Abstract
In this work, we propose algorithms for optimizing the choice of feedback in the modal control problem in multidimensional linear systems with the criterion of minimizing the norm of the feedback matrix. The proposed approaches to solving this problem are based on representing the original system in an orthonormal basis. In particular, representing controllability in a block form lets us divide a high dimensional optimization problem into optimization subproblems of lower dimension. We pay special attention to finding the initial value of the feedback matrix with suboptimal search procedures. We give recommendations on constructing numerical search procedures for suboptimal solutions with gradient-based methods. The efficiency of the developed algorithms is demonstrated with numerical examples.
Similar content being viewed by others
References
Andreev, Yu.N., Upravlenie konechnomernymi lineinymi ob”ektami (Control over Finite-Dimensional Linear Objects), Moscow: Nauka, 1976.
Kwakernaak, H. and Sivan, R., Linear Optimal Control Systems, New York: Wiley, 1972. Translated under the title Lineinye optimal’nye sistemy upravleniya, Moscow: Mir, 1977.
Wonham, W.M., Linear Multivariable Control: A Geometric Approach, New York: Springer-Verlag, 1979. Translated under the title Lineinye mnogomernye sistemy upravleniya. Geometricheskii podkhod, Moscow: Nauka, 1980.
Andrievskii, B.R. and Fradkov, A.L., Izbrannye glavy teorii avtomaticheskogo upravleniya s primerami na yazyke MATLAB (Selected Chapters of Automated Control Theory with Examples in MATLAB), St. Petersburg: Nauka, 2000.
Kuzovkov, N.T., Modal’noe upravlenie i nablyudayushchie ustroistva (Modal Control and Surveillance Devices), Moscow: Mashinostroenie, 1976.
Bachelier, O., Bosche, J., and Mehdi, D., On Pole Placement via Eigenstructure Assignment Approach, IEEE Trans. Automat. Control, 2006, vol. 51, no. 9, pp. 1554–1558.
Gourishankar, V. and Ramer, K., Pole Assignment with Minimum Eigenvalue Sensitivity to Plant Parameter Variations, Int. J. Control, 1976, vol. 23, pp. 493–504.
Kautsky, J., Nichols, N.K., and Van Doren, P., Robust Pole Assignment in Linear State Feedback, Int. J. Control, 1985, vol. 41, no. 5, pp. 129–155.
Byers, R. and Nash, S.G., Approaches to Robust Pole Assignment, Int. J. Control, 1989, vol. 49, pp. 97–117.
Figueroa, J.L. and Romagnoli, J.A., An Algorithm for Robust Pole Assignment via Polynomial Approach, IEEE Trans. Automat. Control, 1994, vol. 39, no. 4, pp. 831–835.
Benzaouia, A., Rami, M.A., Faiz, S., et al., Robust Exact Pole Placement via an LMI-Based Algorithm, IEEE Trans. Automat. Control, 2009, vol. 54, no. 2, pp. 394–398.
Bhattacharyya, S.P., Fleming, J.A., and Keel, L.H., Minimum Norm Pole Assignment via Sylvester’s Equation, AMS Contemp. Math., 1985, vol. 47, pp. 265–272.
Varga, A., Robust and Minimum Norm Pole Assignment with Periodic State Feedback, IEEE Trans. Automat. Control, 2000, vol. 45, no. 5, pp. 1017–1022.
Golub, G.H. and Van Loan, C.F., Matrix Computations, Baltimore: The Johns Hopkins Univ. Press, 1983.
Golub, G.H., Nash, S., and Van Loan, C., A Hesenberg-Schur Method for the Problem AX + XB = C, IEEE Trans. Automat. Control, 1979, vol. AC-24, no. 6, pp. 909–913.
Varga, A., Schur Method for Pole Assignment, IEEE Trans. Automat. Control, 1981, vol. AC-26, no. 2, pp. 517–519.
De Souza, E. and Bhattacharyya, S.P., Controllability and Observability and the Solution of AX − XB = C, Lin. Alg. Appl., 1981, vol. 39, pp. 167–188.
Bhattacharyya, S.P. and De Souza, E., Pole Assignement via Sylvester’s Equation, Syst. Control Lett., 1981, vol. 1, pp. 261–263.
Ikramov, Kh.D., Chislennoe reshenie matrichnykh uravnenii (Numerical Solution of Matrix Equations), Moscow: Nauka, 1984.
Golub, G. and Van Loan, Ch., Matrix Computations, Baltimor: John Hopkins Univ. Press, 1989, 2nd ed. Translated under the title Matrichnye vychisleniya, Moscow: Mir, 1999.
Ackermann, J., Der Entwurf linearer Regelungssysteme im Zustandsraum, Regelungstechnik und Prozessdatenverarbeitung, 1972, vol. 7, pp. 297–300.
Drakunov, S.V., Izosimov, D.B., Luk’yanov, A.G., et al., Block Control Principle. I, Autom. Remote Control, 1990, vol. 51, no. 6, part 1, pp. 737–746.
Bellman, R.E., Introduction to Matrix Analysis, New York: McGraw-Hill, 1960. Translated under the title Vvedenie v teoriyu matrits, Moscow: Nauka, 1969.
Gantmakher, F.R., Teoriya matrits (Theory of Matrices), Moscow: Nauka, 1967.
Meyer, H.B., The Matrix Equation AZ − ZCZ − ZD + B = 0, SIAM J. Appl. Math., 1976, vol. 30, pp. 136–142.
Polyak, B.T., Vvedenie v optimizatsiyu (Introduction to Optimization), Moscow: Nauka, 1983.
Dennis, J.E. and Schnabel, R.B., Numerical Methods for Unconstrained Optimization and Nonlinear Equations, Englewood Cliffs: Prentice Hall, 1983. Translated under the title Chislennye metody bezuslovnoi optimizatsii i reshenie nelineinykh uravnenii, Moscow: Mir, 1988.
Author information
Authors and Affiliations
Additional information
Original Russian Text © S.A. Kochetkov, V.A. Utkin, 2014, published in Avtomatika i Telemekhanika, 2014, No. 2, pp. 72–105.
Rights and permissions
About this article
Cite this article
Kochetkov, S.A., Utkin, V.A. Minimizing the feedback matrix norm in modal control problems. Autom Remote Control 75, 234–262 (2014). https://doi.org/10.1134/S0005117914020064
Received:
Published:
Issue Date:
DOI: https://doi.org/10.1134/S0005117914020064