[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Ranks and Approximations for Families of Ordered Theories

  • Research Articles
  • Published:
Mathematical Notes Aims and scope Submit manuscript

Abstract

Rank values for various families of ordered theories are described as depending on the languages under consideration; a description of \(\mathrm{e}\)-total transcendence in terms of these languages is also given. Approximations of ordered theories are studied, including approximations by finite and countably categorical orders. Closures are studied and ranks are described for families of ordered theories, including the families of o-minimal and weakly o-minimal theories of various signatures, as well as theories of pure linear orders with various constraints on the discrete parts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

References

  1. A. Pillay and C. Steinhorn, “Definable sets in ordered structures. I,” Trans. Amer. Math. Soc. 295 (2), 565–592 (1986).

    Article  MathSciNet  MATH  Google Scholar 

  2. H. D. Macpherson, D. Marker, and C. Steinhorn, “Weakly o-minimal structures and real closed fields,” Trans. Amer. Math. Soc. 352 (12), 5435–5483 (2000).

    Article  MathSciNet  MATH  Google Scholar 

  3. M. Dickmann, “Elimination of quantifiers for ordered valuation rings,” J. Symbolic Logic 52 (1), 116–128 (1987).

    Article  MathSciNet  MATH  Google Scholar 

  4. L. Van Den Dries and A. H. Lewenberg, “\(T\)-Convexity and tame extensions,” J. Symbolic Logic 60 (1), 74–102. (1995).

    Article  MathSciNet  MATH  Google Scholar 

  5. S. V. Sudoplatov, “Ranks for families of theories and their spectra,” Lobachevskii J. Math. 42 (12), 2959–2968 (2021).

    Article  MathSciNet  MATH  Google Scholar 

  6. S. V. Sudoplatov, “Approximations of theories,” Sib. Èlektron. Mat. Izv. 17, 715–725 (2020).

    Article  MathSciNet  MATH  Google Scholar 

  7. S. V. Sudoplatov, “Formulas and properties, their links and characteristics,” Mathematics 9 (12), Article No. 1391 (2021).

    Article  MATH  Google Scholar 

  8. In. I. Pavlyuk and S. V. Sudoplatov, “Formulas and properties for families of theories of Abelian groups,” Bull. Irkutsk State Univ. Ser. Math. 36, 95–109 (2021).

    MathSciNet  MATH  Google Scholar 

  9. N. D. Markhabatov and S. V. Sudoplatov, “Ranks for families of all theories of given languages,” Eurasian Math. J. 12 (2), 52–58 (2021).

    Article  MathSciNet  MATH  Google Scholar 

  10. N. D. Markhabatov and S. V. Sudoplatov, “Algebras for definable families of theories,” Sib. Èlektron. Mat. Izv. 16, 600–608 (2019).

    Article  MathSciNet  MATH  Google Scholar 

  11. N. D. Markhabatov, “Ranks for families of permutation theories,” Bull. Irkutsk State Univ. Ser. Math. 28, 85–94 (2019).

    MathSciNet  MATH  Google Scholar 

  12. In. I. Pavlyuk and S. V. Sudoplatov, “Ranks for families of theories of abelian groups,” Bull. Irkutsk State Univ. Ser. Math. 28, 95–112 (2019).

    MathSciNet  MATH  Google Scholar 

  13. B. Sh. Kulpeshov and S. V. Sudoplatov, “Properties of ranks for families of strongly minimal theories,” Sib. Èlektron. Mat. Izv. 19 (1), 120–124 (2022).

    Article  MathSciNet  MATH  Google Scholar 

  14. J. G. Rosenstein, “\(\aleph_0\)-Categoricity of linear orderings,” Fund. Math. 64, 1–5 (1969).

    Article  MathSciNet  MATH  Google Scholar 

  15. E. Rosen, “Some aspects of model theory and finite structures,” Bull. Symbolic Logic 8 (3), 380–403 (2002).

    Article  MathSciNet  MATH  Google Scholar 

  16. J. Väänänen, “Pseudo-finite model theory,” Mat. Contemp. 24, 169–183 (2003).

    MathSciNet  MATH  Google Scholar 

  17. G. Cherlin and E. Hrushovski, Finite Structures with Few Types, in Ann. of Math. Stud. (Princeton Univ. Press, Princeton, NJ, 2003), Vol. 152.

    MATH  Google Scholar 

  18. H. D. Macpherson and Ch. Steinhorn, “Definability in classes of finite structures,” in Finite and Algorithmic Model Theory, London Math. Soc. Lecture Note Ser. (Cambridge Univ. Press, Cambridge, 2011), Vol. 379, pp. 140–176.

    Chapter  MATH  Google Scholar 

  19. S. V. Sudoplatov, “Closures and generating sets related to combinations of structures,” Bull. Irkutsk State Univ. Ser. Math. 16, 131–144 (2016).

    MATH  Google Scholar 

  20. S. V. Sudoplatov, “Combinations of structures,” Bull. Irkutsk State Univ. Ser. Math. 24, 82–101 (2018).

    MathSciNet  MATH  Google Scholar 

  21. E. A. Palyutin, “Spectrum and structure of models of complete theories,” in Handbook of Mathematical Logic. Part I: Model Theory, Ed. by J. Barwise (Nauka, Moscow, 1982) [in Russian].

    MATH  Google Scholar 

  22. N. D. Markhabatov and S. V. Sudoplatov, “Definable families of theories, related calculi and ranks,” Sib. Èlektron. Mat. Izv. 17, 700–714 (2020).

    Article  MathSciNet  MATH  Google Scholar 

  23. B. Sh. Kulpeshov, “Weakly o-minimal structures and some of their properties,” J. Symbolic Logic 63, 1511–1528 (1998).

    Article  MathSciNet  MATH  Google Scholar 

  24. B. Sh. Kulpeshov, “Convexity rank and orthogonality in weakly o-minimal theories,” Izv. Nats. Akad. Nauk Resp. Kaz. Ser. Fiz.-Mat. 227, 26–31 (2003).

    MathSciNet  MATH  Google Scholar 

  25. B. Sh. Kulpeshov, “Countably categorical quite o-minimal theories,” J. Math. Sci. (N. Y.) 188 (4), 387–397 (2013).

    Article  MathSciNet  MATH  Google Scholar 

  26. B. Sh. Kulpeshov and S. V. Sudoplatov, “Vaught’s conjecture for quite o-minimal theories,” Ann. Pure Appl. Logic 168 (1), 129–149 (2017).

    Article  MathSciNet  MATH  Google Scholar 

  27. D. Yu. Emelyanov, B. Sh. Kulpeshov, and S. V. Sudoplatov, “On algebras of distributions of binary isolating formulas for quite o-minimal theories,” Algebra Logic 57 (6), 429–444 (2019).

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The authors thank the anonymous referees, whose constructive comments and suggestions helped to improve the content of the paper.

Funding

This work was financially supported by the Science Committee of the Ministry of Science and Higher Education of the Republic of Kazakhstan (grant no. AP19674850) and was carried out in the framework of the state assignment to Sobolev Institute of Mathematics (grant no. FWNF-2022-0012).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Sudoplatov.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Translated from Matematicheskie Zametki, 2024, Vol. 116, No. 4, pp. 531–551 https://doi.org/10.4213/mzm14207.

Publisher’s note. Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations. AI tools may have been used in the translation or editing of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kulpeshov, B.S., Pavlyuk, I.I. & Sudoplatov, S.V. Ranks and Approximations for Families of Ordered Theories. Math Notes 116, 669–684 (2024). https://doi.org/10.1134/S0001434624090256

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001434624090256

Keywords

Navigation