[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
7 January 2016 Nonlocal Markovian models for image denoising
Denis H. P. Salvadeo, Nelson D. A. Mascarenhas, Alexandre L. M. Levada
Author Affiliations +
Abstract
Currently, the state-of-the art methods for image denoising are patch-based approaches. Redundant information present in nonlocal regions (patches) of the image is considered for better image modeling, resulting in an improved quality of filtering. In this respect, nonlocal Markov random field (MRF) models are proposed by redefining the energy functions of classical MRF models to adopt a nonlocal approach. With the new energy functions, the pairwise pixel interaction is weighted according to the similarities between the patches corresponding to each pair. Also, a maximum pseudolikelihood estimation of the spatial dependency parameter (β) for these models is presented here. For evaluating this proposal, these models are used as an a priori model in a maximum a posteriori estimation to denoise additive white Gaussian noise in images. Finally, results display a notable improvement in both quantitative and qualitative terms in comparison with the local MRFs.
© 2016 SPIE and IS&T 1017-9909/2016/$25.00 © 2016 SPIE and IS&T
Denis H. P. Salvadeo, Nelson D. A. Mascarenhas, and Alexandre L. M. Levada "Nonlocal Markovian models for image denoising," Journal of Electronic Imaging 25(1), 013003 (7 January 2016). https://doi.org/10.1117/1.JEI.25.1.013003
Published: 7 January 2016
Lens.org Logo
CITATIONS
Cited by 11 scholarly publications.
Advertisement
Advertisement
RIGHTS & PERMISSIONS
Get copyright permission  Get copyright permission on Copyright Marketplace
KEYWORDS
Image denoising

Denoising

Bridges

Buildings

Databases

Data modeling

Image processing

RELATED CONTENT


Back to Top