[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Minimizing the feedback matrix norm in modal control problems

  • Topical Issue
  • Published:
Automation and Remote Control Aims and scope Submit manuscript

Abstract

In this work, we propose algorithms for optimizing the choice of feedback in the modal control problem in multidimensional linear systems with the criterion of minimizing the norm of the feedback matrix. The proposed approaches to solving this problem are based on representing the original system in an orthonormal basis. In particular, representing controllability in a block form lets us divide a high dimensional optimization problem into optimization subproblems of lower dimension. We pay special attention to finding the initial value of the feedback matrix with suboptimal search procedures. We give recommendations on constructing numerical search procedures for suboptimal solutions with gradient-based methods. The efficiency of the developed algorithms is demonstrated with numerical examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Andreev, Yu.N., Upravlenie konechnomernymi lineinymi ob”ektami (Control over Finite-Dimensional Linear Objects), Moscow: Nauka, 1976.

    Google Scholar 

  2. Kwakernaak, H. and Sivan, R., Linear Optimal Control Systems, New York: Wiley, 1972. Translated under the title Lineinye optimal’nye sistemy upravleniya, Moscow: Mir, 1977.

    MATH  Google Scholar 

  3. Wonham, W.M., Linear Multivariable Control: A Geometric Approach, New York: Springer-Verlag, 1979. Translated under the title Lineinye mnogomernye sistemy upravleniya. Geometricheskii podkhod, Moscow: Nauka, 1980.

    Book  MATH  Google Scholar 

  4. Andrievskii, B.R. and Fradkov, A.L., Izbrannye glavy teorii avtomaticheskogo upravleniya s primerami na yazyke MATLAB (Selected Chapters of Automated Control Theory with Examples in MATLAB), St. Petersburg: Nauka, 2000.

    Google Scholar 

  5. Kuzovkov, N.T., Modal’noe upravlenie i nablyudayushchie ustroistva (Modal Control and Surveillance Devices), Moscow: Mashinostroenie, 1976.

    Google Scholar 

  6. Bachelier, O., Bosche, J., and Mehdi, D., On Pole Placement via Eigenstructure Assignment Approach, IEEE Trans. Automat. Control, 2006, vol. 51, no. 9, pp. 1554–1558.

    Article  MathSciNet  Google Scholar 

  7. Gourishankar, V. and Ramer, K., Pole Assignment with Minimum Eigenvalue Sensitivity to Plant Parameter Variations, Int. J. Control, 1976, vol. 23, pp. 493–504.

    Article  MATH  Google Scholar 

  8. Kautsky, J., Nichols, N.K., and Van Doren, P., Robust Pole Assignment in Linear State Feedback, Int. J. Control, 1985, vol. 41, no. 5, pp. 129–155.

    Article  Google Scholar 

  9. Byers, R. and Nash, S.G., Approaches to Robust Pole Assignment, Int. J. Control, 1989, vol. 49, pp. 97–117.

    Article  MATH  MathSciNet  Google Scholar 

  10. Figueroa, J.L. and Romagnoli, J.A., An Algorithm for Robust Pole Assignment via Polynomial Approach, IEEE Trans. Automat. Control, 1994, vol. 39, no. 4, pp. 831–835.

    Article  MATH  MathSciNet  Google Scholar 

  11. Benzaouia, A., Rami, M.A., Faiz, S., et al., Robust Exact Pole Placement via an LMI-Based Algorithm, IEEE Trans. Automat. Control, 2009, vol. 54, no. 2, pp. 394–398.

    Article  MathSciNet  Google Scholar 

  12. Bhattacharyya, S.P., Fleming, J.A., and Keel, L.H., Minimum Norm Pole Assignment via Sylvester’s Equation, AMS Contemp. Math., 1985, vol. 47, pp. 265–272.

    Article  MathSciNet  Google Scholar 

  13. Varga, A., Robust and Minimum Norm Pole Assignment with Periodic State Feedback, IEEE Trans. Automat. Control, 2000, vol. 45, no. 5, pp. 1017–1022.

    Article  MATH  MathSciNet  Google Scholar 

  14. Golub, G.H. and Van Loan, C.F., Matrix Computations, Baltimore: The Johns Hopkins Univ. Press, 1983.

    MATH  Google Scholar 

  15. Golub, G.H., Nash, S., and Van Loan, C., A Hesenberg-Schur Method for the Problem AX + XB = C, IEEE Trans. Automat. Control, 1979, vol. AC-24, no. 6, pp. 909–913.

    Article  Google Scholar 

  16. Varga, A., Schur Method for Pole Assignment, IEEE Trans. Automat. Control, 1981, vol. AC-26, no. 2, pp. 517–519.

    Article  Google Scholar 

  17. De Souza, E. and Bhattacharyya, S.P., Controllability and Observability and the Solution of AXXB = C, Lin. Alg. Appl., 1981, vol. 39, pp. 167–188.

    Article  MATH  Google Scholar 

  18. Bhattacharyya, S.P. and De Souza, E., Pole Assignement via Sylvester’s Equation, Syst. Control Lett., 1981, vol. 1, pp. 261–263.

    Article  Google Scholar 

  19. Ikramov, Kh.D., Chislennoe reshenie matrichnykh uravnenii (Numerical Solution of Matrix Equations), Moscow: Nauka, 1984.

    Google Scholar 

  20. Golub, G. and Van Loan, Ch., Matrix Computations, Baltimor: John Hopkins Univ. Press, 1989, 2nd ed. Translated under the title Matrichnye vychisleniya, Moscow: Mir, 1999.

    MATH  Google Scholar 

  21. Ackermann, J., Der Entwurf linearer Regelungssysteme im Zustandsraum, Regelungstechnik und Prozessdatenverarbeitung, 1972, vol. 7, pp. 297–300.

    Google Scholar 

  22. Drakunov, S.V., Izosimov, D.B., Luk’yanov, A.G., et al., Block Control Principle. I, Autom. Remote Control, 1990, vol. 51, no. 6, part 1, pp. 737–746.

    MATH  MathSciNet  Google Scholar 

  23. Bellman, R.E., Introduction to Matrix Analysis, New York: McGraw-Hill, 1960. Translated under the title Vvedenie v teoriyu matrits, Moscow: Nauka, 1969.

    MATH  Google Scholar 

  24. Gantmakher, F.R., Teoriya matrits (Theory of Matrices), Moscow: Nauka, 1967.

    Google Scholar 

  25. Meyer, H.B., The Matrix Equation AZ − ZCZ − ZD + B = 0, SIAM J. Appl. Math., 1976, vol. 30, pp. 136–142.

    Article  MATH  MathSciNet  Google Scholar 

  26. Polyak, B.T., Vvedenie v optimizatsiyu (Introduction to Optimization), Moscow: Nauka, 1983.

    MATH  Google Scholar 

  27. Dennis, J.E. and Schnabel, R.B., Numerical Methods for Unconstrained Optimization and Nonlinear Equations, Englewood Cliffs: Prentice Hall, 1983. Translated under the title Chislennye metody bezuslovnoi optimizatsii i reshenie nelineinykh uravnenii, Moscow: Mir, 1988.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © S.A. Kochetkov, V.A. Utkin, 2014, published in Avtomatika i Telemekhanika, 2014, No. 2, pp. 72–105.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kochetkov, S.A., Utkin, V.A. Minimizing the feedback matrix norm in modal control problems. Autom Remote Control 75, 234–262 (2014). https://doi.org/10.1134/S0005117914020064

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0005117914020064

Keywords