[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Formation and properties of the whey protein/κ-casein complexes in heated skim milk — A review

/κ-

Formation et propriétés des complexes protéines sériques/caséine κ dans le lait écrémé traité thermiquement. Revue

  • Review
  • Published:
Dairy Science & Technology

Abstract

The formation of complexes between whey proteins and κ-casein during heat treatment of milk dramatically affects the protein organisation in both the colloidal casein and the serum phases of milk and consequently, its technological applications. This paper reviews the composition and building interactions of these complexes and their localisation between the casein micelle and lactoserum. The currently proposed mechanisms that lead to their formation are also presented. The physico-chemical properties of these complexes, in terms of structure, size and surface properties are described and the technological means by which these properties could be controlled are discussed. Finally, the current hypotheses that explain the functional properties of these complexes in the heat-induced changes of dairy applications are reviewed, with emphasis on acid gelation of milk.

Abstract

/κ-/κ-

Résumé

La formation de complexes entre les protéines sériques et la caséine κ au cours du traitement thermique du lait modifie profondément l’organisation des protéines dans la phase caséine micellaire et dans le lactosérum, et par conséquent ses aptitudes technologiques. Cet article fait l’état de l’art de la composition, des interactions impliquées dans les complexes et de leur localisation entre caséine micellaire et lactosérum. Les mécanismes actuellement proposés pour décrire la formation de ces complexes sont présentés. Les propriétés physico-chimiques des complexes, telles que leur structure, leur taille et leurs propriétés de surface, sont décrites et les moyens technologiques permettant de moduler ces propriétés sont discutés. Enfin, les hypothèses actuellement proposées pour expliquer les propriétés fonctionnelles des complexes au cours des procédés de transformation du lait sont exposées, avec une attention particulière pour la gélification acide du lait.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alexander M., Dalgleish D.G., Interactions between denatured milk serum proteins and casein micelles studied by diffusing wave spectroscopy, Langmuir 21 (2005) 11380–11386.

    CAS  Google Scholar 

  2. Anema S.G., Effect of milk concentration on the irreversible thermal denaturation and disulfide aggregation of β-lactoglobulin, J. Agric. Food Chem. 48 (2000) 4168–4175.

    CAS  Google Scholar 

  3. Anema S.G., Role of κ-casein in the association of denatured whey proteins with casein micelles in heated reconstituted skim milk, J. Agric. Food Chem. 55 (2007) 3635–3642.

    CAS  Google Scholar 

  4. Anema S.G., On heating milk, the dissociation of κ-casein from the casein micelles can precede interactions with the denatured whey proteins, J. Dairy Res. 75 (2008) 415–421.

    CAS  Google Scholar 

  5. Anema S.G., Klostermeyer H., Heat-induced, pH-dependent dissociation of casein micelles on heating reconstituted skim milk at temperatures below 100 °C, J. Agric. Food Chem. 45 (1997) 1108–1115.

    CAS  Google Scholar 

  6. Anema S.G., Klostermeyer H., The effect of pH and heat treatment on the κ-casein content and the ζ-potential of the particles in reconstituted skim milk, Milchwissenschaft 52 (1997) 217–222.

    CAS  Google Scholar 

  7. Anema S.G., Lee S.K., Klostermeyer H., Effet of protein, non protein-soluble components, and lactose concentrations on the irreversible thermal denaturation of β-lactoglobulin and α-lactalbumin in skim milk, J. Agric. Food Chem. 54 (2006) 7339–7348.

    CAS  Google Scholar 

  8. Anema S.G., Lee S.K., Klostermeyer H., Effet of pH at heat treatment on the hydrolysis of κ-casein and the gelation of skim milk by chymosin, Lebensm.-Wiss. u.-Technol. 40 (2007) 99–106.

    CAS  Google Scholar 

  9. Anema S.G., Lee S.K., Lowe E.K., Klostermeyer H., Rheological properties of acid gels prepared from heated pH-adjusted skim milk, J. Agric. Food Chem. 52 (2004) 337–343.

    CAS  Google Scholar 

  10. Anema S.G., Li Y., Further studies on the heat-induced, pH-dependent dissociation of casein from the micelles in reconstituted skim milk, Lebensm.-Wiss. u.-Technol. 33 (2000) 335–343.

    CAS  Google Scholar 

  11. Anema S.G., Li Y., Association of denatured whey proteins with casein micelles in heated reconstituted skim milk and its effect on casein micelle size, J. Dairy Res. 70 (2003) 73–83.

    CAS  Google Scholar 

  12. Anema S.G., Li Y., Effect of pH on the association of denatured whey proteins with casein micelles in heated reconstituted skim milk, J. Agric. Food Chem. 51 (2003) 1640–1646.

    CAS  Google Scholar 

  13. Anema S.G., Lowe E.K., Lee S.K., Effect of pH at heating on the acid-induced aggregation of casein micelles in reconstituted skim milk, Lebensm.-Wiss. u.-Technol. 37 (2004) 779–787.

    CAS  Google Scholar 

  14. Anema S.G., Lowe E.K., Li Y., Effect of pH on the viscosity of heated reconstituted skim milk, Int. Dairy J. 14 (2004) 541–548.

    CAS  Google Scholar 

  15. Anema S.G., Mc Kenna A.B., Reaction kinetics of thermal denaturation of whey proteins in heated reconstituted whole milk, J. Agric. Food Chem. 44 (1996) 422–428.

    CAS  Google Scholar 

  16. Aoki T., Suzuki H., Imamura T., Formation of soluble casein in whey protein-free milk heated at high temperature, Milchwissenschaft 29 (1974) 589–594.

    CAS  Google Scholar 

  17. Banks J.M., Law A.J.R., Leaver J., Horne D.S., Sensory and functional properties of cheese: incorporation of whey proteins by pH manipulation and heat treatment, J. Soc. Dairy Technol. 47 (1994) 124–131.

    CAS  Google Scholar 

  18. Banks J.M., Law A.J.R., Leaver J., Horne D.S., The inclusion of whey proteins in cheese — an overview, in: Emmons D.B. (Ed.), Cheese yield and factors affecting its control, IDF Seminar in Cork, International Dairy Federation, Bruxelles, Belgium, 1994, pp. 387–401.

    Google Scholar 

  19. Banks J.M., Stewart G., Muir D.D., West I.G., Increasing the yield of Cheddar cheese by the acidification of milk containing heat-denatured whey protein, Milchwissenschaft 42 (1987) 212–215.

    Google Scholar 

  20. Bauer R., Hansen S., Øgendal L., Detection of intermediate oligomers, important for the formation of heat aggregates of β-lactoglobulin, Int. Dairy J. 8 (1998) 105–112.

    CAS  Google Scholar 

  21. Beaulieu M., Pouliot Y., Pouliot M., Thermal aggregation of whey proteins in model solutions as affected by casein/whey protein ratios, J. Food Sci. 64 (1999) 776–780.

    CAS  Google Scholar 

  22. Bloomfield V.A., Morr C.V., Structure of casein micelles: physical methods, Neth. Milk Dairy J. 27 (1973) 103–120.

    CAS  Google Scholar 

  23. Bohoua-Guichard L., Haque Z., Gnakri D., Kamenan A., Effect of the relative proportion of κ-casein to β-lactoglobulin on food functionality of their complex, Sci. Alim. 17 (1997) 671–678.

    Google Scholar 

  24. Bonomi F., Iametti S., Real-time monitoring of the surface hydrophobicity changes associated with isothermal treatment of milk and milk protein fractions, Milchwissenschaft 46 (1991) 71–74.

    CAS  Google Scholar 

  25. Boye J.I., Alli I., Ismail A.A., Effects of physicochemical factors on the secondary structure of β-lactoglobulin, J. Dairy Res. 63 (1996) 97–109.

    CAS  Google Scholar 

  26. Calvo M.M., Law A.J.R., Leaver J., Heat-induced interactions between serum albumin, immunoglobulin, and κ-casein inhibit the primary phase of renneting, J. Agric. Food Chem. 43 (1995) 2823–2827.

    CAS  Google Scholar 

  27. Considine T., Patel H.A., Anema S.G., Singh H., Creamer L.K., Interactions of milk proteins during heat and high hydrostatic pressure treatments — A review, Innovative Food Sci. Emerging Technol. 8 (2007) 1–23.

    CAS  Google Scholar 

  28. Corredig M., Dalgleish D.G., The binding of α-lactalbumin and β-lactoglobulin to casein micelles in milk treated by different heating systems, Milchwissenschaft 51 (1996) 123–126.

    CAS  Google Scholar 

  29. Corredig M., Dalgleish D.G., Effect of temperature and pH on the interactions of whey proteins with casein micelles in skim milk, Food Res. Int. 29 (1996) 49–55.

    CAS  Google Scholar 

  30. Corredig M., Dalgleish D.G., The mechanisms of the heat-induced interaction of whey proteins with casein micelles in milk, Int. Dairy J. 9 (1999) 233–236.

    Google Scholar 

  31. Creamer L.K., Berry G.P., Matheson A.R., The effect of pH on protein aggregation in heated skim milk, N. Z. J. Dairy Sci. Technol. 13 (1978) 9–15.

    CAS  Google Scholar 

  32. Creamer L.K., Bienvenue A., Nilsson H., Paulsson M., van Wanroij M., Lowe E.K., Anema S.G., Boland M.J., Jiménez-Flores R., Heat-induced redistribution of disulfide bonds in milk proteins. 1. Bovine β-lactoglobulin, J. Agric. Food Chem. 52 (2004) 7660–7668.

    CAS  Google Scholar 

  33. Dalgleish D.G., Denaturation and aggregation of serum proteins and caseins in heated milk, J. Agric. Food Chem. 38 (1990) 1996–1999.

    Google Scholar 

  34. Dalgleish D.G., The effect of denaturation of β-lactoglobulin on renneting — a quantitative study, Milchwissenschaft 45 (1990) 491–494.

    CAS  Google Scholar 

  35. Dalgleish D.G., Minéraux et propriétés fonctionnelles des caséines et caséinates, in: Gaucheron F. (Ed.), Minéraux et produits laitiers, Tec & Doc Lavoisier, Paris, 2004, pp. 323–342.

    Google Scholar 

  36. Dalgleish D.G., Senaratne V., François S., Interaction between α-lactalbumin and β-lactoglobulin in the early stages of heat denaturation, J. Agric. Food Chem. 45 (1997) 3459–3464.

    CAS  Google Scholar 

  37. Dalgleish D.G., Van Mourik L., Corredig M., Heat-induced interaction of whey proteins and casein micelles with different concentrations of α-lactalbumin and β-lactoglobulin, J. Agric. Food Chem. 45 (1997) 4806–4813.

    CAS  Google Scholar 

  38. Dannenberg F., Kessler H.-G., Reaction kinetics of the denaturation of whey proteins in milk, J. Food Sci. (1988) 259–263.

  39. Dannenberg F., Kessler H.-G., Thermodynamic approach to kinetics of β-lactoglobulin denaturation in heated skim milk and sweet whey, Milchwissenschaft 43 (1988) 139–142.

    CAS  Google Scholar 

  40. Dannenberg F., Kessler H.-G., Effect of denaturation of β-lactoglobulin on texture properties of set-style nonfat yoghurt. 1. Syneresis, Milchwissenschaft 43 (1988) 632–635.

    CAS  Google Scholar 

  41. Dannenberg F., Kessler H.-G., Effect of denaturation of β-lactoglobulin on texture properties of set-style nonfat yoghurt. 2. Firmness and flow properties, Milchwissenschaft 43 (1988) 700–705.

    CAS  Google Scholar 

  42. De Jong P., Two-stage reaction model for the denaturation of β-lactoglobulin in milk, in: de Jong P. (Ed.), Modelling and Optimization of Thermal Treatments in the Dairy Industry, 1996, pp. 17–33.

  43. De Jong P., van der Linden H.J.L.J., Polymerization model for prediction of heat-induced protein denaturation and viscosity changes in milk., J. Agric. Food Chem. 46 (1998) 2136–2142.

    Google Scholar 

  44. De Kruif C.G., Holt C., Casein micelle structure, functions and interactions, in: Fox P.F., Mc Sweeney P.L.H. (Eds.), Advances Dairy Chemistry, Volume 1, Part A, Kluwer Academic/Plenum Publishers, New York, 2003, pp. 233–276.

    Google Scholar 

  45. Doi H., Ibuki F., Kanamori M., Effect of carbohydrate moiety of κ-casein on the complex formation with β-lactoglobulin, Agric. Biol. Chem. 45 (1981) 2351–2353.

    CAS  Google Scholar 

  46. Doi H., Ideno S., Ibuki F., Kanamori M., Participation of the hydrophobic bond in complex formation between κ-casein and β-lactoglobulin, Agric. Biol. Chem. 47 (1983) 407–409.

    CAS  Google Scholar 

  47. Doi H., Ideno S., Kuo F.H., Ibuki F., Kanamori M., Gelation of the complex between κ-casein and β-lactoglobulin, J. Nutr. Sci. Vitaminol. 29 (1983) 679–689.

    CAS  Google Scholar 

  48. Doi H., Tokuyama T., Kuo F.H., Ibuki F., Kanamori M., Heat-induced complex formation between κ-casein and α-lactalbumin, Agric. Biol. Chem. 47 (1983) 2817–2824.

    CAS  Google Scholar 

  49. Donato L., Alexander M., Dalgleish D.G., Effects of serum protein composition and reactivity of the casein micellar surface on particle interactions during acid gelation of heated and unheated milks, J. Agric. Food Chem. 55 (2007) 4160–4168.

    CAS  Google Scholar 

  50. Donato L., Dalgleish D.G., Effect of the pH of heating on the qualitative and quantitative compositions of the sera of reconstituted skim milks and on the mechanisms of formation of soluble aggregates, J. Agric. Food Chem. 54 (2006) 7804–7811.

    CAS  Google Scholar 

  51. Donato L., Guyomarc’h F., Amiot S., Dalgleish D.G., Formation of whey protein/κ-casein complexes in heated milk: preferential reaction of whey protein with κ-casein in the casein micelles, Int. Dairy J. 17 (2007) 1161–1167.

    CAS  Google Scholar 

  52. Dunnill P., Green D.W., Sulphydryl groups and the N/R conformational change in β-lactoglobulin, J. Mol. Biol. 15 (1965) 147–151.

    Google Scholar 

  53. Elfagm A.A., Wheelock J.V., Effect of heat on α-lactalbumin and β-lactoglobulin in bovine milk, J. Dairy Res. 44 (1977) 367–371.

    CAS  Google Scholar 

  54. Elfagm A.A., Wheelock J.V., Heat interaction between α-lactalbumin, β-lactoglobulin and casein in bovine milk, J. Dairy Sci. 61 (1978) 159–163.

    CAS  Google Scholar 

  55. Euber J.R., Brunner J.R., Interaction of κ-casein with immobilized β-lactoglobulin, J. Dairy Sci. 65 (1982) 2384–2387.

    CAS  Google Scholar 

  56. Euston S.R., Ur-Rehman S., Costello G., Denaturation and aggregation of β-lactoglobulin — A preliminary molecular dynamics study, Food Hydrocoll. 21 (2007) 1081–1091.

    CAS  Google Scholar 

  57. Famelart M.-H., Tomazewski J., Piot M., Pezennec S., Comprehensive study of acid gelation of heated milk with model protein systems, Int. Dairy J. (2004) 313–321.

  58. Ferron-Baumy C., Maubois J.-L., Garric G., Quiblier J.-P., Coagulation présure du lait et des rétentats d’ultrafiltration. Effets de divers traitements thermiques, Lait 71 (1991) 423–434.

    CAS  Google Scholar 

  59. Foegeding E.A., Davis J.P., Doucet D., Mc Guffey M.K., Advances in modifying and understanding whey protein functionality, Trends Food Sci. Technol. 13 (2002) 151–159.

    CAS  Google Scholar 

  60. Fox K.K., Harper M.K., Holsinger V.H., Pallansch M.J., Effects of high-heat treatment on the stability of calcium caseinate aggregates in milk, J. Dairy Sci. 50 (1967) 443–450.

    CAS  Google Scholar 

  61. Galani D., Owusu-Apenten R.K., Heat-induced denaturation and aggregation of β-lactoglobulin: kinetics of formation of hydrophobic and disulfide-linked aggregates, Int. J. Food Sci. Technol. 34 (1999) 467–476.

    CAS  Google Scholar 

  62. Gallagher D.P., Mulvihill D.M., Heat stability and renneting characteristics of milk systems containing bovine casein micelles and porcine or bovine β-lactoglobulin, Int. Dairy J. 7 (1997) 221–228.

    CAS  Google Scholar 

  63. Gaucheron F., Interactions caséinescations, in: Gaucheron F. (Ed.), Minéraux et Produits Laitiers, Tec & Doc Lavoisier, Paris, 2004, pp. 81–112.

    Google Scholar 

  64. Gaucheron F., Le Graët Y., Schuck P., Équilibres minéraux et conditions physicochimiques, in: Gaucheron F. (Ed.), Minéraux et Produits Laitiers, Tec & Doc Lavoisier, Paris, 2004, pp. 219–280.

    Google Scholar 

  65. Gimel J.-C., Durand D., Nicolai T., Structure and distribution of aggregates formed after heat-induced denaturation of globular proteins, Macromolecules 27 (1994) 583–589.

    CAS  Google Scholar 

  66. Grufferty M.B., Mulvihill D.M., Proteins recovered from milks heated at alkaline pH values, J. Soc. Dairy Technol. 40 (1987) 82–85.

    CAS  Google Scholar 

  67. Grufferty M.B., Mulvihill D.M., Hydration related properties of protein isolates prepared from heated milks, J. Soc. Dairy Technol. 43 (1990) 99–103.

    Google Scholar 

  68. Grufferty M.B., Mulvihill D.M., Emulsifying and foaming properties of protein isolates prepared from heated milks, J. Soc. Dairy Technol. 44 (1991) 13–19.

    CAS  Google Scholar 

  69. Guyomarc’h F., Formation of heat-induced protein aggregates in milk as a means to recover the whey protein fraction in cheese manufacture, and interest of heat-treating milk at alkaline pH values in order to keep its rennet coagulation properties. A review, Lait 86 (2006) 1–20.

    Google Scholar 

  70. Guyomarc’h F., Law A.J.R., Dalgleish D.G., Formation of soluble and micelle-bound protein aggregates in heated milk, J. Agric. Food Chem. 51 (2003) 4652–4660.

    Google Scholar 

  71. Guyomarc’h F., Mahieux O., Renan M., Chatriot M., Gamerre V., Famelart M.-H., Changes in the acid gelation of skim milk as affected by heat-treatment and alkaline pH conditions, Lait 87 (2007) 119–137.

    Google Scholar 

  72. Guyomarc’h F., Nono M., Nicolai T., Durand D., Heat induced aggregation of whey proteins in the presence of κ-casein or sodium caseinate, Food Hydrocoll. doi: 10.1016/j.foodhyd.2008.07.001.

  73. Guyomarc’h F., Quéguiner C., Law A.J.R., Horne D.S., Dalgleish D.G., Role of the soluble and micelle-bound heat-induced protein aggregates on network formation in acid skim milk gels, J. Agric. Food Chem. 51 (2003) 7743–7750.

    Google Scholar 

  74. Guyomarc’h F., Renan M., Chatriot M., Gamerre V., Famelart M.-H., Acid gelation properties of heated skim milk as a result of enzymatically induced changes in the micelle/serum distribution of the whey protein/κ-casein aggregates, J. Agric. Food Chem. 55 (2007) 10986–10993.

    Google Scholar 

  75. Halbert C., O’Kennedy B.T., Hallihan A., Kelly P.M., Stabilisation of calcium phosphate using denatured whey proteins, Milchwissenschaft 55 (2000) 386–389.

    CAS  Google Scholar 

  76. Haque Z., Kinsella J.E., Heat-induced changes in the hydrophobicity of kappa-casein and β-lactoglobulin, Agric. Biol. Chem. 51 (1987) 2245–2247.

    CAS  Google Scholar 

  77. Haque Z., Kinsella J.E., Interaction between κ-casein and β-lactoglobulin: effect of calcium, Agric. Biol. Chem. 51 (1987) 1997–1998.

    CAS  Google Scholar 

  78. Haque Z., Kinsella J.E., Interaction between heated κ-casein and β-lactoglobulin: predominance of hydrophobic interaction in the initial stages of complex formation, J. Dairy Res. 55 (1988) 67–80.

    CAS  Google Scholar 

  79. Haque Z., Kristjansson M.M., Kinsella J.E., Interaction between κ-casein and β-lactoglobulin: possible mechanism, J. Agric. Food Chem. 35 (1987) 644–649.

    CAS  Google Scholar 

  80. Havea P., Singh H., Creamer L.K., Campanella O.H., Electrophoretic characterization of the protein products formed during heat treatment of whey protein concentrate solutions, J. Dairy Res. 65 (1998) 79–91.

    CAS  Google Scholar 

  81. Heertje I., Structure and function of food products: a review, Food Struct. 12 (1993) 343–364.

    Google Scholar 

  82. Heertje I., Visser J., Smits P., Structure formation in acid milk gels, Food Microstruct. 4 (1985) 267–277.

    CAS  Google Scholar 

  83. Henry H., Mollé D., Morgan F., Fauquant J., Bouhallab S., Heat-induced covalent complex between casein micelles and β-lactoglobulin from goat’s milk: identification of an involved disulfide bond, J. Agric. Food Chem. 50 (2002) 185–191.

    CAS  Google Scholar 

  84. Hill A.R., The β-lactoglobulin-κ-casein complex, Can. Inst. Food Sci. Technol. J. 22 (1989) 120–123.

    CAS  Google Scholar 

  85. Hoffmann M.A.M., Sala G., Olieman C., De Kruif K.G., Molecular mass distributions of heat-induced beta-lactoglobulin aggregates, J. Agric. Food Chem. 45 (1997) 2949–2957.

    CAS  Google Scholar 

  86. Hoffmann M.A.M., van Mil P.J.J.M., Heat-induced aggregation of beta-lactoglobulin: role of the free thiol group and disulfide bonds, J. Agric. Food Chem. 45 (1997) 2942–2948.

    CAS  Google Scholar 

  87. Hoffmann M.A.M., van Mil P.J.J.M., Heat-induced aggregation of beta-lactoglobulin as a function of pH, J. Agric. Food Chem. 47 (1999) 1898–1905.

    CAS  Google Scholar 

  88. Holt C., Horne D.S., The hairy casein micelle: evolution of the concept and its implications for dairy technology, Neth. Milk Dairy J. 50 (1996) 85–111.

    CAS  Google Scholar 

  89. Horne D.S., Casein interactions: casting light on the black boxes, the structure in dairy products, Int. Dairy J. 8 (1998) 171–177.

    CAS  Google Scholar 

  90. Horne D.S., Factors influencing acid-induced gelation of skim milk, in: Dickinson E., Miller R. (Eds.), Food Colloids, The Royal Society of Chemistry, Cambridge, 2001, pp. 345–351.

    Google Scholar 

  91. Iametti S., Corredig M., Bonomi F., Characterization of casein isolated by ultracentrifugation from differently treated milks, Milchwissenschaft 48 (1993) 251–254.

    CAS  Google Scholar 

  92. Iametti S., De Gregori B., Vecchio G., Bonomi F., Modifications occur at different structural levels during the heat denaturation of β-lactoglobulin, Eur. J. Biochem. 237 (1996) 106–112.

    CAS  Google Scholar 

  93. Imafidon G.I., Farkye N.Y., Composition of Cheddar cheese made from high-heat treated milk, in: Emmons D.B. (Ed.), Cheese yield and factors affecting its control, IDF Seminar in Cork, International Dairy Federation, Bruxelles, Belgium, 1994, pp. 433–438.

    Google Scholar 

  94. Jameson G.W., Lelièvre J., Effects of whey proteins on cheese characteristics, Bull. IDF 313 (1996) 3–8.

    CAS  Google Scholar 

  95. Jang H.D., Swaisgood H.E., Disulfide bond formation between thermallly denatured β-lactoglobulin and κ-casein in casein micelles, J. Dairy Sci. 73 (1990) 900–904.

    CAS  Google Scholar 

  96. Jean K., Renan M., Famelart M.-H., Guyomarc’h F., Structure and surface properties of the serum heat-induced aggregates isolated from heated skim milk, Int. Dairy J. 16 (2006) 303–315.

    CAS  Google Scholar 

  97. Kaláb M., Allan-Wojtas P., Phipps-Todd B.E., Development of microstructure in set-style nonfat yoghurt — a review, Food Microstruct. 2 (1983) 51–66.

    Google Scholar 

  98. Kaláb M., Emmons D.B., Sargant A.G., Milk gel structure. V. Microstructure of yoghurt as related to the heating of milk, Milchwissenschaft 31 (1976) 402–408.

    Google Scholar 

  99. Keskin O., Gursoy A., Ma B., Nussinov R., Principles of protein-protein interactions: What are the preferred ways for proteins to interact?, Chem. Rev. 108 (2008) 1225–1244.

    CAS  Google Scholar 

  100. Kinsella J.E., Whitehead D.M., Proteins in whey: chemical, physical and functional properties, Adv. Food Nutr. Res. 33 (1989) 343–438.

    CAS  Google Scholar 

  101. Krasaekoopt W., Bhandari B., Deeth H., Yogurt from UHT milk: a review, Aust. J. Dairy Technol. 58 (2003) 26–29.

    CAS  Google Scholar 

  102. Kudo S., The heat stability of milk: formation of soluble proteins and protein-depleted micelles at elevated temperatures, N. Z. J. Dairy Sci. Technol. 15 (1980) 255–263.

    CAS  Google Scholar 

  103. Lakemond C.M.M., van Vliet T., Acid milk gels: the gelation process as affected by preheating pH, Int. Dairy J. 18 (2008) 574–584.

    CAS  Google Scholar 

  104. Lakemond C.M.M., van Vliet T., Rheological properties of acid skim milk gels as affected by the spatial distribution of the structural elements and the interaction forces between them, Int. Dairy J. 18 (2008) 585–593.

    CAS  Google Scholar 

  105. Law A.J.R., Banks J.M., Horne D.S., Leaver J., West I.G., Denaturation of the whey protein in heated milk and their incorporation into Cheddar cheese, Milchwissenschaft 49 (1994) 63–67.

    CAS  Google Scholar 

  106. Law A.J.R., Leaver J., Effect of pH on the thermal denaturation of whey proteins in milk, J. Agric. Food Chem. 48 (2000) 672–679.

    CAS  Google Scholar 

  107. Lawrence R.C., Lelièvre J., Whey protein in cheese, in: Proceedings of the XXIIIth International Dairy Congress, Oct. 8–12th, 1990, Montreal, Vol. 3, 1991, pp. 1880–1888.

  108. Le Bon C., Nicolai T., Durand D., Growth and structures of aggregates of heat-induced β-lactoglobulin, Int. J. Food Sci. Technol. 34 (1999) 451–466.

    Google Scholar 

  109. Le Bon C., Nicolai T., Durand D., Kinetics of aggregation and gelation of globular proteins after heat-induced denaturation, Macromolecules 32 (1999) 6120–6127.

    Google Scholar 

  110. Lee W.-J., Lucey J.A., Rheological properties, whey separation, and microstructure in set-style yogurt: effects of heating temperature and incubation temperature, J. Text. Stud. 34 (2004) 515–536.

    Google Scholar 

  111. Le Feunteun S., Mariette F., Impact of casein gel microstructure on self-diffusion coefficient of molecular probes measured by H1 PFG-NMR, J. Agric. Food Chem. 55 (2007) 10764–10772.

    Google Scholar 

  112. Le Graët Y., Gaucheron F., pH-induced solubilization of minerals from casein micelles: influence of casein concentration and ionic strength, J. Dairy Res. 66 (1999) 215–224.

    Google Scholar 

  113. Livney Y.D., Corredig M., Dalgleish D.G., Influence of thermal processing on the properties of dairy colloids, Curr. Opinion Colloids Interface Sci. 8 (2003) 359–364.

    CAS  Google Scholar 

  114. Livney Y.D., Dalgleish D.G., Specificity of disulfide bond formation during thermal aggregation in solutions of β-lactoglobulin B and κ-casein A, J. Agric. Food Chem. 52 (2004) 5527–5532.

    CAS  Google Scholar 

  115. Livney Y.D., Verespej E., Dalgleish D.G., Steric effects governing disulfide bond interchange during thermal aggregation in solutions of β-lactoglobulin B and α-lactalbumin, J. Agric. Food Chem. 51 (2003) 8098–8106.

    CAS  Google Scholar 

  116. Lowe E.K., Anema S.K., Bienvenue A., Boland M.J., Creamer L.K., Jiménez-Flores R., Heat-induced redistribution of disulfide bonds in milk proteins. 2. Disulfide bonding patterns between bovine β-lactoglobulin and κ-casein, J. Agric. Food Chem. 52 (2004) 7669–7680.

    CAS  Google Scholar 

  117. Lucey J.A., Formation and physical properties of milk protein gels, J. Dairy Sci. 85 (2002) 281–294.

    CAS  Google Scholar 

  118. Lucey J.A., Cultured dairy products: an overview of their gelation and texture properties, Int. J. Dairy Technol. 57 (2004) 77–84.

    CAS  Google Scholar 

  119. Lucey J.A., Singh H., Formation and physical properties of acid milk gels: a review, Food Res. Int. 30 (1998) 529–542.

    Google Scholar 

  120. Lucey J.A., Tamehana M., Singh H., Munro P.A., Effect of interactions between denatured whey proteins and casein micelles on the formation and rheological properties of acid milk gels, J. Dairy Res. 65 (1998) 555–567.

    CAS  Google Scholar 

  121. Lucey J.A., Tamehana M., Singh H., Munro P.A., Rheological properties of milk gels formed by a combination of rennet and glucono-δ-lactone, J. Dairy Res. 67 (2000) 415–427.

    CAS  Google Scholar 

  122. Lucey J.A., Tamehana M., Singh H., Munro P.A., Effect of heat treatment on the physical properties of milk gels made with both rennet and acid, Int. Dairy J. 11 (2001) 559–565.

    CAS  Google Scholar 

  123. Lucey J.A., Teo C.T., Munro P.A., Singh H., Rheological properties at small (dynamic) and large (yield) deformations of acid gels made from heated milk, J. Dairy Res. 64 (1997) 591–600.

    CAS  Google Scholar 

  124. Lucey J.A., Teo C.T., Munro P.A., Singh H., Microstructure, permeability and appearance of acid gels made from heated skim milk, Food Hydrocoll. 12 (1998) 159–165.

    CAS  Google Scholar 

  125. Mahmoudi N., Mehalebi S., Nicolai T., Durand D., Riaublanc A., Light scattering study of the structure of aggregates and gels formed by heat-denatured whey protein isolate and β-lactoglobulin and neutral pH, J. Agric. Food Chem. 55 (2007) 3104–3111.

    CAS  Google Scholar 

  126. Marshall R.J., Increasing cheese yields by high heat-treatment of milk, J. Dairy Res. 53 (1986) 313–322.

    Google Scholar 

  127. Matsudomi N., Kanda Y., Yoshika Y., Moriwaki H., Ability of αs-casein to suppress the heat aggregation of ovotransferrin, J. Agric. Food Chem. 52 (2004) 4882–4886.

    CAS  Google Scholar 

  128. Mc Kenzie G.H., Norton R.S., Sawyer W.H., Heat-induced interaction of β-lactoglobulin and κ-casein, J. Dairy Res. 38 (1971) 343–351.

    CAS  Google Scholar 

  129. McMahon D.J., Age-gelation of UHT milk: changes that occur during storage, their effect on shelf life and the mechanism by which age-gelation occurs, in: Heat treatments and alternative methods, Proceedings of the IDF Symposium, Vienna, September 1995, 1996, pp. 315–326.

  130. Ménard O., Camier B., Guyomarc’h F., Effect of heat-treatment at alkaline pH on rennet coagulation properties of skim milk, Lait 85 (2005) 515–526.

    Google Scholar 

  131. Mollé D., Jean K., Guyomarc’h F., Chymosin sensitivity of the heat-induced serum protein aggregates isolated from skim milk, Int. Dairy J. 16 (2006) 1435–1441.

    Google Scholar 

  132. Mottar J., Bassier A., Joniau M., Baert J., Effect of heat-induced association of whey protein and casein micelles on yoghurt texture, J. Dairy Sci. 72 (1989) 2247–2256.

    CAS  Google Scholar 

  133. Noh B., Creamer L.K., Richardson T., Thermally induced complex formation in an artificial milk system, J. Agric. Food Chem. 37 (1989) 1395–1400.

    CAS  Google Scholar 

  134. Noh B., Richarson T., Incorporation of radiolabeled whey proteins into casein micelles by heat processing, J. Dairy Sci. 72 (1989) 1724–1731.

    CAS  Google Scholar 

  135. Noh B., Richardson T., Creamer L.K., Radiolabelling study of the heat-induced interactions between α-lactalbumin, β-lactoglobulin and κ-casein in milk and buffer solutions, J. Food Sci. 54 (1989) 889–893.

    CAS  Google Scholar 

  136. O’Connell J.E., Fox P.F., Effect of β-lactoglobulin and precipitation of calcium phosphate on the thermal coagulation of milk, J. Dairy Res. 68 (2001) 81–94.

    Google Scholar 

  137. O’Kennedy B.T., Kelly P.M., Evaluation of milk protein interactions during acid gelation using a simulated yoghurt model, Milchwissenschaft 55 (2000) 187–190.

    Google Scholar 

  138. O’Kennedy B.T., Mounsey J.S., Control of heat-induced aggregation of whey proteins using casein, J. Agric. Food Chem. 54 (2006) 5637–5642.

    Google Scholar 

  139. Oh S., Richardson T., Heat-induced interactions of bovine serum albumin and immunoglobulin, J. Dairy Sci. 74 (1991) 1786–1790.

    CAS  Google Scholar 

  140. Oldfield D.J., Singh H., Taylor M.W., Association of β-lactoglobulin and α-lactalbumin with the casein micelles in skim milk heated in an ultra-high temperature plant, Int. Dairy J. 8 (1998) 765–770.

    CAS  Google Scholar 

  141. Oldfield D.J., Singh H., Taylor M.W., Pearce K.N., Kinetics of denaturation and aggregation of whey proteins in skim milk heated in an ultra-high temperature (UHT) pilot plant, Int. Dairy J. 8 (1998) 311–318.

    Google Scholar 

  142. Oldfield D.J., Singh H., Taylor M.W., Pearce K.N., Heat-induced interactions of β-lactoglobulin and α-lactalbumin with the casein micelle in pH-adjusted skim milk, Int. Dairy J. 10 (2000) 509–518.

    CAS  Google Scholar 

  143. Ozcan-Yilsay T., Lee W.-J., Horne D.S., Lucey J.A., Effect of trisodium citrate on rheological and physical properties and microstructure of yogurt, J. Dairy Sci. 90 (2007) 1644–1652.

    CAS  Google Scholar 

  144. Park S.-Y., Nakamura K., Niki R., Effects of β-lactoglobulin on the rheological properties of casein micelle rennet gels, J. Dairy Sci. 79 (1996) 2137–2145.

    CAS  Google Scholar 

  145. Parker E.A., Donato L., Dalgleish D.G., Effects of added sodium caseinate on the formation of particles in heated skim milk, J. Agric. Food Chem. 53 (2005) 8265–8272.

    CAS  Google Scholar 

  146. Parnell-Clunies E., Kakuda Y., Deman J.M., Influence of heat treatment of milk on the flow properties of yoghurt, J. Food Sci. 51 (1986) 1459–1462.

    Google Scholar 

  147. Parnell-Clunies E., Kakuda Y., Smith A.K., Microstructure of yogurt as affected by heat-treatment of milk, Milchwissenschaft 42 (1987) 413–417.

    Google Scholar 

  148. Parris N., Anema S.G., Singh H., Creamer L.K., Aggregation of whey proteins in heated sweet whey, J. Agric. Food Chem. 41 (1993) 460–464.

    CAS  Google Scholar 

  149. Parris N., Hollar C.M., Hsieh A., Cockley K.D., Thermal stability of whey protein concentrate mixtures: aggregate formation, J. Dairy Sci. 30 (1997) 18–28.

    Google Scholar 

  150. Patel H.A., Singh H., Anema S.G., Creamer L.K., Effects of heat and high hydrostatic pressure treatments on disulfide bonding interchanges among the proteins in skim milk, J. Agric. Food Chem. 54 (2006) 3409–3420.

    CAS  Google Scholar 

  151. Patocka G., Jelen P., Kalab M., Thermostability of skim milk with modified casein/whey protein content, Int. Dairy J. 3 (1993) 35–48.

    CAS  Google Scholar 

  152. Pearse M.J., Linklater P.M., Hall R.J., McKinlay A., Effects of heat-induced interaction between β-lactoglobulin and κ-casein on syneresis, J. Dairy Res. 52 (1985) 159–165.

    CAS  Google Scholar 

  153. Plock J., Spiegel T., Kessler H.-G., Influence of the dry matter on the denaturation kinetics of whey proteins in concentrated sweet whey, Milchwissenschaft 53 (1998) 327–331.

    CAS  Google Scholar 

  154. Plock J., Spiegel T., Kessler H.-G., Influence of the lactose concentration on the denaturation kinetics of whey proteins in concentrated sweet whey, Milchwissenschaft 53 (1998) 389–393.

    CAS  Google Scholar 

  155. Pouliot Y., Boulet M., Paquin P., Observations on the heat induced salt balance changes in milk. I: Effect of heating time between 4 and 90 °C, J. Dairy Res. 56 (1989) 185–192.

    CAS  Google Scholar 

  156. Prabakaran S., Damodaran S., Thermal unfolding of β-lactoglobulin: characterization of initial unfolding events responsible for heat-induced aggregation, J. Agric. Food Chem. 45 (1997) 4303–4308.

    CAS  Google Scholar 

  157. Puvanenthiran A., Williams R.P.W., Augustin M.A., Structure and visco-elastic properties of set yoghurt with altered casein to whey protein ratios, Int. Dairy J. 12 (2002) 383–391.

    CAS  Google Scholar 

  158. Reddy I.M., Kinsella J.E., Interaction of β-lactoglobulin with κ-casein in micelles as assessed by chymosin hydrolysis: effects of temperature, heating time, β-lactoglobulin concentration, and pH, J. Agric. Food Chem. 38 (1990) 50–58.

    CAS  Google Scholar 

  159. Relkin P., Thermal unfolding of β-lactoglobulin, α-lactalbumin, and bovine serum albumin. A thermodynamic approach, Crit. Rev. Food Sci. Nut. 36 (1996) 565–601.

    CAS  Google Scholar 

  160. Relkin P., Reversibility of heat-induced conformational changes and surface exposed hydrophobic clusters of β-lactoglobulin: their role in heat-induced sol-gel transition, Int. J. Biol. Macromol. 22 (1998) 59–66.

    CAS  Google Scholar 

  161. Renan M., Guyomarc’h F., Chatriot M., Gamerre V., Famelart M.-H., Limited enzymatic treatment of skim milk using chymosin affects the micelle/serum distribution of the heat-induced whey protein/κ-casein aggregates, J. Agric. Food Chem. 55 (2007) 6736–6745.

    CAS  Google Scholar 

  162. Renan M., Mekmene O., Famelart M.-H., Guyomarc’h F., Arnoult-Delest V., Pâquet D., Brulé G., pH-Dependent behaviour of soluble protein aggregates formed during heat-treatment of milk at pH 6.5 or 7.2, J. Dairy Res. 73 (2006) 79–86.

    CAS  Google Scholar 

  163. Ribadeau-Dumas B., Garnier J., Structure of the casein micelle. The accessibility of the subunits to various reagents, J. Dairy Res. 37 (1970) 269–278.

    CAS  Google Scholar 

  164. Rodriguez del Angel C., Dalgleish D.G., Structures and some properties of soluble protein complexes formed by the heating of reconstituted skim milk powder, Food Res. Int. 39 (2006) 472–479.

    CAS  Google Scholar 

  165. Roefs S.P.F.M., de Kruif K.G., A model for the denaturation and aggregation of β-lactoglobulin, Eur. J. Biochem. 226 (1994) 883–889.

    CAS  Google Scholar 

  166. Roesch R.R., Corredig M., Study of the effect of soy proteins on the acid-induced gelation of casein micelles, J. Agric. Food Chem. 54 (2006) 8236–8243.

    CAS  Google Scholar 

  167. Sawyer W.H., Complex between β-lactoglobulin and κ-casein. A review, J. Dairy Sci. 52 (1969) 1347–1355.

    CAS  Google Scholar 

  168. Schmidt D.G., Association of caseins and casein micelle structure, in: Fox P.F. (Ed.), Development in Dairy Chemistry, Volume 1, Proteins, Applied Science Publishers, London, UK, 1982, pp. 61–86.

    Google Scholar 

  169. Schorsch C., Wilkins D.K., Jones M.G., Norton I.T., Gelation of casein-whey mixtures: effects of heating whey proteins alone or in the presence of casein micelles, J. Dairy Res. 68 (2001) 471–481.

    CAS  Google Scholar 

  170. Singh H., Heat-induced changes in milk, including interactions with whey proteins, in: Fox P.F. (Ed.), Heat-induced changes in milk, Special issue 9501, International Dairy Federation, Bruxelles, Belgium, 1995, pp. 86–104.

    Google Scholar 

  171. Singh H., Creamer L.K., Aggregation and dissociation of milk protein complexes in heated reconstituted concentrated skim milk, J. Food Sci. 56 (1991) 238–246.

    CAS  Google Scholar 

  172. Singh H., Fox P.F., Heat stability of milk: pH-dependent dissociation of micellar κ-casein on heating milk at ultra-high temperatures, J. Dairy Res. 52 (1985) 529–538.

    CAS  Google Scholar 

  173. Singh H., Fox P.F., Heat stability of milk: further studies on the pH-dependent dissociation of micellar κ-casein, J. Dairy Res. 53 (1986) 237–248.

    CAS  Google Scholar 

  174. Singh H., Fox P.F., Heat stability of milk: role of β-lactoglobulin in the pH-dependent dissociation of micellar κ-casein, J. Dairy Res. 54 (1987) 509–521.

    CAS  Google Scholar 

  175. Singh H., Fox P.F., Heat stability of milk: influence of colloidal and soluble salts and protein modification on the pH-dependent dissociation of micellar κ-casein, J. Dairy Res. 54 (1987) 523–534.

    CAS  Google Scholar 

  176. Smits P., van Brouwershaven J.V.H., Heat-induced association of β-lactoglobulin and casein micelles, J. Dairy Res. 47 (1980) 313–325.

    CAS  Google Scholar 

  177. Sodini I., Remeuf F., Haddad S., Corrieu G., The relative effect of milk base, starter and process on yoghurt texture: a review, Crit. Rev. Food Sci. Nut. 44 (2004) 113–137.

    Google Scholar 

  178. Surroca Y., Haverkamp J., Heck A.J.R., Towards the understanding of molecular mechanisms in the early stages of heat-induced aggregation of β-lactoglobulin AB, J. Chromatogr. A 970 (2002) 275–285.

    CAS  Google Scholar 

  179. Tolkach A., Kulozik U., Reaction kinetic pathway of reversible and irreversible thermal denaturation of β-lactoglobulin, Lait 87 (2007) 301–315.

    CAS  Google Scholar 

  180. Tran-Le T., El-Bakry M., Neirynck N., Bogus M., Dinh Hoa H., van der Meeren P., Hydrophilic lecithins protect milk proteins against heat-induced aggregation, Colloids Surfaces B: Biointerfaces 60 (2007) 167–173.

    Google Scholar 

  181. Unterhaslberger G., Schmitt C., Sanchez C., Appolonia-Nouzille C., Raemy A., Heat-denaturation and aggregation of β-lactoglobulin enriched WPI in the presence of arginine HCl, NaCl and guanidinium HCl at pH 4.0 and 7.0, Food Hydrocoll. 20 (2006) 1006–1019.

    CAS  Google Scholar 

  182. Unterhaslberger G., Schmitt C., Shojaei-Rami S., Sanchez C., Beta-lactoglobulin aggregates from heating with charged cosolutes: formation, characterization and foaming, in: Dickinson E., Leser M. (Eds.), Food Colloids: Self assembly and material science, The Royal Society of Chemistry, Cambridge, 2007, pp. 175–192.

    Google Scholar 

  183. Van Hooydonk A.C.M., de Koster P.G., Boerrigter I.J., The renneting properties of heated milk, Neth. Milk Dairy J. 41 (1987) 3–18.

    Google Scholar 

  184. Van Kemenade M.J.J.M., de Bruyn P.L., The influence of casein on the precipitation of brushite and octacalcium phosphate, Colloids Surfaces 36 (1989) 359–368.

    Google Scholar 

  185. Van Vliet T., Roefs S.P.F.M., Zoon P., Walstra P., Rheological properties of casein gels, J. Dairy Res. 56 (1989) 529–534.

    Google Scholar 

  186. Vasbinder A.J., Alting A.C., de Kruif K.G., Quantification of heat-induced casein-whey protein interactions in milk and its relation to gelation kinetics, Colloids Surfaces B: Biointerfaces 31 (2003) 115–123.

    CAS  Google Scholar 

  187. Vasbinder A.J., de Kruif C.G., Casein-whey protein interactions in heated milk: the influence of pH, Int. Dairy J. 13 (2003) 669–677.

    CAS  Google Scholar 

  188. Vasbinder A.J., Rollema H.S., De Kruif C.G., Impaired rennetability of heated milk; study of enzymatic hydrolysis and gelation kinetics, J. Dairy Sci. 86 (2003) 1548–1555.

    CAS  Google Scholar 

  189. Vasbinder A.J., van de Velde F., de Kruif C.G., Gelation of casein-whey protein mixtures, J. Dairy Sci. 87 (2004) 1167–1176.

    CAS  Google Scholar 

  190. Vasbinder A.J., van Mil P.J.J.M., Bot A., de Kruif C.G., Acid-induced gelation of heat-treated milk studied by diffusing wave spectroscopy, Colloids Surfaces B 21 (2001) 245–250.

    CAS  Google Scholar 

  191. Verheul M., Roefs S.P.F.M., de Kruif K.G., Kinetics of heat-induced aggregation of β-lactoglobulin, J. Agric. Food Chem. 46 (1998) 896–903.

    CAS  Google Scholar 

  192. Walstra P., On the stability of casein micelles, J. Dairy Sci. 73 (1990) 1965–1979.

    CAS  Google Scholar 

  193. Walstra P., Jenness R., Proteins, in: Walstra P., Jenness R. (Eds.), Dairy Chemistry and Physics, Wiley and Sons, New York, USA, 1984, pp. 98–122.

    Google Scholar 

  194. Zhang X., Fu X., Zhang H., Liu C., Wangwang J., Chang Z., Chaperone-like activity of β-casein, Int. J. Biochem. Cell Biol. 37 (2005) 1232–1240.

    CAS  Google Scholar 

  195. Zittle C.A., Thompson M.P., Custer J.H., Cerbulis J., κ-casein-β-lactoglobulin interaction in solution when heated, J. Dairy Sci. 45 (1962) 807–810.

    CAS  Google Scholar 

  196. Zoon P., Incorporation of whey proteins into Dutch-type cheese, in: Emmons D.B. (Ed.), Cheese yield and factors affecting its control, IDF Seminar in Cork, International Dairy Federation, Bruxelles, Belgium, 1994, pp. 402–408.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fanny Guyomarc’h.

About this article

Cite this article

Donato, L., Guyomarc’h, F. Formation and properties of the whey protein/κ-casein complexes in heated skim milk — A review. Dairy Sci. Technol. 89, 3–29 (2009). https://doi.org/10.1051/dst:2008033

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1051/dst:2008033

Navigation