[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Paper
21 March 2016 Learning-based landmarks detection for osteoporosis analysis
Erkang Cheng, Ling Zhu, Jie Yang, Azhari Azhari, Suhardjo Sitam, Xin Liang, Vasileios Megalooikonomou, Haibin Ling
Author Affiliations +
Abstract
Osteoporosis is the common cause for a broken bone among senior citizens. Early diagnosis of osteoporosis requires routine examination which may be costly for patients. A potential low cost diagnosis is to identify a senior citizen at high risk of osteoporosis by pre-screening during routine dental examination. Therefore, osteoporosis analysis using dental radiographs severs as a key step in routine dental examination. The aim of this study is to localize landmarks in dental radiographs which are helpful to assess the evidence of osteoporosis. We collect eight landmarks which are critical in osteoporosis analysis. Our goal is to localize these landmarks automatically for a given dental radiographic image. To address the challenges such as large variations of appearances in subjects, in this paper, we formulate the task into a multi-class classification problem. A hybrid feature pool is used to represent these landmarks. For the discriminative classification problem, we use a random forest to fuse the hybrid feature representation. In the experiments, we also evaluate the performances of individual feature component and the hybrid fused feature. Our proposed method achieves average detection error of 2:9mm.
© (2016) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Erkang Cheng, Ling Zhu, Jie Yang, Azhari Azhari, Suhardjo Sitam, Xin Liang, Vasileios Megalooikonomou, and Haibin Ling "Learning-based landmarks detection for osteoporosis analysis", Proc. SPIE 9784, Medical Imaging 2016: Image Processing, 97841X (21 March 2016); https://doi.org/10.1117/12.2216455
Lens.org Logo
CITATIONS
Cited by 2 scholarly publications.
Advertisement
Advertisement
RIGHTS & PERMISSIONS
Get copyright permission  Get copyright permission on Copyright Marketplace
KEYWORDS
Lithium

Radiography

Image analysis

3D image processing

Computed tomography

Feature extraction

Medical imaging

RELATED CONTENT

Graph optimized Laplacian eigenmaps for face recognition
Proceedings of SPIE (February 08 2015)
Virtual landmarks
Proceedings of SPIE (March 03 2017)
Abstract syntax of object role modeling
Proceedings of SPIE (January 12 2012)
SVD spectral feature of image processing
Proceedings of SPIE (October 29 1996)

Back to Top