[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

A novel class of ruthenium-based photosensitizers effectively kills in vitro cancer cells and in vivo tumors

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

The photo-physical and photo-biological properties of two small (<2 kDa), novel Ru(ii) photosensitizers (PSs) referred to as TLD1411 and TLD1433 are presented. Both PSs are highly water-soluble, provide only very limited luminescence emission at 580–680 nm following excitation at 530 nm, and demonstrate high photostability with less than 50% photobleaching at radiant exposures H = 275 J cm−2 (530 nm irradiation). It was previously shown that these two photosensitizers exhibit a large singlet oxygen (1O2) quantum yield (Φ (Δ) ∼0.99 in acetonitrile). Their photon-mediated efficacy to cause cell death (λ = 530 nm, H = 45 J cm−2) was tested in vitro in colon and glioma cancer cell lines (CT26.WT, CT26.CL25, F98, and U87) and demonstrated a strong photodynamic effect with complete cell death at concentrations as low as 4 and 1 μM for TLD1411 and TLD1433, respectively. Notably, dark toxicity was negligible at concentrations less than 25 and 10 μM for TLD1411 and TLD1433, respectively. The ability of the PSs to initiate Type I photoreactions was tested by exposing PS-treated U87 cells to light under hypoxic conditions (pO2 < 0.5%), which resulted in a complete loss of the PDT effect. In vivo, the maximum tolerated doses 50 (MTD50) were determined to be 36 mg kg−1 (TLD1411) and 103 mg kg−1 (TLD1433) using the BALB/c murine model. In vivo growth delay studies in the subcutaneous colon adenocarcinoma CT26.WT murine model were conducted at a photosensitizer dose equal to 0.5 and 0.2 MTD50 for TLD1411 and TLD1433, respectively. 4 hours post PS injection, tumours were irradiated with continuous wave or pulsed light sources (λ = 525–530 nm, H = 192 J cm−2). Overall, treatment with continuous wave light demonstrated a higher tumour destruction efficacy when compared to pulsed light. TLD1433 mediated PDT resulted in statistically significant longer animal survival compared to TLD1411. Two-thirds of TLD1433-treated mice survived more than 100 days (p < 0.01) whereas TLD1411-treated mice did not survive longer than 20 days. Here we present evidence that two novel PSs have very potent photo-biological properties and are able to cause PDT-mediated cell death in both in vitro cell culture models and in vivo tumour regression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Agostinis, et al., Photodynamic therapy of cancer: an update, CA: Cancer J. Clin., 2011, 61, 250–281.

    Google Scholar 

  2. A. P. Castano, P. Mroz, M. R. Hamblin, Photodynamic therapy and anti-tumour immunity, Nat. Rev. Cancer, 2006, 6, 535–545.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. D. E. J. G. J. Dolmans, D. Fukumura, R. K. Jain, Photodynamic therapy for cancer, Nat. Rev. Cancer, 2003, 3, 380–387.

    Article  CAS  PubMed  Google Scholar 

  4. L. Lilge, M. Portnoy, B. C. Wilson, Apoptosis induced in vivo by photodynamic therapy in normal brain and intracranial tumour tissue, Br. J. Cancer, 2000, 83, 1110–1117.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. P. Mroz, et al., Imidazole metalloporphyrins as photosensitizers for photodynamic therapy: role of molecular charge, central metal and hydroxyl radical production, Cancer Lett., 2009, 282, 63–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. A. E. O’Connor, W. M. Gallagher, A. T. Byrne, Porphyrin and nonporphyrin photosensitizers in oncology: preclinical and clinical advances in photodynamic therapy, Photochem. Photobiol., 2009, 85, 1053–1074.

    Article  PubMed  CAS  Google Scholar 

  7. M. Ethirajan, Y. Chen, P. Joshi, R. K. Pandey, The role of porphyrin chemistry in tumor imaging and photodynamic therapy, Chem. Soc. Rev., 2011, 40, 340–362.

    Article  CAS  PubMed  Google Scholar 

  8. A. Casini, C. G. Hartinger, A. A. Nazarov and P. J. Dyson, in Medicinal Organometallic Chemistry, ed. G. Jaouen and N. Metzler-Nolte, Springer, Berlin, Heidelberg, 2010, vol. 32, pp. 57–80.

    Article  CAS  Google Scholar 

  9. C. L. Evans, et al., Killing hypoxic cell populations in a 3D tumor model with EtNBS-PDT, PLoS One, 2011, 6, e23434.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. T. Gallavardin, et al., Photodynamic therapy and two-photon bio-imaging applications of hydrophobic chromophores through amphiphilic polymer delivery, Photochem. Photobiol. Sci., 2011, 10, 1216–1225.

    Article  CAS  PubMed  Google Scholar 

  11. S. Anand, B. J. Ortel, S. P. Pereira, T. Hasan, E. V. Maytin, Biomodulatory approaches to photodynamic therapy for solid tumors, Cancer Lett., 2012, 326, 8–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. J. T. Hashmi, et al., Effect of pulsing in low-level light therapy, Lasers Surg. Med., 2010, 42, 450–466.

    Article  PubMed  PubMed Central  Google Scholar 

  13. N. Vardeny, et al., Photogeneration of confined soliton pairs (bipolarons) in polythiophene, Phys. Rev. Lett., 1986, 56, 671–674.

    Article  CAS  PubMed  Google Scholar 

  14. W. T. Eckenhoff, W. W. Brennessel, R. Eisenberg, Light-Driven Hydrogen Production from Aqueous Protons using Molybdenum Catalysts, Inorg. Chem., 2014, 53, 9860–9869.

    Article  CAS  PubMed  Google Scholar 

  15. L. Zhang, Y. Gao, X. Ding, Z. Yu, L. Sun, High-Performance Photoelectrochemical Cells Based on a Binuclear Ruthenium Catalyst for Visible-Light-Driven Water Oxidation, ChemSusChem, 2014, 7, 2801–2804.

    Article  CAS  PubMed  Google Scholar 

  16. C. Mari, et al., DNA Intercalating Ru II Polypyridyl Complexes as Effective Photosensitizers in Photodynamic Therapy, Chem.–Eur. J., 2014, 20, 14421–14436.

    Article  CAS  PubMed  Google Scholar 

  17. E. Wachter, D. K. Heidary, B. S. Howerton, S. Parkin, E. C. Glazer, Light-activated ruthenium complexes photobind DNA and are cytotoxic in the photodynamic therapy window, Chem. Commun., 2012, 48, 9649–9651.

    Article  CAS  Google Scholar 

  18. B. S. Howerton, D. K. Heidary, E. C. Glazer, Strained ruthenium complexes are potent light-activated anticancer agents, J. Am. Chem. Soc., 2012, 134, 8324–8327.

    Article  CAS  PubMed  Google Scholar 

  19. A. A. Holder, D. F. Zigler, M. T. Tarrago-Trani, B. Storrie, K. J. Brewer, Photobiological impact of [(bpy)2Ru(dpp)2RhCl2]Cl5 and [(bpy)2Os(dpp)2RhCl2]Cl5 [bpy=2,2′-bipyridine; dpp=2,3-Bis(2-pyridyl)pyrazine] on vero cells, Inorg. Chem., 2007, 46, 4760–4762.

    Article  CAS  PubMed  Google Scholar 

  20. R. B. Sears, et al. Photoinduced ligand exchange and DNA binding of cis-[Ru(phpy)(phen)(CH3CN)2]+ with long wavelength visible light, J. Inorg. Biochem., 2013, 121, 77–87.

    Article  CAS  PubMed  Google Scholar 

  21. Y. Chen, et al., Fusion of photodynamic therapy and photoactivated chemotherapy: a novel Ru(ii) arene complex with dual activities of photobinding and photocleavage toward DNA, Dalton Trans., 2014, 43, 15375–15384.

    Article  CAS  PubMed  Google Scholar 

  22. H. Yin, et al., In vitro multiwavelength PDT with 3IL states: teaching old molecules new tricks, Inorg. Chem., 2014, 53, 4548–4559.

    Article  CAS  PubMed  Google Scholar 

  23. Y. Liu, et al., Ru(II) complexes of new tridentate ligands: unexpected high yield of sensitized 1O2, Inorg. Chem., 2009, 48, 375–385.

    Article  CAS  PubMed  Google Scholar 

  24. Q.-X. Zhou, et al., [Ru(bpy)(3-n)(dpb)(n)](2+): unusual photophysical property and efficient DNA photocleavage activity, Inorg. Chem., 2010, 49, 4729–4731.

    Article  CAS  PubMed  Google Scholar 

  25. A. Levina, A. Mitra, P. A. Lay, Recent developments in ruthenium anticancer drugs, Met. Integr. Biometal Sci., 2009, 1, 458–470.

    Article  CAS  Google Scholar 

  26. Z. Huang, et al., Photodynamic therapy for treatment of solid tumors–potential and technical challenges, Technol. Cancer Res. Treat., 2008, 7, 309–320.

    Article  CAS  PubMed  Google Scholar 

  27. R. Lincoln, et al., Exploitation of long-lived 3IL excited states for metal–organic photodynamic therapy: verification in a metastatic melanoma model, J. Am. Chem. Soc., 2013, 135, 17161–17175.

    Article  CAS  PubMed  Google Scholar 

  28. G. Shi, et al., Ru(II) dyads derived from α-oligothiophenes: A new class of potent and versatile photosensitizers for PDT, Coord. Chem. Rev., 2015, 282, 127–138.

    Article  CAS  Google Scholar 

  29. Y. Arenas, et al., Photodynamic inactivation of Staphylococcus aureus and methicillin-resistant Staphylococcus aureus with Ru(II)-based type I/type II photosensitizers, Photodiagn. Photodyn. Ther., 2013, 10, 615–625.

    Article  CAS  Google Scholar 

  30. S. Monro, et al., Photobiological activity of Ru(II) dyads based on (pyren-1-yl)ethynyl derivatives of 1,10-phenanthroline, Inorg. Chem., 2010, 49, 2889–2900.

    Article  CAS  PubMed  Google Scholar 

  31. W. E. Jones, R. A. Smith, M. T. Abramo, M. D. Williams, J. van Houten, Photochemistry of hetero-tris-chelated ruthenium(II) polypyridine complexes in dichloromethane, Inorg. Chem., 1989, 28, 2281–2285.

    Article  CAS  Google Scholar 

  32. L. Lilge, C. O’Carroll, B. C. Wilson, A solubilization technique for photosensitizer quantification in ex vivo tissue samples, J. Photochem. Photobiol., B, 1997, 39, 229–235.

    Article  CAS  Google Scholar 

  33. T. S. Istivan, et al., Biological effects of a de novo designed myxoma virus peptide analogue: evaluation of cytotoxicity on tumor cells, PLoS One, 2011, 6, e24809.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. J. M. Suflita, F. Concannon, Screening tests for assessing the anaerobic biodegradation of pollutant chemicals in subsurface environments, J. Microbiol. Methods, 1995, 21, 267–281.

    Article  CAS  Google Scholar 

  35. V. Baumans, P. F. Brain, H. Burgere, P. Clausing, T. Jeneskog, G. Perretta, Pain and distress in laboratory rodents and lagomorphs. Report of the Federation of European Laboratory Animal Science Associations (FELASA) Working Group on Pain and Distress accepted by the FELASA Board of Management November 1992, Lab. Anim., 1994, 28, 97–112.

    Article  Google Scholar 

  36. S. Robinson, et al., Guidance on dose level selection for regulatory general toxicology studies for pharmaceuticals, at http://www.lasa.co.uk/PDF/LASA-NC3RsDoseLevelSelection.pdf.

  37. Q. Peng, et al., Antitumor effect of 5-aminolevulinic acid-mediated photodynamic therapy can be enhanced by the use of a low dose of photofrin in human tumor xenografts, Cancer Res., 2001, 61, 5824–5832.

    CAS  PubMed  Google Scholar 

  38. P. Mroz, A. Szokalska, M. X. Wu, M. R. Hamblin, Photodynamic therapy of tumors can lead to development of systemic antigen-specific immune response, PLoS One, 2010, 5, e15194.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. R. Sanovic, T. Verwanger, A. Hartl, B. Krammer, Low dose hypericin-PDT induces complete tumor regression in BALB/c mice bearing CT26 colon carcinoma, Photodiagn. Photodyn. Ther., 2011, 8, 291–296.

    Article  CAS  Google Scholar 

  40. C. J. Fisher, et al., Modulation of PPIX synthesis and accumulation in various normal and glioma cell lines by modification of the cellular signaling and temperature: modulation of PPIX synthesis, Lasers Surg. Med., 2013, 45, 460–468.

    Article  PubMed  Google Scholar 

  41. C. Scolaro, et al., In vitro and in vivo evaluation of ruthenium(II)-arene PTA complexes, J. Med. Chem., 2005, 48, 4161–4171.

    Article  CAS  PubMed  Google Scholar 

  42. U. Heinrich, Untersuchungenzurqualitativenphotometrischenanalyse der redox-zustande der atmungskette in vitro und in vivo am beispiel des gehirns, Abteilung fur Biologie and der Ruhr-Universitat Bochum, 1981.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lothar Lilge.

Additional information

Electronic supplementary information (ESI) available. See DOI: 10.1039/c4pp00438h

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fong, J., Kasimova, K., Arenas, Y. et al. A novel class of ruthenium-based photosensitizers effectively kills in vitro cancer cells and in vivo tumors. Photochem Photobiol Sci 14, 2014–2023 (2015). https://doi.org/10.1039/c4pp00438h

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c4pp00438h

Navigation