Abstract
Approximately 70% of the terrestrial area is covered with water, but only a small water fraction is compatible with terrestrial life forms. Due to the increment in human consumption, the need for water resources is increasing, and it is estimated that more than 40% of the population worldwide will face water stress/scarcity within the next few decades. Water recycling and reuse may offer the opportunity to expand water resources. For that, the wastewater treatment paradigm should be changed and adequately treated wastewater should be seen as a valuable resource instead of a waste product. It is easily understandable that the exact composition and constituent concentration of wastewater vary according to its different sources (industrial, agricultural, urban usage of water). Consequently, a variety of known and emerging pollutants like heavy metals, antibiotics, pesticides, phthalates, polyaromatic hydrocarbons, halogenated compounds and endocrine disruptors have been found in natural water reservoirs, due to the limited effectiveness of conventional wastewater treatment. The conventional approach consists of a combination of physical, chemical and biological processes, aiming at the removal of large sediments such as heavier solids, scum and grease and of organic content in order to avoid the growth of microorganisms and eutrophication of the receiving water bodies. However, this approach is not sufficient to reduce the chemical pollutants and much less the emerging chemical pollutants. In this review, after some considerations concerning chemical pollutants and the problematic efficiency of their removal by conventional methods, an update is presented on the successes and challenges of novel approaches for wastewater remediation based on advanced oxidation processes. An insight into wastewater remediation involving the photodynamic approach mediated by tetrapyrrolic derivatives will be underlined.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
C. Becerra-Castro, A. R. Lopes, I. Vaz-Moreira, E. F. Silva, C. M. Manaia and O. C. Nunes, Wastewater reuse in irriga-tion: a microbiological perspective on implications in soil fertility and human and environmental health, Environ. Int., 2015, 75, 117–135, DOI: 10.1016/j.envint.2014.11.001.
J.-M. Faures, J. Hoogeveen, J. Winpenny, P. Steduto and J. Burke, Coping with water scarcity: an action framework for agriculture and food security, Food and Agriculture Organization of the United Nations (FAO), Rome, 2012. ISBN 978-92-5-107304-9.
D. Wichelns, P. Drechsel and M. Qadir, Wastewater: econ-omic asset in an urbanizing world, in Wastewater, ed. D. Wichelns, P. Drechsel and M. Qadir, Springer, Netherlands, 2015. (Available from: http://link.springer.com/10.1007/978-94-017-9545-6_1).
European Commission, Water Scarcity & Droughts in the European Union. Environment, 2016 (available from: http://ec.europa.eu/environment/water/quantity/scarcity_en.htm).
D. Bixio, C. Thoeye, J. De Koning, D. Joksimovic, D. Savic, T. Wintgens and T. Melin, Wastewater reuse in Europe, Desalination, 2006, 187, 89–101, DOI: 10.1016/j.desal.2005.04.070.
A. Jagerskog and T. Jonch Clausen, Feeding a thirsty world. World Water Week, 2012, 52 p.
United Nations Educational, Scientific and Cultural Organization (UNESCO), Emerging Pollutants in Water and Wastewater, 2017 (available from: https://en.unesco.org/emergingpollutants).
J. Mateo-Sagasta, L. Raschid-Sally and A. Thebo, Global wastewater and sludge production, treatment and use, in Wastewater, ed. P. Drechsel, M. Qadir and D. Wichelns, Springer, Netherlands, 2015. (Available from: http://link.springer.com/10.1007/978-94-017-9545-6_2).
G. Bitton, Wastewater reuse, in Wastewater Microbiology, John Wiley & Sons, 3rd edn, 2005, pp. 589–607.
V. Geissen, H. Mol, E. Klumpp, G. Umlauf, M. Nadal, M. van der Ploeg, S. E. A. T. M. van de Zee and C. J. Ritsema, Emerging pollutants in the environment: a challenge for water resource management, Int. Soil Water Conserv. Res, 2015, 3, 57–65, DOI: 10.1016/j.iswcr.2015.03.002.
United Nations World Water Assessment Programme (WWAP), UN World Water Development Report: Wastewater, the untapped resource, UNESCO, Paris, 2017 (available from: http://www.unesco.org/new/en/natural-sciences/environ-ment/water/wwap/wwdr/2017-wastewater-the-untapped-resource/).
T. Deblonde, C. Cossu-Leguille and P. Hartemann, Emerging pollutants in wastewater: a review of the litera-ture, Int. J. Hyg. Environ. Health, 2011, 214, 442–448, DOI: 10.1016/j.ijheh.2011.08.002.
C. Vogelsang, M. Grung, T. G. Jantsch, K. E. Tollefsen and H. Liltved, Occurrence and removal of selected organic micropollutants at mechanical, chemical and advanced wastewater treatment plants in Norway, Water Res., 2006, 40, 3559–3570, DOI: 10.1016/j.watres.2006.07.022.
R. Rosal, A. Rodríguez, J. A. Perdigón-Melón, A. Petre, E. García-Calvo, M. J. Gómez, A. Agüera and A. R. Fernández-Alba, Occurrence of emerging pollutants in urban wastewater and their removal through biological treatment followed by ozonation, Water Res., 2010, 44, 578–588, DOI: 10.1016/j.watres.2009.07.004.
Network of reference laboratories research centres and related organisations for monitoring of emerging environ-mental substances (NORMAN Association). Emerging sub-stances. Why do we need to address emerging substances? (available from: http://www.norman-network.net/?q=node/19).
Y. Luo, W. Guo, H. H. Ngo, L. D. Nghiem, F. I. Hai, J. Zhang, S. Liang and X. C. Wang, A review on the occur-rence of micropollutants in the aquatic environment and their fate and removal during wastewater treatment, Sci. Total Environ., 2014, 473-474, 619–641, DOI: 10.1016/j.scitotenv.2013.12.065.
J. O'Neill, Antimicrobial resistance: tackling a crisis for the health and wealth of nations. Review on Antimicrobial Resistance, December, 2014.
T. aus der Beek, F.-A. Weber, A. Bergmann, S. Hickmann, I. Ebert, A. Hein and A. Kuster, Pharmaceuticals in the environment-global occurrences and perspectives, Environ. Toxicol. Chem., 2015, 35, 823–835, DOI: 10.1002/etc.3339.
L. Araujo, J. Wild, N. Villa, N. Camargo, D. Cubillan and A. Prieto, Determination of anti-inflammatory drugs in water samples, by in situ derivatization, solid phase micro-extraction and gas chromatography-mass spectrometry, Talanta, 2008, 75, 111–115, DOI: 10.1016/j.talanta.2007.10.035.
S. Mompelat, B. Le Bot and O. Thomas, Occurrence and fate of pharmaceutical products and by-products, from resource to drinking water, Environ. Int., 2009, 35, 803–814, DOI: 10.1016/j.envint.2008.10.008.
European Parliament and the Council. Decision No 2455/ 2001/EC of the European Parliament and of the Council of 20 November 2001 establishing the list of priority sub-stances in the field of water policy and amending Directive 2000/60/EC, Off J Eur Parliam (available from: http://eur-lex.europa.eu/legal-content/EN/TXT/?qid=1513597592161&uri=CELEX:32001D2455).
European Community, Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 establishing a framework for Community action in the field of water policy, Off J Eur Parliam, 2000, 1–82.
J. Wang and S. Wang, Removal of pharmaceuticals and personal care products (PPCPs) from wastewater: a review, J. Environ. Manage., 2016, 182, 620–640, DOI: 10.1016/j.jenvman.2016.07.049.
M. Grassi, G. Kaykioglu, V. Belgiorno and G. Lofrano, Removal of emerging contaminants from water and waste-water by adsorption process, in Emerging compounds removal from wastewater: natural and solar based treat-ments, ed. G. Lofrano, Springer, 2012, pp. 15–37.
A. Arques and A. M. Amat, Removal of pharmaceutics by solar-driven processes, in Emerging compounds removal from wastewater: natural and solar based treatments, ed. G. Lofrano, Springer, 2012, pp. 77–91.
Y. Günay, S. Meric and G. Lofrano, Emerging compounds removal from wastewater in constructed wetlands, in Emerging compounds removal from wastewater: natural and solar based treatments, ed. G. Lofrano, Springer, 2012, pp. 39–58.
J. Rivera-Utrilla, M. Sänchez-Polo, M. A. Ferro-Garcia, G. Prados-Joya and R. Ocampo-Perez, Pharmaceuticals as emerging contaminants and their removal from water. A review, Chemosphere, 2013, 93, 1268–1287, DOI: 10.1016/j.chemosphere.2013.07.059.
B. Li, T. Zhang, Z. Xu, H. Han and P. Fang, Rapid analysis of 21 antibiotics of multiple classes in municipal waste-water using ultra performance liquid chromatography-tandem mass spectrometry, Anal. Chim. Acta, 2009, 645, 64–72, DOI: 10.1016/j.aca.2009.04.042.
C. L. Amorim, I. S. Moreira, A. R. Ribeiro, L. H. M. L. M. Santos, C. Delerue-Matos, M. E. Tiritan and P. M. L. Castro, Treatment of a simulated wastewater amended with a chiral pharmaceuticals mixture by an aerobic granular sludge sequencing batch reactor, Int. Biodeterior. Biodegrad., 2016, 115, 277–285, DOI: 10.1016/j.ibiod.2016.09.009.
M. Gavrilescu, K. Demnerova, J. Aamand, S. Agathos and F. Fava, Emerging pollutants in the environment: present and future challenges in biomonitoring, ecological risks and bioremediation, N Biotechnol., 2015, 32, 147–156, DOI: 10.1016/j.nbt.2014.01.001.
N. Nassiri Koopaei and M. Abdollahi, Health risks associ-ated with the pharmaceuticals in wastewater, Daru, J. Pharm. Sci., 2017, 25, 1–7, DOI: 10.1186/s40199-017-0176-y.
R. Andreozzi, M. Raffaele and P. E. E. Nicklas, Pharmaceuticals in STP effluents and their solar photode-gradation in aquatic environment, Chemosphere, 2003, 50, 1319–1330.
C. N. D. Giang, Z. Sebesvari, F. Renaud, I. Rosendahl, Q. H. Minh and W. Amelung, Occurrence and dissipation of the antibiotics sulfamethoxazole, sulfadiazine, tri-methoprim, and enrofloxacin in the Mekong Delta, Vietnam, PLoS One, 2015, 10, 1–24, DOI: 10.1371/journal.pone.0131855.
A. B. Caracciolo, E. Topp and P. Grenni, Pharmaceuticals in the environment: biodegradation and effects on natural microbial communities. A review, J. Pharm. Biomed. Anal., 2015, 106, 25–36, DOI: 10.1016/j.jpba.2014.11.040.
E. Fernandez-Fontaina, I. B. Gomes, D. S. Aga, F. Omil, J. M. Lema and M. Carballa, Biotransformation of phar-maceuticals under nitrification, nitratation and hetero-trophic conditions, Sci. Total Environ., 2016, 541, 1439–1447, DOI: 10.1016/j.scitotenv.2015.10.010.
National Center for Biotechnology Information, U.S. National Library of Medicine. Norfloxacin. PubChem. (available from: https://pubchem.ncbi.nlm.nih.gov/com-pound/norfloxacin#section=Top).
M. J. Benotti and B. J. Brownawell, Microbial degradation of pharmaceuticals in estuarine and coastal seawater, Environ. Pollut., 2009, 157, 994–1002, DOI: 10.1016/j.envpol.2008.10.009.
S. Willach, H. V. Lutze, K. Eckey, K. Loppenberg, M. Luling, J. Terhalle, J. B. Wolbert, M. A. Jochmann, U. Karst and T. C. Schmidt, Degradation of sulfamethoxa-zole using ozone and chlorine dioxide-compound-specific stable isotope analysis, transformation product analysis and mechanistic aspects, Water Res., 2017, 122, 280–289, DOI: 10.1016/j.watres.2017.06.001.
R. Mailler, J. Gasperi, Y. Coquet, A. Bulete, E. Vulliet, S. Deshayes, S. Zedek, C. Mirande-Bret, V. Eudes, A. Bressy, E. Caupos, R. Moilleron, G. Chebbo and V. Rocher, Removal of a wide range of emerging pollutants from wastewater treatment plant discharges by micro-grain activated carbon in fluidized bed as tertiary treat-ment at large pilot scale, Sci. Total Environ., 2016, 542, 983–996, DOI: 10.1016/J.SCITOTENV.2015.10.153.
I. S. Moreira, C. L. Amorim, A. R. Ribeiro, R. B. R. Mesquita, A. O. S. S. Rangel, M. C. M. van Loosdrecht, M. E. Tiritan and P. M. L. Castro, Removal of fluoxetine and its effects in the performance of an aerobic granular sludge sequential batch reactor, J. Hazard. Mater., 2015, 287, 93–101, DOI: 10.1016/j.jhazmat.2015.01.020.
K. D. Brown, J. Kulis, B. Thomson, T. H. Chapman and D. B. Mawhinney, Occurrence of antibiotics in hospital, residential, and dairy effluent, municipal wastewater, and the Rio Grande in New Mexico, Sci. Total Environ., 2006, 366, 772–783, DOI: 10.1016/j.scitotenv.2005.10.007.
K. H. Langford and K. V. Thomas, Determination of pharmaceutical compounds in hospital effluents and their contribution to wastewater treatment works, Environ. Int., 2009, 35, 766–770, DOI: 10.1016/j.envint.2009.02.007.
A. Zenker, M. R. Cicero, F. Prestinaci, P. Bottoni and M. Carere, Bioaccumulation and biomagnification poten-tial of pharmaceuticals with a focus to the aquatic environment, J. Environ. Manage., 2014, 133, 378–387, DOI: 10.1016/j.jenvman.2013.12.017.
W. C. Li, Occurrence, sources, and fate of pharmaceuticals in aquatic environment and soil, Environ. Pollut., 2014, 187, 193–201, DOI: 10.1016/j.envpol.2014.01.015.
M. Bourgin, E. Borowska, J. Helbing, J. Hollender, H. P. Kaiser, C. Kienle, C. S. McArdell, E. Simon and U. von Gunten, Effect of operational and water quality parameters on conventional ozonation and the advanced oxidation process O3/H2O2: kinetics of micropollutant abatement, transformation product and bromate for-mation in a surface water, Water Res., 2017, 122, 234–245, DOI: 10.1016/j.watres.2017.05.018.
L. H. M. L. M. Santos, M. Gros, S. Rodriguez-Mozaz, C. Delerue-Matos, A. Pena, D. Barcelo and M. C. B. S. M. Montenegro, Contribution of hospital effluents to the load of pharmaceuticals in urban waste-waters: identification of ecologically relevant pharmaceuti-cals, Sci. Total Environ., 2013, 461-462, 302–316, DOI: 10.1016/j.scitotenv.2013.04.077.
National Center for Biotechnology Information. U.S. National Library of Medicine. Ethinyl Estradiol. PubChem. (available from: http://pubs.acs.org/doi/10.1021/cg301479c).
L. Feng, E. D. van Hullebusch, M. A. Rodrigo, G. Esposito and M. A. Oturan, Removal of residual anti-inflammatory and analgesic pharmaceuticals from aqueous systems by electrochemical advanced oxidation processes. A review, Chem. Eng. J., 2013, 228, 944–964, DOI: 10.1016/j.cej.2013.05.061.
Q. Sui, X. Cao, S. Lu, W. Zhao, Z. Qiu and G. Yu, Occurrence, sources and fate of pharmaceuticals and per-sonal care products in the groundwater: a review, Emerg. Contam., 2015, 1, 14–24, DOI: 10.1016/j.emcon.2015.07.001.
A. R. Ribeiro, O. C. Nunes, M. F. R. Pereira and A. M. T. Silva, An overview on the advanced oxidation pro-cesses applied for the treatment of water pollutants defined in the recently launched Directive 2013/39/EU, Environ. Int., 2015, 75, 33–51, DOI: 10.1016/j.envint.2014.10.027.
United States Environmental Protection Agency, Fact Sheet: Nonylphenols and Nonylphenol Ethoxylates. Assessing and Managing Chemicals under TSCA, 2017 (available from: https://www.epa.gov/assessing-and-managing-chemicals-under-tsca/fact-sheet-nonylphenols-and-nonylphenol-ethoxylates#avoid).
Centers for Disease Control and Prevention, Biomonitoring Summary-Octylphenol. National Biomonitoring Program, 2016 (available from: https://www.cdc.gov/biomonitoring/Octylphenol_BiomonitoringSummary.html).
National Center for Biotechnology Information. U.S. National Library of Medicine. Anthracene. PubChem. (available from: http://www.tandfonline.com/doi/abs/10.1080/10587250210538).
National Center for Biotechnology Information. U.S. National Library of Medicine. Benzene. PubChem. (avail-able from: https://pubchem.ncbi.nlm.nih.gov/compound/benzene#section=Top).
National Center for Biotechnology Information. U.S. National Library of Medicine. Trifluralin. PubChem. (available from: https://pubchem.ncbi.nlm.nih.gov/com-pound/trifluralin#section=Top).
Toxicology Data Network. U.S. National Library of Medicine. Fluoranthene. TOXNET. (available from: https://toxnet.nlm.nih.gov/cgi-bin/sis/search2/r?dbs+hsdb:@term+@rn+206-44-0).
U.S. Environmental Protection Agency. National Center for Environmental Assessment. Naphthalene. Integrated Risk Information System. (available from: https://cfpub.epa.gov/ncea/iris/iris_documents/documents/subst/0436_summary.pdf).
Agency for Toxic Substances & Disease Registry. Polycyclic Aromatic Hydrocarbons (PAHs). Toxic Substances Portal. (available from: https://www.atsdr.cdc.gov/substances/tox-substance.asp?toxid=25).
U.S. National Library of Medicine. Polycyclic Aromatic Hydrocarbons (PAHs). Tox Town. Environmental health concerns and toxic chemicals where you live, work, and play. (available from: https://toxtown.nlm.nih.gov/text_version/chemicals.php?id=80).
H. I. Abdel-Shafy and M. S. M. Mansour, A review on poly-cyclic aromatic hydrocarbons: source, environmental impact, effect on human health and remediation, Egypt J. Pet., 2016, 25, 107–123, DOI: 10.1016/J.EJPE.2015.03.011.
National Center for Biotechnology Information. U.S. National Library of Medicine. 1,2-Dichloroethane. PubChem. (available from: http://www.degruyter.com/view/j/zkri.2004.219.issue-9/zkri.219.9.573.44041/zkri.219.9.573.44041.xml).
Agency for Toxic Substances & Disease Registry. 1,2-Dichloroethane. Toxic Substances Portal (available from: https://www.atsdr.cdc.gov/substances/toxsubstance.asp?toxid=110).
U. S. Environmental Protection Agency. Fact Sheet for Alachlor, 1998 (available from: https://www3.epa.gov/pesti-cides/chem_search/reg_actions/reregistration/fs_PC-090501_1-Dec-98.pdf).
National Center for Biotechnology Information. U.S. National Library of Medicine. Alachlor. PubChem (avail-able from: https://pubchem.ncbi.nlm.nih.gov/compound/alachlor#section=Top).
Pesticide Management Education Program. Alachlor. Extention Toxicology Network (EXTOXNET) (available from: http://pmep.cce.cornell.edu/profiles/extoxnet/24d-captan/alachlor-ext.html).
National Center for Biotechnology Information. U.S. National Library of Medicine. Dichloromethane. PubChem. (available from: https://pubchem.ncbi.nlm.nih.gov/compound/12222467).
U.S. Environmental Protection Agency. Fact Sheet: Methylene Chloride or Dichloromethane. Assessing and Managing Chemicals under TSCA (available from: https://www.epa.gov/assessing-and-managing-chemicals-under-tsca/fact-sheet-methylene-chloride-or-dichloromethane-dcm-0#used).
National Center for Biotechnology Information. U.S. National Library of Medicine. Endosulfan. PubChem (available from: https://pubchem.ncbi.nlm.nih.gov/com-pound/endosulfan#section=Top).
Cornell University Cooperative Extension. Endosulfan. Extension Toxicology Network (available from: http://pmep.cce.cornell.edu/profiles/extoxnet/dienochlor-glypho-sate/endosulfan-ext.html).
National Center for Biotechnology Information. U.S. National Library of Medicine. Hexachlorobenzene [Internet]. PubChem. Available from: https://pubchem.ncbi.nlm.nih.gov/compound/hexachlorobenzene#section=Top.
International Program on Chemical Safety. Hexachlorobutadiene. Environmental Health Criteria. World Health Organization (available from: http://www.inchem.org/documents/ehc/ehc/ehc156.htm).
U.S. Environmental Protection Agency. Pentachlorobenzene (available from: https://archive.epa.gov/epawaste/hazard/wastemin/web/pdf/pentchlb.pdf).
National Center for Biotechnology Information. U.S. National Library of Medicine. Pentachlorobenzene. PubChem (available from: https://pubchem.ncbi.nlm.nih.gov/compound/pentachlorobenzene#section=Uses).
Canadian POPs Trust Fund. Canadian International Development Agency. Pentachlorobenzene (PeCB). Persistent Organic Pollutants Toolkit (available from: http://www-esd.worldbank.org/popstoolkit/POPsToolkit/POPSTOOLKIT_COM/ABOUT/CHEMICAL/PECB.HTM).
National Center for Biotechnology Information. U.S. National Library of Medicine. Pentachlorophenol. PubChem (available from: https://pubchem.ncbi.nlm.nih.gov/compound/pentachlorophenol#section=Top).
National Center for Biotechnology Information. U.S. National Library of Medicine. Chloroform. PubChem (available from: https://pubchem.ncbi.nlm.nih.gov/com-pound/chloroform#section=Top).
International Programme on Chemical Safety. Hexachlorocyclohexane (mixed isomers). Poisons Information Monograph (available from: http://www.inchem.org/documents/pims/chemical/pim257.htm#4.USE).
Agency for Toxic Substances & Disease Registry. Hexachlorocyclohexane (HCH). Toxic Substances Portal (available from: https://www.atsdr.cdc.gov/substances/tox-substance.asp?toxid=138).
National Center for Biotechnology Information. U.S: National Library of Medicine. Trichlorobenzene. PubChem (available from: https://pubchem.ncbi.nlm.nih.gov/compound/1_2_3-trichlorobenzene#section=Top).
International Program on Chemical Safety. Brominated diphenyl ethers. Environmental Health Criteria. World Health Organization (available from: http://www.inchem.org/documents/ehc/ehc/ehc162.htm#PartNumber:2).
M. A. Siddiqi, R. H. Laessig and K. D. Reed, Polybrominated diphenyl ethers (PBDEs): new pollutants-old diseases, Clin. Med. Res., 2003, 1, 281–290.
E. Malaj, P. C. von der Ohe, M. Grote, R. Kühne, C. P. Mondy, P. Usseglio-Polatera, W. Brack and R. B. Schäfer, Organic chemicals jeopardize the health of freshwater ecosystems on the continental scale, Proc. Natl. Acad. Sci. U. S. A., 2014, 111, 9549–9554, DOI: 10.1073/pnas.1321082111.
European Chemicals Agency. An Agency of the European Union. Support document for identification of Alkanes, C10-13, Chloro as a substance of very high concern. Helsinki, 2008 (available from: https://echa.europa.eu/documents/10162/13638/svhc_supdoc_alkanes_c10_13_chloro_publication_3568_en.pdf/2edcfedb-ec53-4754-8598-e787a8ff7a58).
National Center for Biotechnology Information. U.S. National Library of Medicine. Cadmium. PubChem (available from: https://pubchem.ncbi.nlm.nih.gov/compound/cadmium#section=Uses).
Agency for Toxic Substances & Disease Registry (ATSDR). Cadmium (Cd) Toxicity: What diseases are associated with chronic exposure to cadmium? Environmental Health and Medicine Education (available from: https://www.atsdr.cdc.gov/csem/csem.asp?csem=6&po=12).
National Center for Biotechnology Information. U.S. National Library of Medicine. Lead. PubChem. (available from: https://pubchem.ncbi.nlm.nih.gov/compound/lead#section=Uses).
National Center for Biotechnology Information. U.S. National Library of Medicine. Mercury. PubChem. (avail-able from: https://pubchem.ncbi.nlm.nih.gov/compound/mercury#section=Top).
International Programme on Chemical Safety. Tributyltin and triphenyltin compounds. Integrated Risk Assessment, 2012 (available from: http://www.who.int/ipcs/publi-cations/en/ch_3c.pdf).
University of Tennessee. Formal Toxicity Summary for Nickel and nickel compounds. The Risk Assessment Information System (RAIS) (available from: https://rais.ornl.gov/tox/profiles/nickel_and_nickel_compounds_f_V1.html).
Agency for Toxic Substances and Disease Registry. Chlorfenvinphos. Toxic Substances Portal (available from: https://www.atsdr.cdc.gov/substances/toxsubstance.asp?toxid=193).
National Center for Biotechnology Information. U.S. National Library of Medicine. Chlorfenvinphos. PubChem. (available from: https://pubchem.ncbi.nlm.nih.gov/compound/Chlorfenvinphos#section=Top).
Cornell University Cooperative Extension. Chlorpyrifos. Extension Toxicology Network, EXTOXNET (available from: http://pmep.cce.cornell.edu/profiles/extoxnet/car-baryl-dicrotophos/chlorpyrifos-ext.html).
Agency for Toxic Substances and Disease Registry. Di(2-ethylhexyl)phthalate (DEHP). Toxic Substances Portal. (available from: https://www.atsdr.cdc.gov/substances/tox-substance.asp?toxid=65).
National Center for Biotechnology Information. U.S. National Library of Medicine. DEHP. PubChem (available from: https://pubchem.ncbi.nlm.nih.gov/compound/dehp#section=Chemical-and-Physical-Properties).
Cornel University Cooperative Extension. Diuron. EXTOXNET (available from: http://pmep.cce.cornell.edu/profiles/extoxnet/dienochlor-glyphosate/diuron-ext.html).
National Center for Biotechnology Information. U.S. National Library of Medicine. Diuron, N'-(3,4-dichloro-phenyl)-N,N-dimethylurea. PubChem (available from: https://pubchem.ncbi.nlm.nih.gov/compound/diuron#-section=Top).
National Center for Biotechnology Information. U.S. National Library of Medicine. Isoproturon. PubChem (available from: https://pubchem.ncbi.nlm.nih.gov/com-pound/isoproturon#section=EU-Pesticides-Data).
University of Hertfordshire. Isoproturon. Pesticide Properties Database (available from: https://sitem.herts.ac.uk/aeru/ppdb/en/Reports/409.htm).
National Center for Biotechnology Information. Atrazine. PubChem (available from: https://pubchem.ncbi.nlm.nih.gov/compound/atrazine#section=Top).
T. B. Hayes, V. Khoury, A. Narayan, M. Nazir, A. Park, T. Brown, L. Adame, E. Chan, D. Buchholz, T. Stueve and S. Gallipeau, Atrazine induces complete feminization and chemical castration in male African clawed frogs Xenopus laevis), Proc. Natl. Acad. Sci. U. S. A., 2010, 107, 4612–4617, DOI: 10.1073/pnas.0909519107.
National Center for Biotechnology Information, U.S. National Library of Medicine, Simazine. PubChem. (Available from: https://pubchem.ncbi.nlm.nih.gov/com-pound/simazine#section=Top).
Cornell University. Cooperative Extension. Simazine. Extension Toxicology Network, EXTOXNET (available from: http://pmep.cce.cornell.edu/profiles/extoxnet/pyre-thrins-ziram/simazine-ext.html).
F. Y. Cakir and M. K. Stenstrom, Greenhouse gas pro-duction: a comparison between aerobic and anaerobic wastewater treatment technology, Water Res., 2005, 39, 4197–4203, DOI: 10.1016/j.watres.2005.07.042.
M. Bartolomeu, S. Reis, M. Fontes, M. G. P. M. S. Neves, M. A. F. Faustino and A. Almeida, Photodynamic action against wastewater microorganisms and chemical pollu-tants: an effective approach with low environmental impact, Water, 2017, 9, 630, DOI: 10.3390/w9090630.
Biodegradation-Life of Science, ed. R. Chamy, F. Rosenkranz, InTech, 2013. (Available from: http://www.intechopen.com/books/biodegradation-life-of-science).
E. Corcoran, C. Nellemann, E. Baker, R. Bos, D. Osborn and H. Savelli, Sick Water? The central role of wastewater management in sustainable development. A rapid response assessment United Nations Environ Program UN-HABITAT, GRID-Arendal, 2010. (Available from: https://gridarendal-website-live.s3.amazonaws.com/production/documents/:s_document/208/original/SickWater_screen.pdf?1486721310).
Z. Liu, Y. Kanjo and S. Mizutani, Removal mechanisms for endocrine disrupting compounds (EDCs) in waste-water treatment—physical means, biodegradation, and chemical advanced oxidation: a review, Sci. Total Environ., 2009, 407, 731–748, DOI: 10.1016/j.scitotenv.2008.08.039.
Y. Song, F. Breider, J. Ma and U. von Gunten, Nitrate formation during ozonation as a surrogate parameter for abatement of micropollutants and the N-nitrosodimethylamine (NDMA) formation potential, Water Res., 2017, 122, 246–257, DOI: 10.1016/j.watres.2017.05.074.
H. Santoke, A. Y. C. Tong, S. P. Mezyk, K. M. Johnston, R. Braund, W. J. Cooper and B. M. Peake, UV photodegra-dation of enoxacin in water: kinetics and degradation pathways, J. Environ. Eng., 2015, 141, 10, DOI: 10.1061/(ASCE)EE.1943-7870.0000954.
European Commission. Implementation of Council Directive 91/271/EEC of 21 May 1991 concerning urban waste water treatment, as amended by Commission Directive 98/15/EC of 27 February 1998-Environment - European Commission (available from: http://ec.europa.eu/environment/water/water-urbanwaste/implementation/implem_report_1/chap2.html#__4).
Y. Men, S. Achermann, D. E. Helbling, D. R. Johnson and K. Fenner, Relative contribution of ammonia oxidizing bacteria and other members of nitrifying activated sludge communities to micropollutant biotransformation, Water Res., 2017, 109, 217–226, DOI: 10.1016/j.watres.2016.11.048.
H. Roh, N. Subramanya, F. Zhao, C. P. Yu, J. Sandt and K. H. Chu, Biodegradation potential of wastewater micro-pollutants by ammonia-oxidizing bacteria, Chemosphere, 2009, 77, 1084–1089, DOI: 10.1016/j.chemosphere.2009.08.049.
T. Urase and T. Kikuta, Separate estimation of adsorption and degradation of pharmaceutical substances and estro-gens in the activated sludge process, Water Res., 2005, 39, 1289–1300, DOI: 10.1016/j.watres.2005.01.015.
S. Snyder, C. Lue-Hing, J. Cotruvo, J. E. Drewes, A. Eaton, R. C. Pleus and D. Schlenk, Pharmaceuticals in the water environment, U. S. National Association of Clean Water Agencies (NACWA), Washington D.C., 2010 (available from: https://www.acs.org/content/dam/acsorg/policy/acsonthehill/briefings/pharmaceuticalsinwater/nacwa-paper.pdf).
S. S. Adav, D. J. Lee, K. Y. Show and J. H. Tay, Aerobic granular sludge: recent advances, Biotechnol. Adv., 2008, 26, 411–423, DOI: 10.1016/j.biotechadv.2008.05.002.
S. Tiglyene, A. Jaouad and L. Mandi, Treatment of tannery wastewater by infiltration percolation: chromium removal and speciation in soil, Environ. Technol., 2008, 29, 613–624, DOI: 10.1080/09593330801983888.
M. K. De Kreuk, J. J. Heijnen and M. C. M. van Loosdrecht, Simultaneous COD, nitrogen, and phosphate removal by aerobic granular sludge, Biotechnol. Bioeng., 2005, 90, 761–769, DOI: 10.1002/bit.20470.
Y. Shi, S. Xing, X. Wang and S. Wang, Changes of the reactor performance and the properties of granular sludge under tetracycline (TC) stress, Bioresour. Technol., 2013, 139, 170–175, DOI: 10.1016/j.biortech.2013.03.037.
C. L. Amorim, M. Alves, P. M. L. Castro and I. Henriques, Bacterial community dynamics within an aerobic granular sludge reactor treating wastewater loaded with pharma-ceuticals, Ecotoxicol. Environ. Saf, 2018, 147, 905–912, DOI: 10.1002/bit.20470.
P. Falás, A. Baillon-Dhumez, H. R. Andersen, A. Ledin and J. la Cour Jansen, Suspended biofilm carrier and activated sludge removal of acidic pharmaceuticals, Water Res., 2012, 46, 1167–1175, DOI: 10.1016/j.watres.2011.12.003.
P. Falás, H. R. Andersen, A. Ledin and J. la Cour Jansen, Occurrence and reduction of pharmaceuticals in the water phase at Swedish wastewater treatment plants, Water Sci. Technol., 2012, 66, 783, DOI: 10.2166/wst.2012.243.
M. Horsing, A. Ledin, R. Grabic, J. Fick, M. Tysklind, J. la Cour Jansen and H. R. Andersen, Determination of sorp-tion of seventy-five pharmaceuticals in sewage sludge, Water Res., 2011, 45, 4470–4482, DOI: 10.1016/j.watres.2011.05.033.
H. R. Andersen, M. Hansen, J. Kjolholt, F. Stuer-Lauridsen, T. Ternes and B. Halling-Sorensen, Assessment of the importance of sorption for steroid estrogens removal during activated sludge treatment, Chemosphere, 2005, 61, 139–146, DOI: 10.1016/j.chemosphere.2005.02.088.
B. Oram, Chlorination of Drinking Water. Water Research Center. 2014 (available from: https://www.water-research.net/index.php/water-treatment/tools/chlorination-of-water).
N. Ngwenya, E. J. Ncube, J. Parsons, Reviews of environ-mental contamination and toxicology, ed. D. M. Whitacre, Springer, New York, 2013. (available from: https://books.google.pt/books?id=ZPlf59Fqg8cC&pg=PA112&lpg=PA112&dq=The+need+for+water+disinfection+in+the+developing+world+is+undeniable.+Disinfection+drinking+water+is+critical+for+achieving+an+adequate+level+of+removal+or+inactivation+of+pathogenic+org).
P. Amouzgar and B. Salamatinia, A short review on pres-ence of pharmaceuticals in water bodies and the potential of chitosan and chitosan derivatives for elimination of pharmaceuticals, Mol. Genet. Med., 2015, S4(001), DOI: 10.4172/1747-0862.S4-001.
National Health and Medical Research Council, Australian Drinking Water Guidelines 6, Canberra, 2017 (available from: https://www.nhmrc.gov.au/_files_nhmrc/file/publi-cations/nhmrc_adwg_6_version_3.4_final.pdf).
T. A. Ternes, M. Meisenheimer, D. McDowell, F. Sacher, H.-J. Brauch, B. Haist-Gulde, G. Preuss, U. Wilme and N. Zulei-Seibert, Removal of pharmaceuticals during drinking water treatment, Environ. Sci. Technol., 2002, 36, 3855–3863, DOI: 10.1021/es015757k.
S. Radi, C. E. Abiad, N. M. M. Moura, M. A. F. Faustino and M. G. P. M. S. Neves, New hybrid adsorbent based on porphyrin functionalized silica for heavy metals removal: synthesis, characterization, isotherms, kinetics and thermodynamics studies, J. Hazard. Mater., 2017, DOI: 10.1016/j.jhazmat.2017.10.058.
C. Bellona, J. E. Drewes, G. Oilker, J. Luna, G. Filteau and G. Amy, Comparing nanofiltration and reverse osmosis for drinking water augmentation, J. - Am. Water Works Assoc., 2008, 100, 102–116.
C. Visvanathan, R. B. Aim and K. Parameshwaran, Membrane separation bioreactors for wastewater treat-ment, Crit. Rev. Environ. Sci. Technol., 2000, 30, 1–48, DOI: 10.1080/10643380091184165.
J. Radjenovic, M. Matosic, I. Mijatovic, M. Petrovic and D. Barcelo, Membrane bioreactor (MBR) as an advanced wastewater treatment technology, Handb. Environ. Chem., 2008, 5, 37–101, DOI: 10.1007/698_5_093.
M. Nageeb, Adsorption technique for the removal of organic pollutants from water and wastewater, in Organic pollutants-monitoring, risk and treatment, InTech, 2013. (Available from: http://www.intechopen.com/books/organic-pollutants-monitoring-risk-and-treatment/adsorp-tion-technique-for-the-removal-of-organic-pollutants-from-water-and-wastewater).
A. Machulek, S. C. Oliveira, M. E. Osugi, V. S. Ferreira, F. H. Quina, R. F. Dantas, S. L. Oliveira, G. A. Casagrande, F. J. Anaissi, V. O. Silva, R. P. Cavalcante, F. Gozzi, D. D. Ramos, A. P. P. da Rosa, A. P. F. Santos, D. C. De Castro and J. A. Nogueira, Application of different advanced oxidation processes for the degradation of organic pollutants, in Organic pollutants-monitoring, risk and treatment, ed. M. Nageeb Rashed, InTech, 2013. (Available from: http://www.intechopen.com/books/organic-pollutants-monitoring-risk-and-treatment/application-of-different-advanced-oxidation-processes-for-the-degradation-of-organic-pollutants).
O. M. S. Filipe, N. Mota, S. A. O. Santos, M. R. M. Domingues, A. J. D. Silvestre, M. G. P. M. S. Neves, M. M. Q. Simoes and E. B. H. Santos, Identification and characterization of photo-degradation products of metoprolol in the presence of natural fulvic acid by HPLC-UV-MSn, J. Hazard. Mater., 2017, 323, 250–263, DOI: 10.1016/j.jhazmat.2016.05.072.
S. Malato, M. I. Maldonado, I. Oller and A. Zapata, Removal of pesticides from water and wastewater by solar-driven photocatalysis, in Emerging compounds removal from wastewater: natural and solar based treatments, ed. G. Lofrano, Springer, 2012, pp. 59–76. (Available from: http://link.springer.com/10.1007/978-94-007-3916-1).
S. Malato, P. Fernandez-Ibanez, M. I. Maldonado, J. Blanco and W. Gernjak, Decontamination and disinfec-tion of water by solar photocatalysis: recent overview and trends, Catal. Today, 2009, 147, 1–59, DOI: 10.1016/J.CATTOD.2009.06.018.
I. Ahmad, S. Ahmed, Z. Anwar, M. A. Sheraz and M. Sikorski, Photostability and photostabilization of drugs and drug products, Int. J. Photoenergy, 2016, 2016, 1–19, DOI: 10.1155/2016/8135608.
A. Machulek, F. H. Quina, F. Gozzi, V. O. Silva, L. C. Friedrich and J. E. F. Moraes, Fundamental mechan-istic studies of the photo-Fenton reaction for the degra-dation of organic pollutants, in Organic pollutants ten years after the Stockholm convention-environmental and analytical update, InTech, 2012. (Available from: http://www.intechopen.com/books/organic-pollutants-ten-years-after-the-stockholm-convention-environmental-and-analyti-cal-update/fundamental-mechanistic-studies-of-the-photo-fenton-reaction-for-the-degradation-of-organic-pollutan).
M. A. Oturan and J.-J. Aaron, Advanced oxidation pro-cesses in water/wastewater treatment: principles and applications. A review, Crit. Rev. Environ. Sci. Technol., 2014, 44, 2577–2641, DOI: 10.1080/10643389.2013.829765.
R. Bauer and H. Fallmann, The photo-Fenton oxidation— a cheap and efficient wastewater treatment method, Res. Chem. Intermed., 1997, 23, 341–354, DOI: 10.1163/156856797X00565.
S. H. Bossmann, E. Oliveros, S. Gob, S. Siegwart, E. P. Dahlen, L. Payawan, M. Straub, M. Worner and A. M. Braun, New evidence against hydroxyl radicals as reactive intermediates in the thermal and photochemi-cally enhanced Fenton reactions, J. Phys. Chem. A, 1998, 102, 5542–5550, DOI: 10.1021/jp980129j.
J. J. Pignatello, E. Oliveros and A. MacKay, Advanced oxi-dation processes for organic contaminant destruction based on the Fenton reaction and related chemistry, Crit. Rev. Environ. Sci. Technol., 2007, 36, 1–84, DOI: 10.1080/10643380500326564.
C. von Sonntag, Advanced oxidation processes: mechanis-tic aspects, Water Sci. Technol., 2008, 58, 1015–1021, DOI: 10.2166/wst.2008.467.
O. M. Alfano, M. I. Cabrera and A. E. Cassano, Photocatalytic reactions involving hydroxyl radical attack, J. Catal., 1997, 172, 370–379, DOI: 10.1006/jcat.1997.1858.
A. Bernabeu, R. F. Vercher, L. Santos-Juanes, P. J. Simón, C. Lardín, M. A. Martínez, J. A. Vicente, R. González, C. Llosá, A. Arques and A. M. Amat, Solar photocatalysis as a tertiary treatment to remove emerging pollutants from wastewater treatment plant effluents, Catal. Today, 2011, 161, 235–240, DOI: 10.1016/J.CATT0D.2010.09.025.
T. An, H. Yang, G. Li, W. Song, W. J. Cooper and X. Nie, Kinetics and mechanism of advanced oxidation processes (AOPs) in degradation of ciprofloxacin in water, Appl. Catal., B, 2010, 94, 288–294, DOI: 10.1016/J.APCATB.2009.12.002.
T. A. Gad-Allah, M. E. M. Ali and M. I. Badawy, Photocatalytic oxidation of ciprofloxacin under simulated sunlight, J. Hazard. Mater., 2011, 186, 751–755, DOI: 10.1016/J.JHAZMAT.2010.11.066.
T. An, H. Yang, W. Song, G. Li, H. Luo and W. J. Cooper, Mechanistic considerations for the advanced oxidation treatment of fluoroquinolone pharmaceutical compounds using TiO2 heterogeneous catalysis, J. Phys. Chem. A, 2010, 114, 2569–2575, DOI: 10.1021/jp911349y.
H. Yang, L. Mei, P. Wang, J. Genereux, Y. Wang, B. Yi, C. Au, L. Dang and P. Feng, Photocatalytic degradation of norfloxacin on different TiO2-X polymorphs under visible light in water, RSC Adv., 2017, 7, 45721–45732, DOI: 10.1039/c7ra09022f.
X. Zhang, R. Li, M. Jia, S. Wang, Y. Huang and C. Chen, Degradation of ciprofloxacin in aqueous bismuth oxybromide (BiOBr) suspensions under visible light irradiation: a direct hole oxidation pathway, Chem. Eng. J., 2015, 274, 290–297, DOI: 10.1016/J.CEJ.2015.03.077.
F. Yuan, C. Hu, X. Hu, D. Wei, Y. Chen and J. Qu, Photodegradation and toxicity changes of antibiotics in UV and UV/H2O2 process, J. Hazard. Mater., 2011, 185, 1256–1263, DOI: 10.1016/j.jhazmat.2010.10.040.
M. Sayed, L. A. Shah, J. A. Khan, N. S. Shah, J. Nisar, H. M. Khan, P. Zhang and A. R. Khan, Efficient photocatalytic degradation of norfloxacin in aqueous media by hydrothermally synthesized immobilized TiO2/Ti films with xxposed {001} facets, J. Phys. Chem. A, 2016, 120, 9916–9931, DOI: 10.1021/acs.jpca.6b09719.
E. Hapeshi, A. Achilleos, M. I. Vasquez, C. Michael, N. P. Xekoukoulotakis, D. Mantzavinos and D. Kassinos, Drugs degrading photocatalytically: kinetics and mecha-nisms of ofloxacin and atenolol removal on titania sus-pensions, Water Res., 2010, 44, 1737–1746, DOI: 10.1016/J.WATRES.2009.11.044.
N. Miranda-García, M. I. Maldonado, J. M. Coronado and S. Malato, Degradation study of 15 emerging contami-nants at low concentration by immobilized TiO2 in a pilot plant, Catal. Today, 2010, 151, 107–113, DOI: 10.1016/J.CATTOD.2010.02.044.
C. B. Ozkal, Z. Frontistis, M. Antonopoulou, I. Konstantinou, D. Mantzavinos and S. Meric, Removal of antibiotics in a parallel-plate thin-film-photocatalytic reactor: process modeling and evolution of transform-ation by-products and toxicity, J. Environ. Sci., 2017, 60, 114–122, DOI: 10.1016/j.jes.2016.12.025.
N. P. Xekoukoulotakis, C. Drosou, C. Brebou, E. Chatzisymeon, E. Hapeshi, D. Fatta-Kassinos and D. Mantzavinos, Kinetics of UV-A/TiO2 photocatalytic degradation and mineralization of the antibiotic sulfa-methoxazole in aqueous matrices, Catal. Today, 2011, 161, 163–168, DOI: 10.1016/j.cattod.2010.09.027.
A. Achilleos, E. Hapeshi, N. P. Xekoukoulotakis, D. Mantzavinos and D. Fatta-Kassinos, Factors affecting diclofenac decomposition in water by UV-A/TiO2 photoca-talysis, Chem. Eng. J., 2010, 161, 53–59, DOI: 10.1016/j.cej.2010.04.020.
V. Bhatia, A. K. Ray and A. Dhir, Enhanced photocatalytic degradation of ofloxacin by co-doped titanium dioxide under solar irradiation, Sep. Purif. Technol., 2016, 161, 1–7, DOI: 10.1016/j.seppur.2016.01.028.
N. Klamerth, L. Rizzo, S. Malato, M. I. Maldonado, A. Agüera and A. R. Fernández-Alba, Degradation of fifteen emerging contaminants at pg L-1 initial concentrations by mild solar photo-Fenton in MWTP effluents, Water Res., 2010, 44, 545–554, DOI: 10.1016/j.watres.2009.09.059.
A. G. Trovó, R. F. P. Nogueira, A. Agüera, A. R. Fernandez-Alba, C. Sirtori and S. Malato, Degradation of sulfa-methoxazole in water by solar photo-Fenton. Chemical and toxicological evaluation, Water Res., 2009, 43, 3922–3931, DOI: 10.1016/j.watres.2009.04.006.
C. Sirtori, A. Agüera, W. Gernjak and S. Malato, Effect of water-matrix composition on trimethoprim solar photode-gradation kinetics and pathways, Water Res., 2010, 44, 2735–2744, DOI: 10.1016/j.watres.2010.02.006.
C. Martínez, L. M. Canle, M. I. Fernández, J. A. Santaballa and J. Faria, Kinetics and mechanism of aqueous degra-dation of carbamazepine by heterogeneous photocatalysis using nanocrystalline TiO2, ZnO and multi-walled carbon nanotubes-anatase composites, Appl. Catal., B, 2011, 102, 563–571, DOI: 10.1016/j.apcatb.2010.12.039.
K. Sornalingam, A. McDonagh and J. L. Zhou, Photodegradation of estrogenic endocrine disrupting ster-oidal hormones in aqueous systems: progress and future challenges, Sci. Total Environ., 2016, 550, 209–224, DOI: 10.1016/j.scitotenv.2016.01.086.
Z. Frontistis, M. Kouramanos, S. Moraitis, E. Chatzisymeon, E. Hapeshi, D. Fatta-Kassinos, N. P. Xekoukoulotakis and D. Mantzavinos, UV and simulated solar photodegradation of 17a-ethynylestradiol in secondary-treated wastewater by hydrogen peroxide or iron addition, Catal. Today, 2015, 252, 84–92, DOI: 10.1016/j.cattod.2014.10.012.
W. Li, S. Lu, Z. Qiu and K. Lin, Photocatalysis of clofibric acid under solar light in summer and winter seasons, Ind. Eng. Chem. Res., 2011, 50, 5384–5393, DOI: 10.1021/ie1017145.
C. L. Bianchi, B. Sacchi, S. Capelli, C. Pirola, G. Cerrato, S. Morandi and V. Capucci, Micro-sized TiO2 as photo-active catalyst coated on industrial porcelain grès tiles to photodegrade drugs in water, Environ. Sci. Pollut. Res., 2017, 1–6, DOI: 10.1007/s11356-017-9066-6.
N. Jallouli, K. Elghniji, O. Hentati, A. R. Ribeiro, A. M. T. Silva and M. Ksibi, UV and solar photo-degradation of naproxen: TiO2 catalyst effect, reaction kinetics, products identification and toxicity assessment, J. Hazard. Mater., 2016, 304, 329–336, DOI: 10.1016/j.jhazmat.2015.10.045.
D. Kanakaraju, C. A. Motti, B. D. Glass and M. Oelgemoller, TiO2 photocatalysis of naproxen: effect of the water matrix, anions and diclofenac on degradation rates, Chemosphere, 2015, 139, 579–588, DOI: 10.1016/j.chemosphere.2015.07.070.
Y. Tang, X. Shi, Y. Liu, L. Feng and L. Zhang, Degradation of clofibric acid in UV/chlorine disinfection process: kine-tics, reactive species contribution and pathways, R. Soc. Open Sci., 2018, 5, 171372, DOI: 10.1098/rsos.171372.
M. Wainwright, T. Maisch, S. Nonell, K. Plaetzer, A. Almeida, G. P. Tegos and M. R. Hamblin, Photoantimicrobials—are we afraid of the light?, Lancet Infect. Dis., 2016, 3099, 1–7, DOI: 10.1016/S1473-3099(16)30268-7.
A. Almeida, E. Alves, C. Costa, A. Cunha, J. Tomé and A. C. Tomé, Photodynamic inactivation of pathogenic microorganisms in the environment: an efficient, cost-effective and sustainable technology, Sociedade Portuguesa de Microbiologia, 2012, 1, 1–6.
E. Alves, M. A. F. Faustino, M. G. P. M. S. Neves, À. Cunha, J. Tomé and A. Almeida, An insight on bacterial cellular targets of photodynamic inactivation, Future Med. Chem., 2014, 6, 141–164, DOI: 10.4155/fmc.13.211.
E. Alves, M. A. F. Faustino, M. G. P. M. S. Neves, À. Cunha, H. Nadais and A. Almeida, Potential applications of por-phyrins in photodynamic inactivation beyond the medical scope, J. Photochem. Photobiol., C, 2015, 22, 34–57, DOI: 10.1016/j.jphotochemrev.2014.09.003.
M. Bartolomeu, S. Rocha, À. Cunha, M. G. P. M. S. Neves, M. A. F. Faustino and A. Almeida, Effect of photodynamic therapy on the virulence factors of Staphylococcus aureus, Front. Microbiol., 2016, 7, 267, DOI: 10.3389/fmicb.2016.00267.
M. C. DeRosa and R. J. Crutchley, Photosensitized singlet oxygen and its applications, Coord. Chem. Rev., 2002, 233-234, 351–371, DOI: 10.1016/S0010-8545(02)00034-6.
M. Gmurek, P. Kubat, J. Mosinger and J. S. Miller, Comparison of two photosensitizers A1(iii) phthalocyanine chloride tetrasulfonic acid and meso-tetrakis(4-sulfonato-phenyl)porphyrin in the photooxidation of n-butylpara-ben, J. Photochem. Photobiol., A, 2011, 223, 50–56, DOI: 10.1016/j.jphotochem.2011.07.015.
M. Gmurek, M. Bizukojé, J. Mosinger and S. Ledakowicz, Application of photoactive electrospun nanofiber materials with immobilized meso-tetraphenylporphyrin for parabens photodegradation, Catal. Today, 2015, 240, 160–167, DOI: 10.1016/j.cattod.2014.06.015.
M. Gmurek and S. Ledakowicz, A new approach to hetero-geneous kinetics of photosensitized oxidation, J. Photochem. Photobiol., A, 2017, 341, 51–56, DOI: 10.1016/j.jphotochem.2017.03.014.
M. Gmurek, M. Foszpanczyk, M. Olak-Kucharczyk, D. Gryglik and S. Ledakowicz, Photosensitive chitosan for visible-light water pollutant degradation, Chem. Eng. J., 2017, 318, 240–246, DOI: 10.1016/j.cej.2016.06.125.
Z. Zhang, M. Zhang, J. Deng, K. Deng, B. Zhang, K. Lv, J. Sun and L. Chen, Potocatalytic oxidative degradation of organic pollutant with molecular oxygen activated by a novel biomimetic catalyst ZnPz(dtn-COOH)4, Appl. Catal., B, 2013, 132-133, 90–97, DOI: 10.1016/j.apcatb.2012.11.027.
H. Kim, W. Kim, Y. MacKeyev, G. S. Lee, H. J. Kim, T. Tachikawa, S. Hong, S. Lee, J. Kim, L. J. Wilson, T. Majima, P. J. J. Alvarez, W. Choi and J. Lee, Selective oxidative degradation of organic pollutants by singlet oxygen-mediated photosensitization: tin porphyrin versus C60 aminofullerene systems, Environ. Sci. Technol., 2012, 46, 9606–9613, DOI: 10.1021/es301775k.
R. Bonnett, M. A. Krysteva, I. G. Lalov and S. V. Artarsky, Water disinfection using photosensitizers immobilized on chitosan, Water Res., 2006, 40, 1269–1275, DOI: 10.1016/j.watres.2006.01.014.
Z. Xiong, Y. Xu, L. Zhu and J. Zhao, Photosensitized oxi-dation of substituted phenols on aluminum phthalo-cyanine-intercalated organoclay, Environ. Sci. Technol., 2005, 39, 651–657, DOI: 10.1021/es0487630.
Z. Zeng, J. Liu and H. H. G. Savenije, A simple approach to assess water scarcity integrating water quantity and quality, Ecol. Indic., 2013, 34, 441–449, DOI: 10.1016/j.ecolind.2013.06.012.
M. Jamerson, K. Remmers, G. Cabral and F. Marciano-Cabral, Survey for the presence of Naegleria fowleri amebae in lake water used to cool reactors at a nuclear power generating plant, Parasitol. Res., 2009, 104, 969–978, DOI: 10.1007/s00436-008-1275-y.
T. Sato, M. Qadir, S. Yamamoto, T. Endo and A. Zahoor, Global, regional, and country level need for data on waste-water generation, treatment, and use, Agric. Water Manage., 2013, 130, 1–13, DOI: 10.1016/j.agwat.2013.08.007.
M. Umar and H. A. Aziz, Photocatalytic degradation of organic pollutants in water, in Organic pollutants-moni-toring, risk and treatment, ed. M. Nageeb Rashed, InTech, 2013. (Available from: http://www.intechopen.com/books/organic-pollutants-monitoring-risk-and-treatment/photo-catalytic-degradation-of-organic-pollutants-in-water).
M. Q. Mesquita, J. C. J. M. D. S. Menezes, S. M. G. Pires, M. G. P. M. S. Neves, M. M. Q. Simoes, A. C. Tomé, J. A. S. Cavaleiro, A. Cunha, A. L. Daniel-da-Silva, A. Almeida and M. A. F. Faustino, Pyrrolidine-fused chlorin photosensitizer immobilized on solid supports for the photoinactivation of Gram negative bacteria, Dyes Pigm., 2014, 110, 123–133, DOI: 10.1016/j.dyepig.2014.04.025.
Acknowledgments
The authors are thankful to the University of Aveiro, to FCT/MEC for the financial support to the Centre for Environmental and Marine Studies (CESAM) unit (project Pest-C/MAR/LA0017/2013) and the QOPNA research unit (FCT UID/QUI/ 00062/2013), through national funds, co-financed by the FEDER, within the PT2020 Partnership Agreement, and to the Portuguese NMR Network. M. B. is thankful to the Fundação para a Ciência e a Tecnologia (FCT) for her Ph.D. Grant (SFRH/BD/121645/2016).
Author information
Authors and Affiliations
Corresponding authors
Rights and permissions
About this article
Cite this article
Bartolomeu, M., Neves, M.G.P.M.S., Faustino, M.A.F. et al. Wastewater chemical contaminants: remediation by advanced oxidation processes. Photochem Photobiol Sci 17, 1573–1598 (2018). https://doi.org/10.1039/c8pp00249e
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1039/c8pp00249e