fornasini–Marchesini statespace model. Direct and converse theorems on the exponential stability of such systems are proved in terms of vector Lyapunov functions. The concepts of exponential passivity and a vector storage function are introduced for solving exponential stabilization problems. An example is given to illustrate the efficiency of the new results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Plotnikov, V.I. and Sumin, M.I., Problems of Stability of Nonlinear Goursat–Darboux Systems, Differ. Uravn., 1972, vol. 7, no. 5, pp. 845–856.

    MathSciNet  MATH  Google Scholar 

  2. Byrnes, C., Isidori, A., and Willems, J., Passivity, Feedback Equivalence and the Global Stabilization of Minimun Phase Nonlinear Systems, IEEE Trans. Automat. Control, 1991, vol. 36, pp. 1228–1240.

    Article  MathSciNet  MATH  Google Scholar 

  3. Du, C. and Xie, L., Stability Analysis and Stabilization of Uncertain Two-Dimensional Discrete Systems: An LMI Approach, IEEE Trans. Circuits Syst. I: Fund. Theory Appl., 1999, vol. 46, pp. 1371–1374.

    Article  MATH  Google Scholar 

  4. Emelianova, J., Pakshin, P., Gałkowski, K., and Rogers, E., Vector Lyapunov Function Based Stability of a Class of Applications Relevant 2D Nonlinear Systems, IFAC Proc. Volumes (IFACPapersOnLine), 2014, vol. 47, no. 3, pp. 8247–8252.

    Article  Google Scholar 

  5. Emelianova, J., Pakshin, P., Gałkowski, K., and Rogers, E., Stability of Nonlinear Discrete Repetitive Processes with Markovian Switching, Syst. Control Lett., 2015, vol. 75, pp. 108–116.

    Article  MathSciNet  MATH  Google Scholar 

  6. Emelianova, J., Pakshin, P., Gałkowski, K., and Rogers, E., Stability of Nonlinear 2D Systems Described by the Continuous-Time Roesser Model, Autom. Remote Control, 2014, vol. 75, no. 5, pp. 845–858.

    Article  MathSciNet  MATH  Google Scholar 

  7. Dymkov, M., Gałkowski, K., Rogers, E., Dymkou, V., and Dymkou, S., Modeling and Control of a Sorption Process Using 2D Systems Theory, Proc. 7th Int. Worskop on Multidimensional Systems (NDS’11), 2011, pp. 1–6.

    Google Scholar 

  8. Fornasini, E. and Marchesini, G., Doubly Indexed Dynamical Systems: State Models and Structural Properties, Math. Syst. Theory, 1978, vol. 12, pp. 59–72.

    Article  MathSciNet  MATH  Google Scholar 

  9. Fradkov, A. and Hill, D., Exponential Feedback Passivity and Stabilizability of Nonlinear Systems, Automatica, 1998, vol. 34, pp. 697–703.

    Article  MathSciNet  MATH  Google Scholar 

  10. Hmamed, A., Mesquine, F., Tadeo, F., Benhayoun, M., and Benzaouia, A., Stabilization of 2D Saturated Systems by State Feedback Control, in Multidim. Syst. Signal Proces., 2010, vol. 21, no. 3, pp. 277–292.

    Article  MathSciNet  MATH  Google Scholar 

  11. Hladowski, L., Gałkowski, K., Cai, Z., Rogers, E., Freeman, C.T., and Lewin, P.L., Experimentally Supported 2D Systems Based Iterative Learning Control Law Design for Error Convergence and Performance, Control Eng. Practice, 2010, vol. 18(4), pp. 339–348.

    Article  Google Scholar 

  12. Khalil, H., Nonlinear Systems, New Jersey: Prentice Hall, 2002, 3rd ed.

    MATH  Google Scholar 

  13. Kurek, J., Stability of Nonlinear Time-Varying Digital 2-D Fornasini–Marchesini System, in Multidim. Syst. Signal Proces., 2014, vol. 25, no. 1, pp. 235–244.

    Article  MathSciNet  MATH  Google Scholar 

  14. Kurek, J.E. and Zaremba, M.B., Iterative Learning Control Synthesis Based on 2D System Theory, IEEE Trans. Automat. Control, 1993, vol. 38, pp. 121–125.

    Article  MathSciNet  MATH  Google Scholar 

  15. Liu, D., Lyapunov Stability of Two-Dimensional Digital Filters with Overflow Nonlinearities, IEEE Trans. Circuits Syst. I: Fund. Theory Appl., 1998, vol. 45, pp. 574–577.

    Article  MathSciNet  MATH  Google Scholar 

  16. Pandolfi, L., Exponential Stability of 2D Systems, Syst. Control Lett., 1984, vol. 4, pp. 381–385.

    Article  MATH  Google Scholar 

  17. Pakshin, P., Gałkowski, K., and Roger, E., Stability and Stabilization of Systems Modeled by 2D Nonlinear Stochastic Roesser Models, Proc. 7th Int. Workshop on Multidimensional (nD) Systems, 2011, pp. 1–6.

    Google Scholar 

  18. Paszke, W., Rogers, E., Gałkowski, K., and Cai, Z., Robust Finite Frequency Range Iterative Learning Control Design and Experimental Verification, Control Eng. Pract., 2013, vol. 21, pp. 1310–1320.

    Article  Google Scholar 

  19. Roesser, R.P., A Discrete State-Space Model for Linear Image Processing, IEEE Trans. Automat. Control, 1975, vol. AC-20(1), pp. 1–10.

    Article  MathSciNet  MATH  Google Scholar 

  20. Rogers, E., Gałkowski, K., and Owens, D.H., Control Systems Theory and Applications for Linear Repetitive Processes, Lecture Notes in Control and Information Sciences, Berlin: Springer-Verlag, 2007, vol.349.

  21. Sammons, P.M., Bristow, D.A., and Landers, R.G., Iterative Learning Control of Bead Morphology in Laser Metal Deposition Processes, Proc. Am. Control Conf., 2013, pp. 5962–5967.

    Google Scholar 

  22. Sammons, P.M., Bristow, D.A., and Landers, R.G., Height Dependent Laser Metal Deposition Process Modeling, J. Manufact. Sci. Eng., 2013, vol. 135, no. 5, pp. 1–7.

    Article  Google Scholar 

  23. Willems, J., Dissipative Dynamical Systems Part I: General Theory, Arch. Rational Mech. Analysis, 1972, vol. 45, pp. 325–351.

    Google Scholar 

  24. Yamada, M., Xu, L., and Saito, O., 2D Model-Following Servo System, in Multidim. Syst. Signal Proces., 1999, vol. 10, no. 1, pp. 71–91.

    Article  MathSciNet  MATH  Google Scholar 

  25. Yeganefar, N., Yeganefar, N., Ghamgui, M., and Moulay, E., Lyapunov Theory for 2D Nonlinear Roesser Models: Application to Asymptotic and Exponential Stability, IEEE Trans. Automat. Control, 2013, vol. 58, pp. 1299–1304.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. P. Emelianova.

Additional information

Original Russian Text © J.P. Emelianova, 2016, published in Upravlenie Bol’shimi Sistemami, 2016, No. 64, pp. 49–64.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Emelianova, J.P. Stabilization of Nonlinear Fornasini–Marchesini Systems. Autom Remote Control 79, 1903–1911 (2018). https://doi.org/10.1134/S0005117918100132

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0005117918100132

Keywords

Navigation