Abstract
The formation of complexes between whey proteins and κ-casein during heat treatment of milk dramatically affects the protein organisation in both the colloidal casein and the serum phases of milk and consequently, its technological applications. This paper reviews the composition and building interactions of these complexes and their localisation between the casein micelle and lactoserum. The currently proposed mechanisms that lead to their formation are also presented. The physico-chemical properties of these complexes, in terms of structure, size and surface properties are described and the technological means by which these properties could be controlled are discussed. Finally, the current hypotheses that explain the functional properties of these complexes in the heat-induced changes of dairy applications are reviewed, with emphasis on acid gelation of milk.
Abstract
/κ-/κ-
Résumé
La formation de complexes entre les protéines sériques et la caséine κ au cours du traitement thermique du lait modifie profondément l’organisation des protéines dans la phase caséine micellaire et dans le lactosérum, et par conséquent ses aptitudes technologiques. Cet article fait l’état de l’art de la composition, des interactions impliquées dans les complexes et de leur localisation entre caséine micellaire et lactosérum. Les mécanismes actuellement proposés pour décrire la formation de ces complexes sont présentés. Les propriétés physico-chimiques des complexes, telles que leur structure, leur taille et leurs propriétés de surface, sont décrites et les moyens technologiques permettant de moduler ces propriétés sont discutés. Enfin, les hypothèses actuellement proposées pour expliquer les propriétés fonctionnelles des complexes au cours des procédés de transformation du lait sont exposées, avec une attention particulière pour la gélification acide du lait.
Similar content being viewed by others
References
Alexander M., Dalgleish D.G., Interactions between denatured milk serum proteins and casein micelles studied by diffusing wave spectroscopy, Langmuir 21 (2005) 11380–11386.
Anema S.G., Effect of milk concentration on the irreversible thermal denaturation and disulfide aggregation of β-lactoglobulin, J. Agric. Food Chem. 48 (2000) 4168–4175.
Anema S.G., Role of κ-casein in the association of denatured whey proteins with casein micelles in heated reconstituted skim milk, J. Agric. Food Chem. 55 (2007) 3635–3642.
Anema S.G., On heating milk, the dissociation of κ-casein from the casein micelles can precede interactions with the denatured whey proteins, J. Dairy Res. 75 (2008) 415–421.
Anema S.G., Klostermeyer H., Heat-induced, pH-dependent dissociation of casein micelles on heating reconstituted skim milk at temperatures below 100 °C, J. Agric. Food Chem. 45 (1997) 1108–1115.
Anema S.G., Klostermeyer H., The effect of pH and heat treatment on the κ-casein content and the ζ-potential of the particles in reconstituted skim milk, Milchwissenschaft 52 (1997) 217–222.
Anema S.G., Lee S.K., Klostermeyer H., Effet of protein, non protein-soluble components, and lactose concentrations on the irreversible thermal denaturation of β-lactoglobulin and α-lactalbumin in skim milk, J. Agric. Food Chem. 54 (2006) 7339–7348.
Anema S.G., Lee S.K., Klostermeyer H., Effet of pH at heat treatment on the hydrolysis of κ-casein and the gelation of skim milk by chymosin, Lebensm.-Wiss. u.-Technol. 40 (2007) 99–106.
Anema S.G., Lee S.K., Lowe E.K., Klostermeyer H., Rheological properties of acid gels prepared from heated pH-adjusted skim milk, J. Agric. Food Chem. 52 (2004) 337–343.
Anema S.G., Li Y., Further studies on the heat-induced, pH-dependent dissociation of casein from the micelles in reconstituted skim milk, Lebensm.-Wiss. u.-Technol. 33 (2000) 335–343.
Anema S.G., Li Y., Association of denatured whey proteins with casein micelles in heated reconstituted skim milk and its effect on casein micelle size, J. Dairy Res. 70 (2003) 73–83.
Anema S.G., Li Y., Effect of pH on the association of denatured whey proteins with casein micelles in heated reconstituted skim milk, J. Agric. Food Chem. 51 (2003) 1640–1646.
Anema S.G., Lowe E.K., Lee S.K., Effect of pH at heating on the acid-induced aggregation of casein micelles in reconstituted skim milk, Lebensm.-Wiss. u.-Technol. 37 (2004) 779–787.
Anema S.G., Lowe E.K., Li Y., Effect of pH on the viscosity of heated reconstituted skim milk, Int. Dairy J. 14 (2004) 541–548.
Anema S.G., Mc Kenna A.B., Reaction kinetics of thermal denaturation of whey proteins in heated reconstituted whole milk, J. Agric. Food Chem. 44 (1996) 422–428.
Aoki T., Suzuki H., Imamura T., Formation of soluble casein in whey protein-free milk heated at high temperature, Milchwissenschaft 29 (1974) 589–594.
Banks J.M., Law A.J.R., Leaver J., Horne D.S., Sensory and functional properties of cheese: incorporation of whey proteins by pH manipulation and heat treatment, J. Soc. Dairy Technol. 47 (1994) 124–131.
Banks J.M., Law A.J.R., Leaver J., Horne D.S., The inclusion of whey proteins in cheese — an overview, in: Emmons D.B. (Ed.), Cheese yield and factors affecting its control, IDF Seminar in Cork, International Dairy Federation, Bruxelles, Belgium, 1994, pp. 387–401.
Banks J.M., Stewart G., Muir D.D., West I.G., Increasing the yield of Cheddar cheese by the acidification of milk containing heat-denatured whey protein, Milchwissenschaft 42 (1987) 212–215.
Bauer R., Hansen S., Øgendal L., Detection of intermediate oligomers, important for the formation of heat aggregates of β-lactoglobulin, Int. Dairy J. 8 (1998) 105–112.
Beaulieu M., Pouliot Y., Pouliot M., Thermal aggregation of whey proteins in model solutions as affected by casein/whey protein ratios, J. Food Sci. 64 (1999) 776–780.
Bloomfield V.A., Morr C.V., Structure of casein micelles: physical methods, Neth. Milk Dairy J. 27 (1973) 103–120.
Bohoua-Guichard L., Haque Z., Gnakri D., Kamenan A., Effect of the relative proportion of κ-casein to β-lactoglobulin on food functionality of their complex, Sci. Alim. 17 (1997) 671–678.
Bonomi F., Iametti S., Real-time monitoring of the surface hydrophobicity changes associated with isothermal treatment of milk and milk protein fractions, Milchwissenschaft 46 (1991) 71–74.
Boye J.I., Alli I., Ismail A.A., Effects of physicochemical factors on the secondary structure of β-lactoglobulin, J. Dairy Res. 63 (1996) 97–109.
Calvo M.M., Law A.J.R., Leaver J., Heat-induced interactions between serum albumin, immunoglobulin, and κ-casein inhibit the primary phase of renneting, J. Agric. Food Chem. 43 (1995) 2823–2827.
Considine T., Patel H.A., Anema S.G., Singh H., Creamer L.K., Interactions of milk proteins during heat and high hydrostatic pressure treatments — A review, Innovative Food Sci. Emerging Technol. 8 (2007) 1–23.
Corredig M., Dalgleish D.G., The binding of α-lactalbumin and β-lactoglobulin to casein micelles in milk treated by different heating systems, Milchwissenschaft 51 (1996) 123–126.
Corredig M., Dalgleish D.G., Effect of temperature and pH on the interactions of whey proteins with casein micelles in skim milk, Food Res. Int. 29 (1996) 49–55.
Corredig M., Dalgleish D.G., The mechanisms of the heat-induced interaction of whey proteins with casein micelles in milk, Int. Dairy J. 9 (1999) 233–236.
Creamer L.K., Berry G.P., Matheson A.R., The effect of pH on protein aggregation in heated skim milk, N. Z. J. Dairy Sci. Technol. 13 (1978) 9–15.
Creamer L.K., Bienvenue A., Nilsson H., Paulsson M., van Wanroij M., Lowe E.K., Anema S.G., Boland M.J., Jiménez-Flores R., Heat-induced redistribution of disulfide bonds in milk proteins. 1. Bovine β-lactoglobulin, J. Agric. Food Chem. 52 (2004) 7660–7668.
Dalgleish D.G., Denaturation and aggregation of serum proteins and caseins in heated milk, J. Agric. Food Chem. 38 (1990) 1996–1999.
Dalgleish D.G., The effect of denaturation of β-lactoglobulin on renneting — a quantitative study, Milchwissenschaft 45 (1990) 491–494.
Dalgleish D.G., Minéraux et propriétés fonctionnelles des caséines et caséinates, in: Gaucheron F. (Ed.), Minéraux et produits laitiers, Tec & Doc Lavoisier, Paris, 2004, pp. 323–342.
Dalgleish D.G., Senaratne V., François S., Interaction between α-lactalbumin and β-lactoglobulin in the early stages of heat denaturation, J. Agric. Food Chem. 45 (1997) 3459–3464.
Dalgleish D.G., Van Mourik L., Corredig M., Heat-induced interaction of whey proteins and casein micelles with different concentrations of α-lactalbumin and β-lactoglobulin, J. Agric. Food Chem. 45 (1997) 4806–4813.
Dannenberg F., Kessler H.-G., Reaction kinetics of the denaturation of whey proteins in milk, J. Food Sci. (1988) 259–263.
Dannenberg F., Kessler H.-G., Thermodynamic approach to kinetics of β-lactoglobulin denaturation in heated skim milk and sweet whey, Milchwissenschaft 43 (1988) 139–142.
Dannenberg F., Kessler H.-G., Effect of denaturation of β-lactoglobulin on texture properties of set-style nonfat yoghurt. 1. Syneresis, Milchwissenschaft 43 (1988) 632–635.
Dannenberg F., Kessler H.-G., Effect of denaturation of β-lactoglobulin on texture properties of set-style nonfat yoghurt. 2. Firmness and flow properties, Milchwissenschaft 43 (1988) 700–705.
De Jong P., Two-stage reaction model for the denaturation of β-lactoglobulin in milk, in: de Jong P. (Ed.), Modelling and Optimization of Thermal Treatments in the Dairy Industry, 1996, pp. 17–33.
De Jong P., van der Linden H.J.L.J., Polymerization model for prediction of heat-induced protein denaturation and viscosity changes in milk., J. Agric. Food Chem. 46 (1998) 2136–2142.
De Kruif C.G., Holt C., Casein micelle structure, functions and interactions, in: Fox P.F., Mc Sweeney P.L.H. (Eds.), Advances Dairy Chemistry, Volume 1, Part A, Kluwer Academic/Plenum Publishers, New York, 2003, pp. 233–276.
Doi H., Ibuki F., Kanamori M., Effect of carbohydrate moiety of κ-casein on the complex formation with β-lactoglobulin, Agric. Biol. Chem. 45 (1981) 2351–2353.
Doi H., Ideno S., Ibuki F., Kanamori M., Participation of the hydrophobic bond in complex formation between κ-casein and β-lactoglobulin, Agric. Biol. Chem. 47 (1983) 407–409.
Doi H., Ideno S., Kuo F.H., Ibuki F., Kanamori M., Gelation of the complex between κ-casein and β-lactoglobulin, J. Nutr. Sci. Vitaminol. 29 (1983) 679–689.
Doi H., Tokuyama T., Kuo F.H., Ibuki F., Kanamori M., Heat-induced complex formation between κ-casein and α-lactalbumin, Agric. Biol. Chem. 47 (1983) 2817–2824.
Donato L., Alexander M., Dalgleish D.G., Effects of serum protein composition and reactivity of the casein micellar surface on particle interactions during acid gelation of heated and unheated milks, J. Agric. Food Chem. 55 (2007) 4160–4168.
Donato L., Dalgleish D.G., Effect of the pH of heating on the qualitative and quantitative compositions of the sera of reconstituted skim milks and on the mechanisms of formation of soluble aggregates, J. Agric. Food Chem. 54 (2006) 7804–7811.
Donato L., Guyomarc’h F., Amiot S., Dalgleish D.G., Formation of whey protein/κ-casein complexes in heated milk: preferential reaction of whey protein with κ-casein in the casein micelles, Int. Dairy J. 17 (2007) 1161–1167.
Dunnill P., Green D.W., Sulphydryl groups and the N/R conformational change in β-lactoglobulin, J. Mol. Biol. 15 (1965) 147–151.
Elfagm A.A., Wheelock J.V., Effect of heat on α-lactalbumin and β-lactoglobulin in bovine milk, J. Dairy Res. 44 (1977) 367–371.
Elfagm A.A., Wheelock J.V., Heat interaction between α-lactalbumin, β-lactoglobulin and casein in bovine milk, J. Dairy Sci. 61 (1978) 159–163.
Euber J.R., Brunner J.R., Interaction of κ-casein with immobilized β-lactoglobulin, J. Dairy Sci. 65 (1982) 2384–2387.
Euston S.R., Ur-Rehman S., Costello G., Denaturation and aggregation of β-lactoglobulin — A preliminary molecular dynamics study, Food Hydrocoll. 21 (2007) 1081–1091.
Famelart M.-H., Tomazewski J., Piot M., Pezennec S., Comprehensive study of acid gelation of heated milk with model protein systems, Int. Dairy J. (2004) 313–321.
Ferron-Baumy C., Maubois J.-L., Garric G., Quiblier J.-P., Coagulation présure du lait et des rétentats d’ultrafiltration. Effets de divers traitements thermiques, Lait 71 (1991) 423–434.
Foegeding E.A., Davis J.P., Doucet D., Mc Guffey M.K., Advances in modifying and understanding whey protein functionality, Trends Food Sci. Technol. 13 (2002) 151–159.
Fox K.K., Harper M.K., Holsinger V.H., Pallansch M.J., Effects of high-heat treatment on the stability of calcium caseinate aggregates in milk, J. Dairy Sci. 50 (1967) 443–450.
Galani D., Owusu-Apenten R.K., Heat-induced denaturation and aggregation of β-lactoglobulin: kinetics of formation of hydrophobic and disulfide-linked aggregates, Int. J. Food Sci. Technol. 34 (1999) 467–476.
Gallagher D.P., Mulvihill D.M., Heat stability and renneting characteristics of milk systems containing bovine casein micelles and porcine or bovine β-lactoglobulin, Int. Dairy J. 7 (1997) 221–228.
Gaucheron F., Interactions caséinescations, in: Gaucheron F. (Ed.), Minéraux et Produits Laitiers, Tec & Doc Lavoisier, Paris, 2004, pp. 81–112.
Gaucheron F., Le Graët Y., Schuck P., Équilibres minéraux et conditions physicochimiques, in: Gaucheron F. (Ed.), Minéraux et Produits Laitiers, Tec & Doc Lavoisier, Paris, 2004, pp. 219–280.
Gimel J.-C., Durand D., Nicolai T., Structure and distribution of aggregates formed after heat-induced denaturation of globular proteins, Macromolecules 27 (1994) 583–589.
Grufferty M.B., Mulvihill D.M., Proteins recovered from milks heated at alkaline pH values, J. Soc. Dairy Technol. 40 (1987) 82–85.
Grufferty M.B., Mulvihill D.M., Hydration related properties of protein isolates prepared from heated milks, J. Soc. Dairy Technol. 43 (1990) 99–103.
Grufferty M.B., Mulvihill D.M., Emulsifying and foaming properties of protein isolates prepared from heated milks, J. Soc. Dairy Technol. 44 (1991) 13–19.
Guyomarc’h F., Formation of heat-induced protein aggregates in milk as a means to recover the whey protein fraction in cheese manufacture, and interest of heat-treating milk at alkaline pH values in order to keep its rennet coagulation properties. A review, Lait 86 (2006) 1–20.
Guyomarc’h F., Law A.J.R., Dalgleish D.G., Formation of soluble and micelle-bound protein aggregates in heated milk, J. Agric. Food Chem. 51 (2003) 4652–4660.
Guyomarc’h F., Mahieux O., Renan M., Chatriot M., Gamerre V., Famelart M.-H., Changes in the acid gelation of skim milk as affected by heat-treatment and alkaline pH conditions, Lait 87 (2007) 119–137.
Guyomarc’h F., Nono M., Nicolai T., Durand D., Heat induced aggregation of whey proteins in the presence of κ-casein or sodium caseinate, Food Hydrocoll. doi: 10.1016/j.foodhyd.2008.07.001.
Guyomarc’h F., Quéguiner C., Law A.J.R., Horne D.S., Dalgleish D.G., Role of the soluble and micelle-bound heat-induced protein aggregates on network formation in acid skim milk gels, J. Agric. Food Chem. 51 (2003) 7743–7750.
Guyomarc’h F., Renan M., Chatriot M., Gamerre V., Famelart M.-H., Acid gelation properties of heated skim milk as a result of enzymatically induced changes in the micelle/serum distribution of the whey protein/κ-casein aggregates, J. Agric. Food Chem. 55 (2007) 10986–10993.
Halbert C., O’Kennedy B.T., Hallihan A., Kelly P.M., Stabilisation of calcium phosphate using denatured whey proteins, Milchwissenschaft 55 (2000) 386–389.
Haque Z., Kinsella J.E., Heat-induced changes in the hydrophobicity of kappa-casein and β-lactoglobulin, Agric. Biol. Chem. 51 (1987) 2245–2247.
Haque Z., Kinsella J.E., Interaction between κ-casein and β-lactoglobulin: effect of calcium, Agric. Biol. Chem. 51 (1987) 1997–1998.
Haque Z., Kinsella J.E., Interaction between heated κ-casein and β-lactoglobulin: predominance of hydrophobic interaction in the initial stages of complex formation, J. Dairy Res. 55 (1988) 67–80.
Haque Z., Kristjansson M.M., Kinsella J.E., Interaction between κ-casein and β-lactoglobulin: possible mechanism, J. Agric. Food Chem. 35 (1987) 644–649.
Havea P., Singh H., Creamer L.K., Campanella O.H., Electrophoretic characterization of the protein products formed during heat treatment of whey protein concentrate solutions, J. Dairy Res. 65 (1998) 79–91.
Heertje I., Structure and function of food products: a review, Food Struct. 12 (1993) 343–364.
Heertje I., Visser J., Smits P., Structure formation in acid milk gels, Food Microstruct. 4 (1985) 267–277.
Henry H., Mollé D., Morgan F., Fauquant J., Bouhallab S., Heat-induced covalent complex between casein micelles and β-lactoglobulin from goat’s milk: identification of an involved disulfide bond, J. Agric. Food Chem. 50 (2002) 185–191.
Hill A.R., The β-lactoglobulin-κ-casein complex, Can. Inst. Food Sci. Technol. J. 22 (1989) 120–123.
Hoffmann M.A.M., Sala G., Olieman C., De Kruif K.G., Molecular mass distributions of heat-induced beta-lactoglobulin aggregates, J. Agric. Food Chem. 45 (1997) 2949–2957.
Hoffmann M.A.M., van Mil P.J.J.M., Heat-induced aggregation of beta-lactoglobulin: role of the free thiol group and disulfide bonds, J. Agric. Food Chem. 45 (1997) 2942–2948.
Hoffmann M.A.M., van Mil P.J.J.M., Heat-induced aggregation of beta-lactoglobulin as a function of pH, J. Agric. Food Chem. 47 (1999) 1898–1905.
Holt C., Horne D.S., The hairy casein micelle: evolution of the concept and its implications for dairy technology, Neth. Milk Dairy J. 50 (1996) 85–111.
Horne D.S., Casein interactions: casting light on the black boxes, the structure in dairy products, Int. Dairy J. 8 (1998) 171–177.
Horne D.S., Factors influencing acid-induced gelation of skim milk, in: Dickinson E., Miller R. (Eds.), Food Colloids, The Royal Society of Chemistry, Cambridge, 2001, pp. 345–351.
Iametti S., Corredig M., Bonomi F., Characterization of casein isolated by ultracentrifugation from differently treated milks, Milchwissenschaft 48 (1993) 251–254.
Iametti S., De Gregori B., Vecchio G., Bonomi F., Modifications occur at different structural levels during the heat denaturation of β-lactoglobulin, Eur. J. Biochem. 237 (1996) 106–112.
Imafidon G.I., Farkye N.Y., Composition of Cheddar cheese made from high-heat treated milk, in: Emmons D.B. (Ed.), Cheese yield and factors affecting its control, IDF Seminar in Cork, International Dairy Federation, Bruxelles, Belgium, 1994, pp. 433–438.
Jameson G.W., Lelièvre J., Effects of whey proteins on cheese characteristics, Bull. IDF 313 (1996) 3–8.
Jang H.D., Swaisgood H.E., Disulfide bond formation between thermallly denatured β-lactoglobulin and κ-casein in casein micelles, J. Dairy Sci. 73 (1990) 900–904.
Jean K., Renan M., Famelart M.-H., Guyomarc’h F., Structure and surface properties of the serum heat-induced aggregates isolated from heated skim milk, Int. Dairy J. 16 (2006) 303–315.
Kaláb M., Allan-Wojtas P., Phipps-Todd B.E., Development of microstructure in set-style nonfat yoghurt — a review, Food Microstruct. 2 (1983) 51–66.
Kaláb M., Emmons D.B., Sargant A.G., Milk gel structure. V. Microstructure of yoghurt as related to the heating of milk, Milchwissenschaft 31 (1976) 402–408.
Keskin O., Gursoy A., Ma B., Nussinov R., Principles of protein-protein interactions: What are the preferred ways for proteins to interact?, Chem. Rev. 108 (2008) 1225–1244.
Kinsella J.E., Whitehead D.M., Proteins in whey: chemical, physical and functional properties, Adv. Food Nutr. Res. 33 (1989) 343–438.
Krasaekoopt W., Bhandari B., Deeth H., Yogurt from UHT milk: a review, Aust. J. Dairy Technol. 58 (2003) 26–29.
Kudo S., The heat stability of milk: formation of soluble proteins and protein-depleted micelles at elevated temperatures, N. Z. J. Dairy Sci. Technol. 15 (1980) 255–263.
Lakemond C.M.M., van Vliet T., Acid milk gels: the gelation process as affected by preheating pH, Int. Dairy J. 18 (2008) 574–584.
Lakemond C.M.M., van Vliet T., Rheological properties of acid skim milk gels as affected by the spatial distribution of the structural elements and the interaction forces between them, Int. Dairy J. 18 (2008) 585–593.
Law A.J.R., Banks J.M., Horne D.S., Leaver J., West I.G., Denaturation of the whey protein in heated milk and their incorporation into Cheddar cheese, Milchwissenschaft 49 (1994) 63–67.
Law A.J.R., Leaver J., Effect of pH on the thermal denaturation of whey proteins in milk, J. Agric. Food Chem. 48 (2000) 672–679.
Lawrence R.C., Lelièvre J., Whey protein in cheese, in: Proceedings of the XXIIIth International Dairy Congress, Oct. 8–12th, 1990, Montreal, Vol. 3, 1991, pp. 1880–1888.
Le Bon C., Nicolai T., Durand D., Growth and structures of aggregates of heat-induced β-lactoglobulin, Int. J. Food Sci. Technol. 34 (1999) 451–466.
Le Bon C., Nicolai T., Durand D., Kinetics of aggregation and gelation of globular proteins after heat-induced denaturation, Macromolecules 32 (1999) 6120–6127.
Lee W.-J., Lucey J.A., Rheological properties, whey separation, and microstructure in set-style yogurt: effects of heating temperature and incubation temperature, J. Text. Stud. 34 (2004) 515–536.
Le Feunteun S., Mariette F., Impact of casein gel microstructure on self-diffusion coefficient of molecular probes measured by H1 PFG-NMR, J. Agric. Food Chem. 55 (2007) 10764–10772.
Le Graët Y., Gaucheron F., pH-induced solubilization of minerals from casein micelles: influence of casein concentration and ionic strength, J. Dairy Res. 66 (1999) 215–224.
Livney Y.D., Corredig M., Dalgleish D.G., Influence of thermal processing on the properties of dairy colloids, Curr. Opinion Colloids Interface Sci. 8 (2003) 359–364.
Livney Y.D., Dalgleish D.G., Specificity of disulfide bond formation during thermal aggregation in solutions of β-lactoglobulin B and κ-casein A, J. Agric. Food Chem. 52 (2004) 5527–5532.
Livney Y.D., Verespej E., Dalgleish D.G., Steric effects governing disulfide bond interchange during thermal aggregation in solutions of β-lactoglobulin B and α-lactalbumin, J. Agric. Food Chem. 51 (2003) 8098–8106.
Lowe E.K., Anema S.K., Bienvenue A., Boland M.J., Creamer L.K., Jiménez-Flores R., Heat-induced redistribution of disulfide bonds in milk proteins. 2. Disulfide bonding patterns between bovine β-lactoglobulin and κ-casein, J. Agric. Food Chem. 52 (2004) 7669–7680.
Lucey J.A., Formation and physical properties of milk protein gels, J. Dairy Sci. 85 (2002) 281–294.
Lucey J.A., Cultured dairy products: an overview of their gelation and texture properties, Int. J. Dairy Technol. 57 (2004) 77–84.
Lucey J.A., Singh H., Formation and physical properties of acid milk gels: a review, Food Res. Int. 30 (1998) 529–542.
Lucey J.A., Tamehana M., Singh H., Munro P.A., Effect of interactions between denatured whey proteins and casein micelles on the formation and rheological properties of acid milk gels, J. Dairy Res. 65 (1998) 555–567.
Lucey J.A., Tamehana M., Singh H., Munro P.A., Rheological properties of milk gels formed by a combination of rennet and glucono-δ-lactone, J. Dairy Res. 67 (2000) 415–427.
Lucey J.A., Tamehana M., Singh H., Munro P.A., Effect of heat treatment on the physical properties of milk gels made with both rennet and acid, Int. Dairy J. 11 (2001) 559–565.
Lucey J.A., Teo C.T., Munro P.A., Singh H., Rheological properties at small (dynamic) and large (yield) deformations of acid gels made from heated milk, J. Dairy Res. 64 (1997) 591–600.
Lucey J.A., Teo C.T., Munro P.A., Singh H., Microstructure, permeability and appearance of acid gels made from heated skim milk, Food Hydrocoll. 12 (1998) 159–165.
Mahmoudi N., Mehalebi S., Nicolai T., Durand D., Riaublanc A., Light scattering study of the structure of aggregates and gels formed by heat-denatured whey protein isolate and β-lactoglobulin and neutral pH, J. Agric. Food Chem. 55 (2007) 3104–3111.
Marshall R.J., Increasing cheese yields by high heat-treatment of milk, J. Dairy Res. 53 (1986) 313–322.
Matsudomi N., Kanda Y., Yoshika Y., Moriwaki H., Ability of αs-casein to suppress the heat aggregation of ovotransferrin, J. Agric. Food Chem. 52 (2004) 4882–4886.
Mc Kenzie G.H., Norton R.S., Sawyer W.H., Heat-induced interaction of β-lactoglobulin and κ-casein, J. Dairy Res. 38 (1971) 343–351.
McMahon D.J., Age-gelation of UHT milk: changes that occur during storage, their effect on shelf life and the mechanism by which age-gelation occurs, in: Heat treatments and alternative methods, Proceedings of the IDF Symposium, Vienna, September 1995, 1996, pp. 315–326.
Ménard O., Camier B., Guyomarc’h F., Effect of heat-treatment at alkaline pH on rennet coagulation properties of skim milk, Lait 85 (2005) 515–526.
Mollé D., Jean K., Guyomarc’h F., Chymosin sensitivity of the heat-induced serum protein aggregates isolated from skim milk, Int. Dairy J. 16 (2006) 1435–1441.
Mottar J., Bassier A., Joniau M., Baert J., Effect of heat-induced association of whey protein and casein micelles on yoghurt texture, J. Dairy Sci. 72 (1989) 2247–2256.
Noh B., Creamer L.K., Richardson T., Thermally induced complex formation in an artificial milk system, J. Agric. Food Chem. 37 (1989) 1395–1400.
Noh B., Richarson T., Incorporation of radiolabeled whey proteins into casein micelles by heat processing, J. Dairy Sci. 72 (1989) 1724–1731.
Noh B., Richardson T., Creamer L.K., Radiolabelling study of the heat-induced interactions between α-lactalbumin, β-lactoglobulin and κ-casein in milk and buffer solutions, J. Food Sci. 54 (1989) 889–893.
O’Connell J.E., Fox P.F., Effect of β-lactoglobulin and precipitation of calcium phosphate on the thermal coagulation of milk, J. Dairy Res. 68 (2001) 81–94.
O’Kennedy B.T., Kelly P.M., Evaluation of milk protein interactions during acid gelation using a simulated yoghurt model, Milchwissenschaft 55 (2000) 187–190.
O’Kennedy B.T., Mounsey J.S., Control of heat-induced aggregation of whey proteins using casein, J. Agric. Food Chem. 54 (2006) 5637–5642.
Oh S., Richardson T., Heat-induced interactions of bovine serum albumin and immunoglobulin, J. Dairy Sci. 74 (1991) 1786–1790.
Oldfield D.J., Singh H., Taylor M.W., Association of β-lactoglobulin and α-lactalbumin with the casein micelles in skim milk heated in an ultra-high temperature plant, Int. Dairy J. 8 (1998) 765–770.
Oldfield D.J., Singh H., Taylor M.W., Pearce K.N., Kinetics of denaturation and aggregation of whey proteins in skim milk heated in an ultra-high temperature (UHT) pilot plant, Int. Dairy J. 8 (1998) 311–318.
Oldfield D.J., Singh H., Taylor M.W., Pearce K.N., Heat-induced interactions of β-lactoglobulin and α-lactalbumin with the casein micelle in pH-adjusted skim milk, Int. Dairy J. 10 (2000) 509–518.
Ozcan-Yilsay T., Lee W.-J., Horne D.S., Lucey J.A., Effect of trisodium citrate on rheological and physical properties and microstructure of yogurt, J. Dairy Sci. 90 (2007) 1644–1652.
Park S.-Y., Nakamura K., Niki R., Effects of β-lactoglobulin on the rheological properties of casein micelle rennet gels, J. Dairy Sci. 79 (1996) 2137–2145.
Parker E.A., Donato L., Dalgleish D.G., Effects of added sodium caseinate on the formation of particles in heated skim milk, J. Agric. Food Chem. 53 (2005) 8265–8272.
Parnell-Clunies E., Kakuda Y., Deman J.M., Influence of heat treatment of milk on the flow properties of yoghurt, J. Food Sci. 51 (1986) 1459–1462.
Parnell-Clunies E., Kakuda Y., Smith A.K., Microstructure of yogurt as affected by heat-treatment of milk, Milchwissenschaft 42 (1987) 413–417.
Parris N., Anema S.G., Singh H., Creamer L.K., Aggregation of whey proteins in heated sweet whey, J. Agric. Food Chem. 41 (1993) 460–464.
Parris N., Hollar C.M., Hsieh A., Cockley K.D., Thermal stability of whey protein concentrate mixtures: aggregate formation, J. Dairy Sci. 30 (1997) 18–28.
Patel H.A., Singh H., Anema S.G., Creamer L.K., Effects of heat and high hydrostatic pressure treatments on disulfide bonding interchanges among the proteins in skim milk, J. Agric. Food Chem. 54 (2006) 3409–3420.
Patocka G., Jelen P., Kalab M., Thermostability of skim milk with modified casein/whey protein content, Int. Dairy J. 3 (1993) 35–48.
Pearse M.J., Linklater P.M., Hall R.J., McKinlay A., Effects of heat-induced interaction between β-lactoglobulin and κ-casein on syneresis, J. Dairy Res. 52 (1985) 159–165.
Plock J., Spiegel T., Kessler H.-G., Influence of the dry matter on the denaturation kinetics of whey proteins in concentrated sweet whey, Milchwissenschaft 53 (1998) 327–331.
Plock J., Spiegel T., Kessler H.-G., Influence of the lactose concentration on the denaturation kinetics of whey proteins in concentrated sweet whey, Milchwissenschaft 53 (1998) 389–393.
Pouliot Y., Boulet M., Paquin P., Observations on the heat induced salt balance changes in milk. I: Effect of heating time between 4 and 90 °C, J. Dairy Res. 56 (1989) 185–192.
Prabakaran S., Damodaran S., Thermal unfolding of β-lactoglobulin: characterization of initial unfolding events responsible for heat-induced aggregation, J. Agric. Food Chem. 45 (1997) 4303–4308.
Puvanenthiran A., Williams R.P.W., Augustin M.A., Structure and visco-elastic properties of set yoghurt with altered casein to whey protein ratios, Int. Dairy J. 12 (2002) 383–391.
Reddy I.M., Kinsella J.E., Interaction of β-lactoglobulin with κ-casein in micelles as assessed by chymosin hydrolysis: effects of temperature, heating time, β-lactoglobulin concentration, and pH, J. Agric. Food Chem. 38 (1990) 50–58.
Relkin P., Thermal unfolding of β-lactoglobulin, α-lactalbumin, and bovine serum albumin. A thermodynamic approach, Crit. Rev. Food Sci. Nut. 36 (1996) 565–601.
Relkin P., Reversibility of heat-induced conformational changes and surface exposed hydrophobic clusters of β-lactoglobulin: their role in heat-induced sol-gel transition, Int. J. Biol. Macromol. 22 (1998) 59–66.
Renan M., Guyomarc’h F., Chatriot M., Gamerre V., Famelart M.-H., Limited enzymatic treatment of skim milk using chymosin affects the micelle/serum distribution of the heat-induced whey protein/κ-casein aggregates, J. Agric. Food Chem. 55 (2007) 6736–6745.
Renan M., Mekmene O., Famelart M.-H., Guyomarc’h F., Arnoult-Delest V., Pâquet D., Brulé G., pH-Dependent behaviour of soluble protein aggregates formed during heat-treatment of milk at pH 6.5 or 7.2, J. Dairy Res. 73 (2006) 79–86.
Ribadeau-Dumas B., Garnier J., Structure of the casein micelle. The accessibility of the subunits to various reagents, J. Dairy Res. 37 (1970) 269–278.
Rodriguez del Angel C., Dalgleish D.G., Structures and some properties of soluble protein complexes formed by the heating of reconstituted skim milk powder, Food Res. Int. 39 (2006) 472–479.
Roefs S.P.F.M., de Kruif K.G., A model for the denaturation and aggregation of β-lactoglobulin, Eur. J. Biochem. 226 (1994) 883–889.
Roesch R.R., Corredig M., Study of the effect of soy proteins on the acid-induced gelation of casein micelles, J. Agric. Food Chem. 54 (2006) 8236–8243.
Sawyer W.H., Complex between β-lactoglobulin and κ-casein. A review, J. Dairy Sci. 52 (1969) 1347–1355.
Schmidt D.G., Association of caseins and casein micelle structure, in: Fox P.F. (Ed.), Development in Dairy Chemistry, Volume 1, Proteins, Applied Science Publishers, London, UK, 1982, pp. 61–86.
Schorsch C., Wilkins D.K., Jones M.G., Norton I.T., Gelation of casein-whey mixtures: effects of heating whey proteins alone or in the presence of casein micelles, J. Dairy Res. 68 (2001) 471–481.
Singh H., Heat-induced changes in milk, including interactions with whey proteins, in: Fox P.F. (Ed.), Heat-induced changes in milk, Special issue 9501, International Dairy Federation, Bruxelles, Belgium, 1995, pp. 86–104.
Singh H., Creamer L.K., Aggregation and dissociation of milk protein complexes in heated reconstituted concentrated skim milk, J. Food Sci. 56 (1991) 238–246.
Singh H., Fox P.F., Heat stability of milk: pH-dependent dissociation of micellar κ-casein on heating milk at ultra-high temperatures, J. Dairy Res. 52 (1985) 529–538.
Singh H., Fox P.F., Heat stability of milk: further studies on the pH-dependent dissociation of micellar κ-casein, J. Dairy Res. 53 (1986) 237–248.
Singh H., Fox P.F., Heat stability of milk: role of β-lactoglobulin in the pH-dependent dissociation of micellar κ-casein, J. Dairy Res. 54 (1987) 509–521.
Singh H., Fox P.F., Heat stability of milk: influence of colloidal and soluble salts and protein modification on the pH-dependent dissociation of micellar κ-casein, J. Dairy Res. 54 (1987) 523–534.
Smits P., van Brouwershaven J.V.H., Heat-induced association of β-lactoglobulin and casein micelles, J. Dairy Res. 47 (1980) 313–325.
Sodini I., Remeuf F., Haddad S., Corrieu G., The relative effect of milk base, starter and process on yoghurt texture: a review, Crit. Rev. Food Sci. Nut. 44 (2004) 113–137.
Surroca Y., Haverkamp J., Heck A.J.R., Towards the understanding of molecular mechanisms in the early stages of heat-induced aggregation of β-lactoglobulin AB, J. Chromatogr. A 970 (2002) 275–285.
Tolkach A., Kulozik U., Reaction kinetic pathway of reversible and irreversible thermal denaturation of β-lactoglobulin, Lait 87 (2007) 301–315.
Tran-Le T., El-Bakry M., Neirynck N., Bogus M., Dinh Hoa H., van der Meeren P., Hydrophilic lecithins protect milk proteins against heat-induced aggregation, Colloids Surfaces B: Biointerfaces 60 (2007) 167–173.
Unterhaslberger G., Schmitt C., Sanchez C., Appolonia-Nouzille C., Raemy A., Heat-denaturation and aggregation of β-lactoglobulin enriched WPI in the presence of arginine HCl, NaCl and guanidinium HCl at pH 4.0 and 7.0, Food Hydrocoll. 20 (2006) 1006–1019.
Unterhaslberger G., Schmitt C., Shojaei-Rami S., Sanchez C., Beta-lactoglobulin aggregates from heating with charged cosolutes: formation, characterization and foaming, in: Dickinson E., Leser M. (Eds.), Food Colloids: Self assembly and material science, The Royal Society of Chemistry, Cambridge, 2007, pp. 175–192.
Van Hooydonk A.C.M., de Koster P.G., Boerrigter I.J., The renneting properties of heated milk, Neth. Milk Dairy J. 41 (1987) 3–18.
Van Kemenade M.J.J.M., de Bruyn P.L., The influence of casein on the precipitation of brushite and octacalcium phosphate, Colloids Surfaces 36 (1989) 359–368.
Van Vliet T., Roefs S.P.F.M., Zoon P., Walstra P., Rheological properties of casein gels, J. Dairy Res. 56 (1989) 529–534.
Vasbinder A.J., Alting A.C., de Kruif K.G., Quantification of heat-induced casein-whey protein interactions in milk and its relation to gelation kinetics, Colloids Surfaces B: Biointerfaces 31 (2003) 115–123.
Vasbinder A.J., de Kruif C.G., Casein-whey protein interactions in heated milk: the influence of pH, Int. Dairy J. 13 (2003) 669–677.
Vasbinder A.J., Rollema H.S., De Kruif C.G., Impaired rennetability of heated milk; study of enzymatic hydrolysis and gelation kinetics, J. Dairy Sci. 86 (2003) 1548–1555.
Vasbinder A.J., van de Velde F., de Kruif C.G., Gelation of casein-whey protein mixtures, J. Dairy Sci. 87 (2004) 1167–1176.
Vasbinder A.J., van Mil P.J.J.M., Bot A., de Kruif C.G., Acid-induced gelation of heat-treated milk studied by diffusing wave spectroscopy, Colloids Surfaces B 21 (2001) 245–250.
Verheul M., Roefs S.P.F.M., de Kruif K.G., Kinetics of heat-induced aggregation of β-lactoglobulin, J. Agric. Food Chem. 46 (1998) 896–903.
Walstra P., On the stability of casein micelles, J. Dairy Sci. 73 (1990) 1965–1979.
Walstra P., Jenness R., Proteins, in: Walstra P., Jenness R. (Eds.), Dairy Chemistry and Physics, Wiley and Sons, New York, USA, 1984, pp. 98–122.
Zhang X., Fu X., Zhang H., Liu C., Wangwang J., Chang Z., Chaperone-like activity of β-casein, Int. J. Biochem. Cell Biol. 37 (2005) 1232–1240.
Zittle C.A., Thompson M.P., Custer J.H., Cerbulis J., κ-casein-β-lactoglobulin interaction in solution when heated, J. Dairy Sci. 45 (1962) 807–810.
Zoon P., Incorporation of whey proteins into Dutch-type cheese, in: Emmons D.B. (Ed.), Cheese yield and factors affecting its control, IDF Seminar in Cork, International Dairy Federation, Bruxelles, Belgium, 1994, pp. 402–408.
Author information
Authors and Affiliations
Corresponding author
About this article
Cite this article
Donato, L., Guyomarc’h, F. Formation and properties of the whey protein/κ-casein complexes in heated skim milk — A review. Dairy Sci. Technol. 89, 3–29 (2009). https://doi.org/10.1051/dst:2008033
Received:
Accepted:
Issue Date:
DOI: https://doi.org/10.1051/dst:2008033