An AIEgen-based 2D ultrathin metal–organic layer as an electrochemiluminescence platform for ultrasensitive biosensing of carcinoembryonic antigen†
Abstract
In this work, a novel two-dimensional (2D) ultrathin metal–organic layer (MOL) based on the aggregation-induced emission (AIE) ligand H4ETTC (H4ETTC = 4′,4′′′,4′′′′′,4′′′′′′′-(ethene-1,1,2,2-tetrayl)tetrakis(([1,1′-biphenyl]-4-carboxylic acid))) was developed and used to construct a novel electrochemiluminescence (ECL) aptasensor for ultrasensitive detection of carcinoembryonic antigen (CEA). The newly synthesized AIE luminogen (AIEgen)-based MOL (Hf-ETTC-MOL) yielded a higher ECL intensity and efficiency than did H4ETTC monomers, H4ETTC aggregates and 3D bulk Hf-ETTC-MOF. This improvement occurred not only because the ETTC ligands were coordinatively immobilized in a rigid MOL matrix, which restricted the intramolecular free rotation and vibration of these ligands and then reduced the non-radiative transition, but also because the porous ultrathin 2D MOL greatly shortened the transport distances of ions, electrons, coreactant (triethylamine, TEA) and coreactant intermediates (TEA˙ and TEA˙+), which made more ETTC luminophores able to be excited and yielded a high ECL efficiency. On the basis of using the Hf-ETTC-MOL as a novel ECL emitter and rolling circle amplification (RCA) as a signal amplification strategy, the constructed ECL aptasensor exhibited a linear range from 1 fg mL−1 to 1 ng mL−1 with a detection limit of 0.63 fg mL−1. This work has opened up new prospects for developing novel ECL materials and is expected to lead to increased interest in using AIEgen-based MOLs for ECL sensing.