Abstract
Rapid atmospheric warming since the mid-twentieth century has increased temperature-dependent erosion and sediment-transport processes in cold environments, affecting food, energy and water security. In this Review, we summarize landscape changes in cold environments and provide a global inventory of increases in erosion and sediment yield driven by cryosphere degradation. Anthropogenic climate change, deglaciation, and thermokarst disturbances are causing increased sediment mobilization and transport processes in glacierized and periglacierized basins. With continuous cryosphere degradation, sediment transport will continue to increase until reaching a maximum (peak sediment). Thereafter, transport is likely to shift from a temperature-dependent regime toward a rainfall-dependent regime roughly between 2100–2200. The timing of the regime shift would be regulated by changes in meltwater, erosive rainfall and landscape erodibility, and complicated by geomorphic feedbacks and connectivity. Further progress in integrating multisource sediment observations, developing physics-based sediment-transport models, and enhancing interdisciplinary and international scientific collaboration is needed to predict sediment dynamics in a warming world.
Key points
-
A global inventory of cryosphere-degradation-driven increases in erosion and sediment yield is presented, with 76 locations from the high Arctic, European mountains, High Mountain Asia and Andes, and 18 Arctic permafrost-coastal sites.
-
Sediment mobilization from glacierized basins is dominated by glacial and paraglacial erosion; transport efficiency is controlled by glaciohydrology and modulated by subglacial, proglacial and supraglacial storage and release, but is interrupted by glacial lakes and moraines.
-
Degraded permafrost mainly mobilizes sediment by eroding thermokarst landscapes in high-latitude terrain and unstable rocky slopes in high-altitude terrain, which is sustained by exposing and melting ground ice and sufficient water supply; transport efficiency is enhanced by hillslope-channel connectivity.
-
The sediment-transport regime will shift in three stages, from a thermal-controlled regime to one jointly controlled by thermal and pluvial processes, and finally to a regime controlled by pluvial processes.
-
Peak sediment yield will be reached with or after peak meltwater.
-
Between the 1950s and 2010s, sediment fluxes have increased two- to eight-fold in many cold regions, and coastal erosion rates have more than doubled along many parts of Arctic permafrost coastlines.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
£14.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 digital issues and online access to articles
£99.00 per year
only £8.25 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
Data availability
The warming-driven changes in erosion and sediment yield inventory is available at: https://zenodo.org/record/7109898.
References
Li, D. et al. Exceptional increases in fluvial sediment fluxes in a warmer and wetter High Mountain Asia. Science 374, 599–603 (2021).
Syvitski, J. et al. Earth’s sediment cycle during the Anthropocene. Nat. Rev. Earth Environ. https://doi.org/10.1038/s43017-021-00253-w (2022).
Lewkowicz, A. G. & Way, R. G. Extremes of summer climate trigger thousands of thermokarst landslides in a high Arctic environment. Nat. Commun. 10, 1329 (2019).
Bendixen, M. et al. Delta progradation in Greenland driven by increasing glacial mass loss. Nature 550, 101–104 (2017).
Shugar, D. H. et al. River piracy and drainage basin reorganization led by climate-driven glacier retreat. Nat. Geosci. 10, 370–375 (2017).
Knight, J. & Harrison, S. The impacts of climate change on terrestrial Earth surface systems. Nat. Clim. Change 3, 24–29 (2012).
Lane, S. N., Bakker, M., Gabbud, C., Micheletti, N. & Saugy, J.-N. Sediment export, transient landscape response and catchment-scale connectivity following rapid climate warming and alpine glacier recession. Geomo 277, 210–227 (2017).
Zhang, T., Li, D., Kettner, A. J., Zhou, Y. & Lu, X. Constraining dynamic sediment-discharge relationships in cold environments: the sediment-availability-transport (SAT) model. Water Resour. Res. https://doi.org/10.1029/2021wr030690 (2021).
Herman, F. et al. Erosion by an alpine glacier. Science 350, 193–195 (2015).
Lane, S. N. & Nienow, P. W. Decadal-scale climate forcing of alpine glacial hydrological systems. Water Resour. Res. 55, 2478–2492 (2019).
Huss, M. & Hock, R. Global-scale hydrological response to future glacier mass loss. Nat. Clim. Change 8, 135–140 (2018).
Delaney, I. & Adhikari, S. Increased subglacial sediment discharge in a warming climate: consideration of ice dynamics, glacial erosion, and fluvial sediment transport. Geophys. Res. Lett. https://doi.org/10.1029/2019gl085672 (2020).
Li, D., Overeem, I., Kettner, A. J., Zhou, Y. & Lu, X. Air temperature regulates erodible landscape, water, and sediment fluxes in the permafrost-dominated catchment on the Tibetan Plateau. Water Resour. Res. 57, e2020WR028193 (2021).
Mancini, D. & Lane, S. N. Changes in sediment connectivity following glacial debuttressing in an alpine valley system. Geomo https://doi.org/10.1016/j.geomorph.2019.106987 (2020).
Koppes, M. et al. Observed latitudinal variations in erosion as a function of glacier dynamics. Nature 526, 100–103 (2015).
Kirschbaum, D., Kapnick, S. B., Stanley, T. & Pascale, S. Changes in extreme precipitation and landslides over High Mountain Asia. Geophys. Res. Lett. 47, e2019GL085347 (2020).
Patton, A. I., Rathburn, S. L., Capps, D. M., McGrath, D. & Brown, R. A. Ongoing landslide deformation in thawing permafrost. Geophys. Res. Lett. https://doi.org/10.1029/2021gl092959 (2021).
Syvitski, J. P. M. Sediment discharge variability in Arctic rivers: implications for a warmer future. Polar Res. 21, 323–330 (2002).
Beel, C. R. et al. Emerging dominance of summer rainfall driving high Arctic terrestrial-aquatic connectivity. Nat. Commun. 12, 1448 (2021).
Patton, A. I., Rathburn, S. L. & Capps, D. M. Landslide response to climate change in permafrost regions. Geomo 340, 116–128 (2019).
East, A. E. & Sankey, J. B. Geomorphic and sedimentary effects of modern climate change: current and anticipated future conditions in the western United States. Rev. Geophys. https://doi.org/10.1029/2019rg000692 (2020).
Li, D. et al. High Mountain Asia hydropower systems threatened by climate-driven landscape instability. Nat. Geosci. https://doi.org/10.1038/s41561-022-00953-y (2022).
Vergara, I., Garreaud, R. & Ayala, Á. Sharp increase of extreme turbidity events due to deglaciation in the subtropical Andes. J. Geophys. Res. Earth Surf. https://doi.org/10.1029/2021jf006584 (2022).
Hopwood, M. J. et al. Non-linear response of summertime marine productivity to increased meltwater discharge around Greenland. Nat. Commun. 9, 3256 (2018).
Yi, Y., Liu, Q., Zhang, J. & Zhang, S. How do the variations of water and sediment fluxes into the estuary influence the ecosystem? J. Hydrol. https://doi.org/10.1016/j.jhydrol.2021.126523 (2021).
Immerzeel, W. W. et al. Importance and vulnerability of the world’s water towers. Nature 577, 364–369 (2020).
Best, J. Anthropogenic stresses on the world’s big rivers. Nat. Geosci. 12, 7–21 (2019).
Li, X. et al. Globally elevated chemical weathering rates beneath glaciers. Nat. Commun. https://doi.org/10.1038/s41467-022-28032-1 (2022).
Hilton, R. G. & West, A. J. Mountains, erosion and the carbon cycle. Nat. Rev. Earth Environ. 1, 284–299 (2020).
Turetsky, M. R. et al. Carbon release through abrupt permafrost thaw. Nat. Geosci. 13, 138–143 (2020).
Overeem, I. et al. Substantial export of suspended sediment to the global oceans from glacial erosion in Greenland. Nat. Geosci. 10, 859–863 (2017).
Arrigo, K. R. et al. Melting glaciers stimulate large summer phytoplankton blooms in southwest Greenland waters. Geophys. Res. Lett. 44, 6278–6285 (2017).
Lantuit, H. et al. The Arctic coastal dynamics database: a new classification scheme and statistics on Arctic permafrost coastlines. Estuaries Coast. 35, 383–400 (2012).
Hjort, J. et al. Degrading permafrost puts Arctic infrastructure at risk by mid-century. Nat. Commun. 9, 5147 (2018).
Wild, B. et al. Rivers across the Siberian Arctic unearth the patterns of carbon release from thawing permafrost. Proc. Natl Acad. Sci. USA 116, 10280–10285 (2019).
Micheletti, N. & Lane, S. N. Water yield and sediment export in small, partially glaciated alpine watersheds in a warming climate. Water Resour. Res. 52, 4924–4943 (2016).
Beel, C. R. et al. Differential impact of thermal and physical permafrost disturbances on high Arctic dissolved and particulate fluvial fluxes. Sci. Rep. 10, 11836 (2020).
Shugar, D. H. et al. A massive rock and ice avalanche caused the 2021 disaster at Chamoli, Indian Himalaya. Science 373, 300–306 (2021).
Farinotti, D., Immerzeel, W. W., de Kok, R., Quincey, D. J. & Dehecq, A. Manifestations and mechanisms of the Karakoram glacier anomaly. Nat. Geosci. 13, 8–16 (2020).
Hock, R. G. et al. in Special Report on the Ocean and Cryosphere in a Changing Climate (eds Portner, H.-O. et al.) 181–202 (IPCC, Cambridge Univ. Press, 2019).
Zemp, M. et al. Global glacier mass changes and their contributions to sea-level rise from 1961 to 2016. Nature 568, 382–386 (2019).
Hugonnet, R. et al. Accelerated global glacier mass loss in the early twenty-first century. Nature 592, 726–731 (2021).
Hock, R. et al. GlacierMIP–a model intercomparison of global-scale glacier mass-balance models and projections. J. Glaciol. 65, 453–467 (2019).
Marzeion, B. et al. Partitioning the uncertainty of ensemble projections of global glacier mass change. Earths Future https://doi.org/10.1029/2019ef001470 (2020).
Huss, M. & Hock, R. A new model for global glacier change and sea-level rise. Front. Earth Sci. https://doi.org/10.3389/feart.2015.00054 (2015).
Ciracì, E., Velicogna, I. & Swenson, S. Continuity of the mass loss of the world’s glaciers and ice caps from the GRACE and GRACE follow-on missions. Geophys. Res. Lett. https://doi.org/10.1029/2019gl086926 (2020).
Truffer, M., Motyka, R. J., Hekkers, M., Howat, I. M. & King, M. A. Terminus dynamics at an advancing glacier: Taku Glacier, Alaska. J. Glaciol. 55, 1052–1060 (2009).
Shugar, D. H. et al. Rapid worldwide growth of glacial lakes since 1990. Nat. Clim. Change 10, 939–945 (2020).
Carrivick, J. L. & Tweed, F. S. A global assessment of the societal impacts of glacier outburst floods. Glob. Planet. Change 144, 1–16 (2016).
Veh, G. et al. Trends, breaks, and biases in the frequency of reported glacier lake outburst floods. Earths Future https://doi.org/10.1029/2021ef002426 (2022).
Li, X. et al. Climate change threatens terrestrial water storage over the Tibetan Plateau. Nat. Clim. Change https://doi.org/10.1038/s41558-022-01443-0 (2022).
Biskaborn, B. K. et al. Permafrost is warming at a global scale. Nat. Commun. 10, 264 (2019).
Gruber, S. et al. Inferring permafrost and permafrost thaw in the mountains of the Hindu Kush Himalaya region. Cryosphere 11, 81–99 (2017).
Smith, S. L., O’Neill, H. B., Isaksen, K., Noetzli, J. & Romanovsky, V. E. The changing thermal state of permafrost. Nat. Rev. Earth Environ. 3, 10–23 (2022).
Chadburn, S. E. et al. An observation-based constraint on permafrost loss as a function of global warming. Nat. Clim. Change 7, 340–344 (2017).
Overeem, I. et al. A modeling toolbox for permafrost landscapes. EOS Trans. Am. Geophys. Un. https://doi.org/10.1029/2018EO105155 (2018).
Farquharson, L. M. et al. Climate change drives widespread and rapid thermokarst development in very cold permafrost in the Canadian high Arctic. Geophys. Res. Lett. 46, 6681–6689 (2019).
Veremeeva, A., Nitze, I., Günther, F., Grosse, G. & Rivkina, E. Geomorphological and climatic drivers of thermokarst lake area increase trend (1999–2018) in the Kolyma Lowland Yedoma region, north-eastern Siberia. Remote Sens. https://doi.org/10.3390/rs13020178 (2021).
Segal, R. A., Lantz, T. C. & Kokelj, S. V. Acceleration of thaw slump activity in glaciated landscapes of the western Canadian Arctic. Environ. Res. Lett. https://doi.org/10.1088/1748-9326/11/3/034025 (2016).
Mu, C. et al. Acceleration of thaw slump during 1997–2017 in the Qilian Mountains of the northern Qinghai-Tibetan Plateau. Landslides 17, 1051–1062 (2020).
Hjort, J. et al. Impacts of permafrost degradation on infrastructure. Nat. Rev. Earth Environ. 3, 24–38 (2022).
Olefeldt, D. et al. Circumpolar distribution and carbon storage of thermokarst landscapes. Nat. Commun. 7, 13043 (2016).
Kanevskiy, M. et al. Patterns and rates of riverbank erosion involving ice-rich permafrost (yedoma) in northern Alaska. Geomo 253, 370–384 (2016).
Jones, B. M. et al. Lake and drained lake basin systems in lowland permafrost regions. Nat. Rev. Earth Environ. 3, 85–98 (2022).
Kokelj, S. V., Lantz, T. C., Tunnicliffe, J., Segal, R. & Lacelle, D. Climate-driven thaw of permafrost preserved glacial landscapes, northwestern Canada. Geology 45, 371–374 (2017).
Cheng, G. et al. Characteristic, changes and impacts of permafrost on Qinghai–Tibet Plateau. Chin. Sci. Bull. 64, 2783–2795 (2019).
Luo, J., Niu, F., Lin, Z., Liu, M. & Yin, G. Recent acceleration of thaw slumping in permafrost terrain of Qinghai-Tibet Plateau: an example from the Beiluhe region. Geomorphology 341, 79–85 (2019).
Irrgang, A. M. et al. Drivers, dynamics and impacts of changing Arctic coasts. Nat. Rev. Earth Environ. 3, 39–54 (2022).
Pörtner, H.-O. et al. The ocean and cryosphere in a changing climate. Special Report on the Ocean and Cryosphere in a Changing Climate (eds Pörtner, H.-O. et al.) (IPCC, Cambridge Univ. Press, 2019).
Barnhart, K. R., Miller, C. R., Overeem, I. & Kay, J. E. Mapping the future expansion of Arctic open water. Nat. Clim. Change 6, 280–285 (2015).
Maslakov, A. & Kraev, G. Erodibility of permafrost exposures in the coasts of Eastern Chukotka. Polar Sci. 10, 374–381 (2016).
Jones, B. M. et al. A decade of remotely sensed observations highlight complex processes linked to coastal permafrost bluff erosion in the Arctic. Environ. Res. Lett. https://doi.org/10.1088/1748-9326/aae471 (2018).
Jaeger, J. M. & Koppes, M. N. The role of the cryosphere in source-to-sink systems. Earth Sci. Rev. 153, 43–76 (2016).
Herman, F., De Doncker, F., Delaney, I., Prasicek, G. & Koppes, M. The impact of glaciers on mountain erosion. Nat. Rev. Earth Environ. 2, 422–435 (2021).
Antoniazza, G. & Lane, S. N. Sediment yield over glacial cycles: a conceptual model. Prog. Phys. Geogr. Earth Environ. https://doi.org/10.1177/0309133321997292 (2021).
Hallet, B., Hunter, L. & Bogen, J. Rates of erosion and sediment evacuation by glaciers: a review of field data and their implications. Glob. Planet. Change 12, 213–235 (1996).
Cook, S. J., Swift, D. A., Kirkbride, M. P., Knight, P. G. & Waller, R. I. The empirical basis for modelling glacial erosion rates. Nat. Commun. 11, 759 (2020).
Ugelvig, S. V., Egholm, D. L., Anderson, R. S. & Iverson, N. R. Glacial erosion driven by variations in meltwater drainage. J. Geophys. Res. Earth Surf. 123, 2863–2877 (2018).
Iverson, N. R. A theory of glacial quarrying for landscape evolution models. Geology 40, 679–682 (2012).
Hallet, B. Glacial quarrying: a simple theoretical model. Ann. Glaciol. 22, 1–8 (1996).
Dühnforth, M., Anderson, R. S., Ward, D. & Stock, G. M. Bedrock fracture control of glacial erosion processes and rates. Geology 38, 423–426 (2010).
Bernard, H. A theoretical model of glacial abrasion. J. Glaciol. 23, 39–50 (1979).
Iverson, N. R. Laboratory simulations of glacial abrasion: comparison with theory. J. Glaciol. 36, 304–314 (1990).
Harbor, J. M., Hallet, B. & Raymond, C. F. A numerical model of landform development by glacial erosion. Nature 333, 347–349 (1988).
MacGregor, J. A. et al. A synthesis of the basal thermal state of the Greenland ice sheet. J. Geophys. Res. Earth Surf. 121, 1328–1350 (2016).
Dehecq, A. et al. Twenty-first century glacier slowdown driven by mass loss in High Mountain Asia. Nat. Geosci. 12, 22–27 (2018).
Phillips, T., Rajaram, H. & Steffen, K. Cryo-hydrologic warming: a potential mechanism for rapid thermal response of ice sheets. Geophys. Res. Lett. https://doi.org/10.1029/2010gl044397 (2010).
Carrivick, J. L. & Tweed, F. S. Deglaciation controls on sediment yield: towards capturing spatio-temporal variability. Earth Sci. Rev. https://doi.org/10.1016/j.earscirev.2021.103809 (2021).
Herman, F., Beaud, F., Champagnac, J.-D., Lemieux, J.-M. & Sternai, P. Glacial hydrology and erosion patterns: a mechanism for carving glacial valleys. Earth Planet. Sci. Lett. 310, 498–508 (2011).
Alley, R. B. et al. How glaciers entrain and transport basal sediment: physical constraints. Quat. Sci. Rev. 16, 1017–1038 (1997).
Hartmeyer, I. et al. Current glacier recession causes significant rockfall increase: the immediate paraglacial response of deglaciating cirque walls. Earth Surf. Dyn. 8, 729–751 (2020).
Coe, J. A., Bessette-Kirton, E. K. & Geertsema, M. Increasing rock-avalanche size and mobility in Glacier Bay National Park and Preserve, Alaska detected from 1984 to 2016 Landsat imagery. Landslides 15, 393–407 (2017).
Beylich, A. A. & Laute, K. Sediment sources, spatiotemporal variability and rates of fluvial bedload transport in glacier-connected steep mountain valleys in western Norway (Erdalen and Bødalen drainage basins). Geomorphology 228, 552–567 (2015).
Allen, S. K., Cox, S. C. & Owens, I. F. Rock avalanches and other landslides in the central Southern Alps of New Zealand: a regional study considering possible climate change impacts. Landslides 8, 33–48 (2010).
Chiarle, M., Geertsema, M., Mortara, G. & Clague, J. J. Relations between climate change and mass movement: perspectives from the Canadian Cordillera and the European Alps. Glob. Planet. Change https://doi.org/10.1016/j.gloplacha.2021.103499 (2021).
Matsuoka, N. Frost weathering and rockwall erosion in the southeastern Swiss Alps: long-term (1994–2006) observations. Geomorphology 99, 353–368 (2008).
Murton, J. B., Peterson, R. & Ozouf, J.-C. Bedrock fracture by ice segregation in cold regions. Science 314, 1127–1129 (2006).
Kellerer-Pirklbauer, A. Potential weathering by freeze–thaw action in alpine rocks in the European Alps during a nine year monitoring period. Geomorphology 296, 113–131 (2017).
Scherler, D. & Egholm, D. L. Production and transport of supraglacial debris: insights from cosmogenic 10Be and numerical modeling, Chhota Shigri Glacier, Indian Himalaya. J. Geophys. Res. Earth Surf. https://doi.org/10.1029/2020jf005586 (2020).
Evans, S. G. & Delaney, K. B. in Snow and Ice-Related Hazards, Risks, and Disasters (eds Shroder, J. F., Haeberli, W. & Whiteman, C.) 563–606 (Academic, 2015).
Beaud, F., Flowers, G. E. & Venditti, J. G. Efficacy of bedrock erosion by subglacial water flow. Earth Surf. Dyn. 4, 125–145 (2016).
Gimbert, F., Tsai, V. C., Amundson, J. M., Bartholomaus, T. C. & Walter, J. I. Subseasonal changes observed in subglacial channel pressure, size, and sediment transport. Geophys. Res. Lett. 43, 3786–3794 (2016).
Swift, D. A. et al. The hydrology of glacier-bed overdeepenings: sediment transport mechanics, drainage system morphology, and geomorphological implications. Earth Surf. Process. Landforms 46, 2264–2278 (2021).
Andrews, L. C. et al. Direct observations of evolving subglacial drainage beneath the Greenland ice sheet. Nature 514, 80–83 (2014).
Colgan, W. et al. An increase in crevasse extent, West Greenland: hydrologic implications. Geophys. Res. Lett. https://doi.org/10.1029/2011gl048491 (2011).
Nienow, P., Sharp, M. & Willis, I. Seasonal changes in the morphology of the subglacial drainage system, Haut Glacier d’Arolla, Switzerland. Earth Surf. Process. Landforms 23, 825–843 (1998).
Chudley, T. R. et al. Supraglacial lake drainage at a fast-flowing Greenlandic outlet glacier. Proc. Natl Acad. Sci. USA 116, 25468–25477 (2019).
Smith, L. C. et al. Efficient meltwater drainage through supraglacial streams and rivers on the southwest Greenland ice sheet. Proc. Natl Acad. Sci. USA 112, 1001–1006 (2015).
Livingstone, S. J. et al. Subglacial lakes and their changing role in a warming climate. Nat. Rev. Earth Environ. https://doi.org/10.1038/s43017-021-00246-9 (2022).
Livingstone, S. J. et al. Brief communication: subglacial lake drainage beneath Isunguata Sermia, West Greenland: geomorphic and ice dynamic effects. Cryosphere 13, 2789–2796 (2019).
Gabet, E., Burbank, D., Prattsitaula, B., Putkonen, J. & Bookhagen, B. Modern erosion rates in the High Himalayas of Nepal. Earth Planet. Sci. Lett. 267, 482–494 (2008).
Tsyplenkov, A., Vanmaercke, M., Collins, A. L., Kharchenko, S. & Golosov, V. Elucidating suspended sediment dynamics in a glacierized catchment after an exceptional erosion event: the Djankuat catchment, Caucasus Mountains, Russia. Catena https://doi.org/10.1016/j.catena.2021.105285 (2021).
Beylich, A. A., Laute, K. & Storms, J. E. A. Contemporary suspended sediment dynamics within two partly glacierized mountain drainage basins in western Norway (Erdalen and Bødalen, inner Nordfjord). Geomorphology 287, 126–143 (2017).
Comiti, F. et al. Glacier melt runoff controls bedload transport in alpine catchments. Earth Planet. Sci. Lett. 520, 77–86 (2019).
Williams, H. B. & Koppes, M. N. A comparison of glacial and paraglacial denudation responses to rapid glacial retreat. Ann. Glaciol. 60, 151–164 (2019).
Bogen, J., Xu, M. & Kennie, P. The impact of pro-glacial lakes on downstream sediment delivery in Norway. Earth Surf. Process. Landforms 40, 942–952 (2014).
Steffen, T., Huss, M., Estermann, R., Hodel, E. & Farinotti, D. Volume, evolution, and sedimentation of future glacier lakes in Switzerland over the 21st century. Earth Surf. Dyn. 10, 723–741 (2022).
Cook, K. L., Andermann, C., Gimbert, F., Adhikari, B. R. & Hovius, N. Glacial lake outburst floods as drivers of fluvial erosion in the Himalaya. Science 362, 53–57 (2018).
Cenderelli, D. A. & Wohl, E. E. Flow hydraulics and geomorphic effects of glacial-lake outburst floods in the Mount Everest region, Nepal. Earth Surf. Process. Landforms 28, 385–407 (2003).
Heckmann, T., McColl, S. & Morche, D. Retreating ice: research in pro-glacial areas matters. Earth Surf. Process. Landforms 41, 271–276 (2016).
Tomczyk, A. M., Ewertowski, M. W. & Carrivick, J. L. Geomorphological impacts of a glacier lake outburst flood in the high Arctic Zackenberg River, NE Greenland. J. Hydrol. https://doi.org/10.1016/j.jhydrol.2020.125300 (2020).
Russell, A. J. et al. Icelandic jökulhlaup impacts: implications for ice-sheet hydrology, sediment transfer and geomorphology. Geomorphology 75, 33–64 (2006).
Wilson, R. et al. The 2015 Chileno Valley glacial lake outburst flood, Patagonia. Geomorphology 332, 51–65 (2019).
IPCC Climate Change 2021: The Physical Science Basis (eds Masson-Delmotte, V. et al.) (Cambridge Univ. Press, 2021).
de Winter, I. L., Storms, J. E. A. & Overeem, I. Numerical modeling of glacial sediment production and transport during deglaciation. Geomorphology 167–168, 102–114 (2012).
Lai, J. & Anders, A. M. Climatic controls on mountain glacier basal thermal regimes dictate spatial patterns of glacial erosion. Earth Surf. Dyn. 9, 845–859 (2021).
Hirschberg, J. et al. Climate change impacts on sediment yield and debris-flow activity in an alpine catchment. J. Geophys. Res. Earth Surf. 126, e2020JF005739 (2021).
Kokelj, S. V. et al. Thawing of massive ground ice in mega slumps drives increases in stream sediment and solute flux across a range of watershed scales. J. Geophys. Res. Earth Surf. 118, 681–692 (2013).
Rudy, A. C. A., Lamoureux, S. F., Kokelj, S. V., Smith, I. R. & England, J. H. Accelerating thermokarst transforms ice-cored terrain triggering a downstream cascade to the ocean. Geophys. Res. Lett. https://doi.org/10.1002/2017gl074912 (2017).
Lafrenière, M. J. & Lamoureux, S. F. Effects of changing permafrost conditions on hydrological processes and fluvial fluxes. Earth Sci. Rev. 191, 212–223 (2019).
Lamoureux, S. F., Lafrenière, M. J. & Favaro, E. A. Erosion dynamics following localized permafrost slope disturbances. Geophys. Res. Lett. 41, 5499–5505 (2014).
Godin, E., Fortier, D. & Coulombe, S. Effects of thermo-erosion gullying on hydrologic flow networks, discharge and soil loss. Environ. Res. Lett. 9, 105010 (2014).
Obu, J. et al. Effect of terrain characteristics on soil organic carbon and total nitrogen stocks in soils of Herschel Island, Western Canadian Arctic. Permafr. Periglac. Process. 28, 92–107 (2017).
Lewkowicz, A. G. Dynamics of active-layer detachment failures, Fosheim Peninsula, Ellesmere Island, Nunavut, Canada. Permafr. Periglac. Process. 18, 89–103 (2007).
Gooseff, M. N., Balser, A., Bowden, W. B. & Jones, J. B. Effects of hillslope thermokarst in Northern Alaska. Eos, Trans. Am. Geophys. Union. 90, 29–30 (2009).
Paquette, M., Rudy, A. C. A., Fortier, D. & Lamoureux, S. F. Multi-scale site evaluation of a relict active layer detachment in a high Arctic landscape. Geomorphology https://doi.org/10.1016/j.geomorph.2020.107159 (2020).
Balser, A. W., Jones, J. B. & Gens, R. Timing of retrogressive thaw slump initiation in the Noatak Basin, northwest Alaska, USA. J. Geophys. Res. Earth Surf. 119, 1106–1120 (2014).
Godin, E. & Fortier, D. Geomorphology of a thermo-erosion gully, Bylot Island, Nunavut, Canada. Can. J. Earth Sci. 49, 979–986 (2012).
Perreault, N., Lévesque, E., Fortier, D., Gratton, D. & Lamarque, L. J. Remote sensing evaluation of high Arctic wetland depletion following permafrost disturbance by thermo-erosion gullying processes. Arct. Sci. 3, 237–253 (2017).
Kokelj, S. V. et al. Thaw-driven mass wasting couples slopes with downstream systems, and effects propagate through Arctic drainage networks. Cryosphere 15, 3059–3081 (2021).
Zheng, L., Overeem, I., Wang, K. & Clow, G. D. Changing Arctic river dynamics cause localized permafrost thaw. J. Geophys. Res. Earth Surf. 124, 2324–2344 (2019).
Lantuit, H. & Pollard, W. H. Fifty years of coastal erosion and retrogressive thaw slump activity on Herschel Island, southern Beaufort Sea, Yukon Territory, Canada. Geomorphology 95, 84–102 (2008).
Costard, F., Dupeyrat, L., Gautier, E. & Carey-Gailhardis, E. Fluvial thermal erosion investigations along a rapidly eroding river bank: application to the Lena River (central Siberia). Earth Surf. Process. Landforms 28, 1349–1359 (2003).
Payne, C., Panda, S. & Prakash, A. Remote sensing of river erosion on the Colville River, North Slope Alaska. Remote Sens. https://doi.org/10.3390/rs10030397 (2018).
Costard, F. et al. Impact of the global warming on the fluvial thermal erosion over the Lena River in Central Siberia. Geophys. Res. Lett. https://doi.org/10.1029/2007gl030212 (2007).
Gautier, E. et al. Fifty-year dynamics of the Lena River islands (Russia): spatio-temporal pattern of large periglacial anabranching river and influence of climate change. Sci. Total Environ. 783, 147020 (2021).
Shur, Y. et al. Fluvio-thermal erosion and thermal denudation in the yedoma region of northern Alaska: revisiting the Itkillik River exposure. Permafr. Periglac. Process. 32, 277–298 (2021).
Chassiot, L., Lajeunesse, P. & Bernier, J.-F. Riverbank erosion in cold environments: review and outlook. Earth Sci. Rev. https://doi.org/10.1016/j.earscirev.2020.103231 (2020).
Vandermause, R., Harvey, M., Zevenbergen, L. & Ettema, R. River-ice effects on bank erosion along the middle segment of the Susitna River, Alaska. Cold Reg. Sci. Technol. https://doi.org/10.1016/j.coldregions.2021.103239 (2021).
Costard, F., Gautier, E., Fedorov, A., Konstantinov, P. & Dupeyrat, L. An assessment of the erosion potential of the fluvial thermal process during ice breakups of the Lena River (Siberia). Permafr. Periglac. Process. 25, 162–171 (2014).
Beltaos, S., Carter, T., Rowsell, R. & DePalma, S. G. S. Erosion potential of dynamic ice breakup in Lower Athabasca River. Part I: field measurements and initial quantification. Cold Reg. Sci. Technol. 149, 16–28 (2018).
Rowland, J. C. et al. Arctic landscapes in transition: responses to thawing permafrost. Eos Trans. Am. Geophys. Union. 91, 229–230 (2010).
Wohl, E. et al. Connectivity as an emergent property of geomorphic systems. Earth Surf. Process. Landforms 44, 4–26 (2019).
Walvoord, M. A. & Kurylyk, B. L. Hydrologic impacts of thawing permafrost — a review. Vadose Zone J. 15, 1–20 (2016).
Zhang, T., Li, D. & Lu, X. Response of runoff components to climate change in the source-region of the Yellow River on the Tibetan plateau. Hydrol. Process. https://doi.org/10.1002/hyp.14633 (2022).
Farquharson, L. M., Romanovsky, V. E., Kholodov, A. & Nicolsky, D. Sub-aerial talik formation observed across the discontinuous permafrost zone of Alaska. Nat. Geosci. 15, 475–481 (2022).
Nitzbon, J. et al. Fast response of cold ice-rich permafrost in northeast Siberia to a warming climate. Nat. Commun. 11, 2201 (2020).
Jones, B. M. et al. Arctic Report Card 2020: Coastal Permafrost Erosion. https://doi.org/10.25923/e47w-dw52 (NOAA Institutional Repository, 2020).
Günther, F., Overduin, P. P., Sandakov, A. V., Grosse, G. & Grigoriev, M. N. Short- and long-term thermo-erosion of ice-rich permafrost coasts in the Laptev Sea region. Biogeosciences 10, 4297–4318 (2013).
Lim, M. et al. Massive ice control on permafrost coast erosion and sensitivity. Geophys. Res. Lett. https://doi.org/10.1029/2020gl087917 (2020).
Frederick, J. M., Thomas, M. A., Bull, D. L., Jones, C. A. & Roberts, J. D. The Arctic Coastal Erosion Problem. Sandia Report No. SAND2016-9762 (Sandia National Laboratories, 2016).
Overeem, I. et al. Sea ice loss enhances wave action at the Arctic coast. Geophys. Res. Lett. 38, L17503 (2011).
Radosavljevic, B. et al. Erosion and flooding — threats to coastal infrastructure in the arctic: a case study from Herschel Island, Yukon Territory, Canada. Estuaries Coasts 39, 900–915 (2015).
Couture, N. J., Irrgang, A., Pollard, W., Lantuit, H. & Fritz, M. Coastal erosion of permafrost soils along the Yukon coastal plain and fluxes of organic carbon to the Canadian Beaufort Sea. J. Geophys. Res. Biogeosci. 123, 406–422 (2018).
Delaney, I., Bauder, A., Werder, M. A. & Farinotti, D. Regional and annual variability in subglacial sediment transport by water for two glaciers in the Swiss Alps. Front. Earth Sci. https://doi.org/10.3389/feart.2018.00175 (2018).
Comte, J., Monier, A., Crevecoeur, S., Lovejoy, C. & Vincent, W. F. Microbial biogeography of permafrost thaw ponds across the changing northern landscape. Ecography 39, 609–618 (2016).
Fuchs, M. et al. Rapid fluvio-thermal erosion of a Yedoma permafrost cliff in the Lena River delta. Front. Earth Sci. https://doi.org/10.3389/feart.2020.00336 (2020).
Li, D., Li, Z., Zhou, Y. & Lu, X. Substantial increases in the water and sediment fluxes in the headwater region of the Tibetan Plateau in response to global warming. Geophys. Res. Lett. 47, e2020GL087745 (2020).
Zhang, F. et al. Controls on seasonal erosion behavior and potential increase in sediment evacuation in the warming Tibetan Plateau. Catena https://doi.org/10.1016/j.catena.2021.105797 (2022).
Singh, A. et al. Counter-intuitive influence of Himalayan river morphodynamics on Indus Civilisation urban settlements. Nat. Commun. 8, 1617 (2017).
Gabbud, C., Robinson, C. T. & Lane, S. N. Summer is in winter: disturbance-driven shifts in macroinvertebrate communities following hydroelectric power exploitation. Sci. Total Environ. 650, 2164–2180 (2019).
Fischer, L., Huggel, C., Kääb, A. & Haeberli, W. Slope failures and erosion rates on a glacierized high-mountain face under climatic changes. Earth Surf. Process. Landforms 38, 836–846 (2013).
Bogen, J. The impact of climate change on glacial sediment delivery to rivers. IAHS Publ. 325, 432–439 (2008).
Singh, A. T. et al. Water discharge and suspended sediment dynamics in the Chandra River, Western Himalaya. J. Earth Syst. Sci. https://doi.org/10.1007/s12040-020-01455-4 (2020).
Brooke, S. et al. Where rivers jump course. Science 376, 987–990 (2022).
Church, M. & Ryder, J. M. Paraglacial sedimentation: a consideration of fluvial processes conditioned by glaciation. GSA Bull. 83, 3059–3072 (1972).
Ballantyne, C. K. Paraglacial geomorphology. Quat. Sci. Rev. 21, 1935–2017 (2002).
Mariotti, A. et al. Nonlinear forcing of climate on mountain denudation during glaciations. Nat. Geosci. https://doi.org/10.1038/s41561-020-00672-2 (2021).
Moon, S. et al. Climatic control of denudation in the deglaciated landscape of the Washington Cascades. Nat. Geosci. 4, 469–473 (2011).
Terhaar, J., Lauerwald, R., Regnier, P., Gruber, N. & Bopp, L. Around one third of current Arctic Ocean primary production sustained by rivers and coastal erosion. Nat. Commun. 12, 169 (2021).
Ogorodov, S., Aleksyutina, D., Baranskaya, A., Shabanova, N. & Shilova, O. Coastal erosion of the Russian Arctic: an overview. J. Coast. Res. 95, 599–604 (2020).
Guégan, E. Erosion of Permafrost Affected Coasts: Rates, Mechanisms and Modelling. PhD thesis, Norwegian Univ. Science and Technology (2015).
Jones, B. M. et al. Increase in the rate and uniformity of coastline erosion in Arctic Alaska. Geophys. Res. Lett. 36, L03503 (2009).
Hasholt, B., van As, D., Mikkelsen, A. B., Mernild, S. H. & Yde, J. C. Observed sediment and solute transport from the Kangerlussuaq sector of the Greenland Ice Sheet (2006–2016). Arct. Antarct. Alp. Res. https://doi.org/10.1080/15230430.2018.1433789 (2018).
Hudson, B. et al. MODIS observed increase in duration and spatial extent of sediment plumes in Greenland fjords. Cryosphere 8, 1161–1176 (2014).
Overeem, I., Nienhuis, J. H. & Piliouras, A. Ice-dominated Arctic deltas. Nat. Rev. Earth Environ. https://doi.org/10.1038/s43017-022-00268-x (2022).
Fritz, M., Vonk, J. E. & Lantuit, H. Collapsing Arctic coastlines. Nat. Clim. Change 7, 6–7 (2017).
Huss, M. et al. Toward mountains without permanent snow and ice. Earths Future 5, 418–435 (2017).
Schaefer, K., Zhang, T., Bruhwiler, L. & Barrett, A. P. Amount and timing of permafrost carbon release in response to climate warming. Tellus B 63, 165–180 (2011).
Sadai, S., Condron, A., DeConto, R. & Pollard, D. Future climate response to Antarctic ice sheet melt caused by anthropogenic warming. Sci. Adv. 6, eaaz1169 (2020).
Aschwanden, A. et al. Contribution of the Greenland ice sheet to sea level over the next millennium. Sci. Adv. 5, eaav9396 (2019).
Knight, J. & Harrison, S. Mountain glacial and paraglacial environments under global climate change: lessons from the past, future directions and policy implications. Geogr. Ann. Ser. A 96, 245–264 (2014).
Costa, A. et al. Temperature signal in suspended sediment export from an alpine catchment. Hydrol. Earth Syst. Sci. 22, 509–528 (2018).
Church, M. & Slaymaker, O. Disequilibrium of Holocene sediment yield in glaciated British Columbia. Nature 337, 452–454 (1989).
Slosson, J. R., Kelleher, C. & Hoke, G. D. Contrasting impacts of a hotter and drier future on streamflow and catchment scale sediment flux in the High Andes. J. Geophys. Res. Earth Surf. https://doi.org/10.1029/2021jf006182 (2021).
Walling, D. E. Human impact on land–ocean sediment transfer by the world’s rivers. Geomorphology 79, 192–216 (2006).
Li, L. et al. Global trends in water and sediment fluxes of the world’s large rivers. Sci. Bull. 65, 62–69 (2020).
Pandey, A., Himanshu, S. K., Mishra, S. K. & Singh, V. P. Physically based soil erosion and sediment yield models revisited. Catena 147, 595–620 (2016).
de Vente, J. et al. Predicting soil erosion and sediment yield at regional scales: where do we stand. Earth Sci. Rev. 127, 16–29 (2013).
Walling, D. E. The sediment delivery problem. J. Hydrol. 65, 209–237 (1983).
Vercruysse, K., Grabowski, R. C. & Rickson, R. J. Suspended sediment transport dynamics in rivers: multi-scale drivers of temporal variation. Earth Sci. Rev. 166, 38–52 (2017).
Harrison, S. et al. Uncertainty in geomorphological responses to climate change. Clim. Change 156, 69–86 (2019).
Qin, D. & Ding, Y. Key issues on cryospheric changes, trends and their impacts. Adv. Clim. Change Res. 1, 1–10 (2010).
Thackeray, C. W. & Hall, A. An emergent constraint on future Arctic sea-ice albedo feedback. Nat. Clim. Change 9, 972–978 (2019).
Fang, H.-W. & Wang, G.-Q. Three-dimensional mathematical model of suspended-sediment transport. J. Hydraul. Eng. 126, 578–592 (2000).
Syvitski, James, P. M. & Milliman, J. D. Geology, geography, and humans battle for dominance over the delivery of fluvial sediment to the coastal ocean. J. Geol. 115, 1–19 (2007).
Koppes, M. N. & Montgomery, D. R. The relative efficacy of fluvial and glacial erosion over modern to orogenic timescales. Nat. Geosci. 2, 644–647 (2009).
Hinderer, M., Kastowski, M., Kamelger, A., Bartolini, C. & Schlunegger, F. River loads and modern denudation of the Alps — a review. Earth Sci. Rev. 118, 11–44 (2013).
Wolman, M. G. & Miller, J. P. Magnitude and frequency of forces in geomorphic processes. J. Geol. 68, 54–74 (1960).
Gariano, S. L. & Guzzetti, F. Landslides in a changing climate. Earth Sci. Rev. 162, 227–252 (2016).
McMillan, S. K. et al. Before the storm: antecedent conditions as regulators of hydrologic and biogeochemical response to extreme climate events. Biogeochemistry 141, 487–501 (2018).
Schumm, S. A. Geomorphic thresholds: the concept and its applications. Trans. Inst. Br. Geogr. 4, 485–515 (1979).
Phillips, J. D. Evolutionary geomorphology: thresholds and nonlinearity in landform response to environmental change. Hydrol. Earth Syst. Sci. 10, 731–742 (2006).
Katzenberger, A., Schewe, J., Pongratz, J. & Levermann, A. Robust increase of Indian monsoon rainfall and its variability under future warming in CMIP6 models. Earth Syst. Dyn. 12, 367–386 (2021).
Rao, M. P. et al. Seven centuries of reconstructed Brahmaputra River discharge demonstrate underestimated high discharge and flood hazard frequency. Nat. Commun. 11, 6017 (2020).
Heckmann, T. et al. Indices of sediment connectivity: opportunities, challenges and limitations. Earth Sci. Rev. 187, 77–108 (2018).
Syvitski, J. P. M., Vörösmarty, C. J., Kettner, A. J. & Green, P. Impact of humans on the flux of terrestrial sediment to the global coastal ocean. Science 308, 376 (2005).
Piliouras, A. & Rowland, J. C. Arctic river delta morphologic variability and implications for riverine fluxes to the coast. J. Geophys. Res. Earth Surf. https://doi.org/10.1029/2019jf005250 (2020).
Valenza, J. M., Edmonds, D. A., Hwang, T. & Roy, S. Downstream changes in river avulsion style are related to channel morphology. Nat. Commun. 11, 2116 (2020).
Liu, K. et al. Ongoing drainage reorganization driven by rapid lake growths on the Tibetan Plateau. Geophys. Res. Lett. https://doi.org/10.1029/2021gl095795 (2021).
Richardson, P. W., Perron, J. T. & Schurr, N. D. Influences of climate and life on hillslope sediment transport. Geology 47, 423–426 (2019).
Zhou, Y. et al. Distinguishing the multiple controls on the decreased sediment flux in the Jialing River basin of the Yangtze River, southwestern China. Catena https://doi.org/10.1016/j.catena.2020.104593 (2020).
Zhang, S., Fan, W., Li, Y. & Yi, Y. The influence of changes in land use and landscape patterns on soil erosion in a watershed. Sci. Total Environ. 574, 34–45 (2017).
Zhu, Z. et al. Greening of the Earth and its drivers. Nat. Clim. Change 6, 791–795 (2016).
Miao, C., Ni, J., Borthwick, A. G. L. & Yang, L. A preliminary estimate of human and natural contributions to the changes in water discharge and sediment load in the Yellow River. Glob. Planet. Change 76, 196–205 (2011).
Mouyen, M. et al. Assessing modern river sediment discharge to the ocean using satellite gravimetry. Nat. Commun. 9, 3384 (2018).
Dethier, E. N., Renshaw, C. E. & Magilligan, F. J. Rapid changes to global river suspended sediment flux by humans. Science 376, 1447–1452 (2022).
Huntley, D. et al. Field testing innovative differential geospatial and photogrammetric monitoring technologies in mountainous terrain near Ashcroft, British Columbia, Canada. J. Mt Sci. 18, 1–20 (2021).
Piret, L. et al. High-resolution fjord sediment record of a receding glacier with growing intermediate proglacial lake (Steffen Fjord, Chilean Patagonia). Earth Surf. Process. Landforms 46, 239–251 (2020).
Deino, A. L. et al. Chronostratigraphic model of a high-resolution drill core record of the past million years from the Koora Basin, south Kenya Rift: overcoming the difficulties of variable sedimentation rate and hiatuses. Quat. Sci. Rev. 215, 213–231 (2019).
Cook, K. L. et al. Detection and potential early warning of catastrophic flow events with regional seismic networks. Science 374, 87–92 (2021).
Cohen, S., Kettner, A. J., Syvitski, J. P. M. & Fekete, B. M. WBMsed, a distributed global-scale riverine sediment flux model: model description and validation. Comput. Geosci. 53, 80–93 (2013).
Kettner, A. J. & Syvitski, J. P. M. HydroTrend v.3.0: a climate-driven hydrological transport model that simulates discharge and sediment load leaving a river system. Comput. Geosci. 34, 1170–1183 (2008).
Nearing, M. A., Foster, G. R., Lane, L. & Finkner, S. A process-based soil erosion model for USDA-Water Erosion Prediction Project technology. Trans. ASAE 32, 1587–1593 (1989).
Reichstein, M. et al. Deep learning and process understanding for data-driven Earth system science. Nature 566, 195–204 (2019).
Huang, L., Luo, J., Lin, Z., Niu, F. & Liu, L. Using deep learning to map retrogressive thaw slumps in the Beiluhe region (Tibetan Plateau) from CubeSat images. Remote Sens. Environ. https://doi.org/10.1016/j.rse.2019.111534 (2020).
Tan, Z., Leung, L. R., Li, H. Y. & Tesfa, T. Modeling sediment yield in land surface and Earth System models: model comparison, development, and evaluation. J. Adv. Model. Earth Syst. 10, 2192–2213 (2018).
Pfeffer, W. T. et al. The Randolph Glacier inventory: a globally complete inventory of glaciers. J. Glaciol. 60, 537–552 (2014).
Obu, J. et al. ESA Permafrost Climate Change Initiative (Permafrost_cci): Permafrost active layer thickness for the Northern Hemisphere, v3.0 (NERC EDS Centre for Environmental Data Analysis, 2021); https://catalogue.ceda.ac.uk/uuid/67a3f8c8dc914ef99f7f08eb0d997e23
Strauss, J. et al. Database of ice-rich Yedoma permafrost (IRYP). PANGAEA https://doi.org/10.1594/PANGAEA.861733 (2016).
Acknowledgements
This work was supported by Singapore MOE (A-0003626-00-00; D.L., X.L.), the Intergovernmental Panel on Climate Change and the Cuomo Foundation (D.L.). The authors acknowledge comments provided by M. Church. We thank O. Jaroslav, R. MacLeod, J. Comte, L. Huang and W. Pollard for providing field photos. Any use of trade, firm or product names is for descriptive purposes only and does not imply endorsement by the US Government.
Author information
Authors and Affiliations
Contributions
T.Z. and D.L. conceived the study and assembled the authorship team. T.Z. and D.L. drafted the paper. All authors contributed to the discussion and editing of the manuscript prior to submission.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Reviews Earth & Environment thanks Greta Wells, Joel Rowland and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Glossary
- Active layer
-
The top layer of soil or rock overlying the permafrost that experiences seasonal freeze (in winter) and thaw (in summer).
- Basal sliding velocity
-
The speed of slip of a glacier over its bed, which is facilitated by lubricating meltwater and limited by frictional resistance between the glacier sole and its bed.
- Cold regions
-
High-altitude and/or high-latitude low-temperature environments, where hydrogeomorphic processes are influenced by glacier, permafrost, snow, or river, lake and sea ice.
- Cryosphere
-
The portion of the Earth’s surface where water exists in solid form, including glaciers, ice sheets, permafrost, snowpack, and river, lake and sea ice.
- Cryospheric basins
-
Basins where hydrological and geomorphic processes are influenced or even dominated by the cryosphere.
- Glacial lake outburst floods
-
A flood caused by the rapid draining of an ice-marginal or moraine-dammed glacial lake, or supraglacial lake.
- Glacier equilibrium line altitudes
-
The elevation on a glacier where the accumulation of snow is balanced by ablation over a 1-year period.
- Ice-free erodible landscapes
-
Landscapes that are not covered by glaciers and contain no ground ice, where erosion is controlled neither by glacial processes nor by other ice processes and is characterized as pluvial and fluvial processes.
- Paraglacial erosion
-
Erosional processes directly conditioned by (de)glaciation, characterized by fluvial erosion and mass movements, including landslides, debris flows and avalanches.
- Peak meltwater
-
The maximum of the meltwater in flux from the glacierized drainage basin; the meltwater flux initially increases with atmospheric warming and glacier melting, and then peaks, followed by a decline as glaciers shrink below a critical size.
- Periglacial
-
Refers to cold and non-glacial landforms on the margin of past glaciers or geomorphic processes occurring in cold environments.
- Permafrost
-
Ground, consisting of ground ice, frozen sediments, biomass and decomposed biomass, that remains at or below 0 °C for at least two consecutive years.
- Talik
-
A layer of soil or sediment in permafrost that remains unfrozen year-round, usually formed beneath surface water bodies.
- Thermally controlled erodible landscapes
-
Landscapes covered by glaciers and/or containing ground ice where erosion is dominated by glacial erosion and/or thermokarst erosion.
- Thermokarst landscapes
-
Landscapes with a variety of topographic depressions or collapses of unstable ground surface arising from ground-ice thawing, including active-layer detachment, thermal erosion gullies, retrogressive thaw slumps and ice-rich riverbank collapse.
- Yedoma permafrost
-
A type of Pleistocene-age permafrost that contains a substantial amount of organic material (2% carbon by mass) and ground ice (ice content of 50–90% by volume).
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Zhang, T., Li, D., East, A.E. et al. Warming-driven erosion and sediment transport in cold regions. Nat Rev Earth Environ 3, 832–851 (2022). https://doi.org/10.1038/s43017-022-00362-0
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s43017-022-00362-0