[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

To read this content please select one of the options below:

Accurate grasp detection learning using oriented regression loss

Xuan Zhao (College of Electronic and Information Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, China)
Hancheng Yu (College of Electronic and Information Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, China)
Mingkui Feng (College of Electronic and Information Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, China)
Gang Sun (College of Electronic and Information Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, China)

Industrial Robot

ISSN: 0143-991X

Article publication date: 9 September 2021

Issue publication date: 3 January 2022

126

Abstract

Purpose

Robot automatic grasping has important application value in industrial applications. Recent works have explored on the performance of deep learning for robotic grasp detection. They usually use oriented anchor boxes (OABs) as detection prior and achieve better performance than previous works. However, the parameters of their loss belong to different coordinates, this may affect the regression accuracy. This paper aims to propose an oriented regression loss to solve the problem of inconsistency among the loss parameters.

Design/methodology/approach

In the oriented loss, the center coordinates errors between the ground truth grasp rectangle and the predicted grasp rectangle rotate to the vertical and horizontal of the OAB. And then the direction error is used as an orientation factor, combining with the errors of the rotated center coordinates, width and height of the predicted grasp rectangle.

Findings

The proposed oriented regression loss is evaluated on the YOLO-v3 framework to the grasp detection task. It yields state-of-the-art performance with an accuracy of 98.8% and a speed of 71 frames per second with GTX 1080Ti on Cornell datasets.

Originality/value

This paper proposes an oriented loss to improve the regression accuracy of deep learning for grasp detection. The authors apply the proposed deep grasp network to the visual servo intelligent crane. The experimental result indicates that the approach is accurate and robust enough for real-time grasping applications.

Keywords

Citation

Zhao, X., Yu, H., Feng, M. and Sun, G. (2022), "Accurate grasp detection learning using oriented regression loss", Industrial Robot, Vol. 49 No. 1, pp. 160-167. https://doi.org/10.1108/IR-02-2021-0041

Publisher

:

Emerald Publishing Limited

Copyright © 2021, Emerald Publishing Limited

Related articles