[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

To read this content please select one of the options below:

Impact of optimal scaling coefficients in bi-orthogonal wavelet filters on compressed sensing

Ashok Naganath Shinde (Dr Babasaheb Ambedkar Technological University, Lonere, India)
Sanjay L. Nalbalwar (Dr Babasaheb Ambedkar Technological University, Lonere, India)
Anil B. Nandgaonkar (Dr Babasaheb Ambedkar Technological University, Lonere, India)

International Journal of Pervasive Computing and Communications

ISSN: 1742-7371

Article publication date: 8 January 2021

Issue publication date: 25 November 2022

65

Abstract

Purpose

In today’s digital world, real-time health monitoring is becoming a most important challenge in the field of medical research. Body signals such as electrocardiogram (ECG), electromyogram and electroencephalogram (EEG) are produced in human body. This continuous monitoring generates huge count of data and thus an efficient method is required to shrink the size of the obtained large data. Compressed sensing (CS) is one of the techniques used to compress the data size. This technique is most used in certain applications, where the size of data is huge or the data acquisition process is too expensive to gather data from vast count of samples at Nyquist rate. This paper aims to propose Lion Mutated Crow search Algorithm (LM-CSA), to improve the performance of the LMCSA model.

Design/methodology/approach

A new CS algorithm is exploited in this paper, where the compression process undergoes three stages: designing of stable measurement matrix, signal compression and signal reconstruction. Here, the compression process falls under certain working principle, and is as follows: signal transformation, computation of Θ and normalization. As the main contribution, the theta value evaluation is proceeded by a new “Enhanced bi-orthogonal wavelet filter.” The enhancement is given under the scaling coefficients, where they are optimally tuned for processing the compression. However, the way of tuning seems to be the great crisis, and hence this work seeks the strategy of meta-heuristic algorithms. Moreover, a new hybrid algorithm is introduced that solves the above mentioned optimization inconsistency. The proposed algorithm is named as “Lion Mutated Crow search Algorithm (LM-CSA),” which is the hybridization of crow search algorithm (CSA) and lion algorithm (LA) to enhance the performance of the LM-CSA model.

Findings

Finally, the proposed LM-CSA model is compared over the traditional models in terms of certain error measures such as mean error percentage (MEP), symmetric mean absolute percentage error (SMAPE), mean absolute scaled error, mean absolute error (MAE), root mean square error, L1-norm and L2-normand infinity-norm. For ECG analysis, under bior 3.1, LM-CSA is 56.6, 62.5 and 81.5% better than bi-orthogonal wavelet in terms of MEP, SMAPE and MAE, respectively. Under bior 3.7 for ECG analysis, LM-CSA is 0.15% better than genetic algorithm (GA), 0.10% superior to particle search optimization (PSO), 0.22% superior to firefly (FF), 0.22% superior to CSA and 0.14% superior to LA, respectively, in terms of L1-norm. Further, for EEG analysis, LM-CSA is 86.9 and 91.2% better than the traditional bi-orthogonal wavelet under bior 3.1. Under bior 3.3, LM-CSA is 91.7 and 73.12% better than the bi-orthogonal wavelet in terms of MAE and MEP, respectively. Under bior 3.5 for EEG, L1-norm of LM-CSA is 0.64% superior to GA, 0.43% superior to PSO, 0.62% superior to FF, 0.84% superior to CSA and 0.60% better than LA, respectively.

Originality/value

This paper presents a novel CS framework using LM-CSA algorithm for EEG and ECG signal compression. To the best of the authors’ knowledge, this is the first work to use LM-CSA with enhanced bi-orthogonal wavelet filter for enhancing the CS capability as well reducing the errors.

Keywords

Acknowledgements

The author wish to thank his parents for their support and encouragement throughout his study.

Citation

Shinde, A.N., Nalbalwar, S.L. and Nandgaonkar, A.B. (2022), "Impact of optimal scaling coefficients in bi-orthogonal wavelet filters on compressed sensing", International Journal of Pervasive Computing and Communications, Vol. 18 No. 5, pp. 573-602. https://doi.org/10.1108/IJPCC-08-2019-0065

Publisher

:

Emerald Publishing Limited

Copyright © 2020, Emerald Publishing Limited

Related articles