Abstract
Consideration was given to an algorithm for segregation of the parts of stability domains in the space of parameters of the Hamiltonian linear system to which the Bryuno theorem of formal stability of the nonlinear Hamiltonian system is applicable. The algorithm was illustrated by a five-parameter problem with four degrees of freedom.
Similar content being viewed by others
References
Malkin, I.G., Teoriya ustoichivosti dvizheniya (Theory of Motion Stability), Moscow: Nauka, 1966.
Batkhin, A.B., Bryuno, A.D., and Varin, V.P., Stability Sets of the Multiparameter Hamiltonian Systems, Prikl. Mat. Mekh., 2012, vol. 76, no. 1, pp. 80–133.
Bryuno, A.D., Batkhin, A.B., and Varin, V.P., Calculation of the Stability Sets in the Multiparametric Problems, Preprint of Keldysh Inst. of Applied Mathematics, Moscow, 2010, no. 23, http://www.keldysh.ru/papers/2010/source/prep2010_23.pdf.
Bryuno, A.D., Ogranichennaya zadacha trekh tel: Ploskie periodicheskie orbity (Bounded Problem of Three Bodies. Planar Periodic Orbits), Moscow: Nauka, 1990.
Jury, E.I., Innors and Stability of Dynamic Systems, New York: Wiley, 1974. Translated under the title Innory i ustoichivost’ dinamicheskikh sistem, Moscow: Nauka, 1979.
Batkhin, A.B., Stability of One Multiparameter Hamilton System, Preprint of Keldysh Inst. of Applied Mathematics, Moscow, 2011, no. 69, http://www.keldysh.ru/papers/2011/source/prep2011 69.pdf.
Uteshev, A.Y. and Cherkasov, T.M., The Search for the Maximum of a Polynomial, J. Symbolic Comput., 1998, vol. 25, no. 5, pp. 587–618.
Basu, S., Pollack, R., and Roy, M.-F., Algorithms in Real Algebraic Geometry, vol. 10: Algorithms and Computation in Mathematics, Berlin: Springer, 2006, 2nd ed.
Batkhin, A.B., Nonlinear Stability of the Hamilton System in Linear Approximation, Preprint of Keldysh Inst. of Applied Mathematics, Moscow, 2012, no. 33, http://www.keldysh.ru/papers/2012/prep2012_33.pdf.
Kurosh, A.G., Kurs vysshei algebry (Course of Higher Algebra), Moscow: Nauka, 1968, 9th ed.
Zigel’, K. and Mozer, Yu., Lektsii po nebesnoi mekhanike (Lectures on Celestial Mechanics), Izhevsk: NITs “Regulyarnaya i Khaoticheskaya Dinamika,” 2001.
Moser, J., New Aspects in the Theory of Stability of Hamiltonian Systems, Comm. Pure Appl. Math., 1958, vol. 11, no. 1, pp. 81–114.
Markeev, A.P., Tochki libratsii v nebesnoi mekhanike i kosmodinamike (Libration Points in Celestial Mechanics and Space Dynamics), Moscow: Nauka, 1978.
Birkhoff, G.D., Dynamical Systems, Providence: AMS, 1966. Translated under the title Dinamicheskie sistemy, Izhevsk: Udmurt. Univ., 1999, vol. 8 (Library “R&C Dynamics”).
Mozer, Yu., KAM-teoriya i problemy ustoichivosti (KAM Theory and Stability Problems), Izhevsk: NITs “Regulyarnaya i Khaoticheskaya Dinamika,” 2001.
Bryuno, A.D., On Formal Stability of the Hamiltonian Systems, Mat. Zametki, 1967, vol. 1, no. 3, pp. 325–330.
Gantmakher, F.R., Teoriya matrits (Theory of Matrices), Moscow: Fuzmatlit, 2004, 5th ed. Translated into English under the title Theory of Matrices, New York: Chelsea, 1959.
Markeev, A.P., Lineinye gamil’tonovy sistemy i nekotorye zadachi ob ustoichivosti dvizheniya sputnika otnositel’no tsentra mass (Linear Hamiltonian Systems and Some Problems of Satellite Motional Stability about the Center of Mass), Izhevsk: NITs “Regulyarnaya i Khaoticheskaya Dinamika,” Inst. Comput. Issled., 2009.
Maciejewski, A.J. and Gozdziewski, K., Normalization Algorithms of Hamiltonian Near an Equilibrium Point, Astrophys. Space Sci., 1991, vol. 179, pp. 1–11.
Zhuravlev, V.F., Petrov, A.G., and Shunderyuk, M.M., Asimptoticheskaya simmetrizatsiya gamil’tonovykh sistem (Asymptotic Symmetrization of Hamiltonian Systems), Moscow: Mosk. Fiz.-Tekh. Inst., 2010.
Burgoyne, N. and Cushman, R., Normal Forms for Real Linear Hamiltonian Systems with Purely Imaginary Eigenvalues, Celestial Mech., 1974, vol. 8, pp. 435–443.
Mailybaev, A.A. and Seiranyan, A.P., Mnogoparametricheskie zadachi ustoichivosti. Teoriya i prilozheniya v mekhanike (Multiparameter Problems of Stability. Theory and Applications in Mechanics), Moscow: Fizmatlit, 2009.
Bryuno, A.D., Batkhin, A.B., and Varin, V.P., Stability Set of One Gyroscopic Problem, Preprint of Keldysh Inst. of Applied Mathematics, Moscow, 2010, no. 4, http://www.keldysh.ru/papers/2010/source/prep2010_04.pdf.
Batkhin, A.B., Bryuno, A.D., and Varin, V.P., Stability Sets of Multiparaneter Hamiltonian Systems, Preprint of Keldysh Inst. of Applied Mathematics, Moscow, 2011, no. 42, http://www.keldysh.ru/papers/2011/source/prep2011_42.pdf.
Akhiezer, N.I., Elementy teorii ellipticheskikh funktsii (Elements of the Theory of Elliptical Functions), Moscow: Nauka, 1970, 2nd ed.
Bryuno, A.D., Stepennaya geometriya v algebraicheskikh i differentsial’nykh uravneniyakh (Power Geometry in Algebraic and Differential Equations), Moscow: Fizmatlit, 1998.
Author information
Authors and Affiliations
Additional information
Original Russian Text © A.B. Batkhin, 2013, published in Avtomatika i Telemekhanika, 2013, No. 8, pp. 47–64.
Rights and permissions
About this article
Cite this article
Batkhin, A.B. Segregation of stability domains of the Hamilton nonlinear system. Autom Remote Control 74, 1269–1283 (2013). https://doi.org/10.1134/S0005117913080043
Received:
Published:
Issue Date:
DOI: https://doi.org/10.1134/S0005117913080043