[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Recent progress in broadly neutralizing antibodies to HIV

A Publisher Correction to this article was published on 01 February 2019

This article has been updated

Abstract

In this Review, we highlight some recent developments in the discovery and application of broadly neutralizing antibodies (bnAbs) to human immunodeficiency virus (HIV); i.e., antibodies able to neutralize diverse isolates of HIV. We consider the characterization of novel bnAbs, recent data on the effects of bnAbs in vivo in humans and animal models, and the importance of both kinds of data for the application of Abs to prophylaxis and therapy and to guide vaccine design. We seek to place newly discovered bnAbs in the context of existing bnAbs, and we explore the various characteristics of the antibodies that are most desirable for different applications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Neutralization coverage of large panels of global isolates by bnAbs as a function of neutralization potency.
Fig. 2: The bnAb epitopes on the HIV Env trimer.
Fig. 3: Serum concentration of bnAbs needed to provide complete protection against viral challenge.
Fig. 4: Predicted protection coverage in humans by bnAbs, determined from neutralization coverage and titers and available SHIV protection data.

Similar content being viewed by others

Change history

  • 01 February 2019

    In the version of this article initially published, some of the references in Table 1 were incorrect. The correct references are as follows: in row 12, refs. 12,44 should be ref. 12; in row 16, refs. 2,17,27 should be ref. 109 (Walker, L. M. et al. Broad neutralization coverage of HIV by multiple highly potent antibodies. Nature 477, 466–470 (2011)); in row 25, refs. 61,76 should be ref. 110 (Wu, X. et al. Rational design of envelope identifies broadly neutralizing human monoclonal antibodies to HIV-1. Science 329, 856–861 (2010)); and in the bottom row, ref. 57 should be ref. 111 (Huang, J. et al. Broad and potent neutralization of HIV-1 by a gp41-specific human antibody. Nature 491, 406–412 (2012)). Those new references (109–111) should be included in the reference list. The errors have been corrected in the HTML and PDF versions of the article.

References

  1. Burton, D. R., Poignard, P., Stanfield, R. L. & Wilson, I. A. Broadly neutralizing antibodies present new prospects to counter highly antigenically diverse viruses. Science 337, 183–186 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Walker, L. M. & Burton, D. R. Passive immunotherapy of viral infections: ‘super-antibodies’ enter the fray. Nat. Rev. Immunol. 18, 297–308 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Escolano, A., Dosenovic, P. & Nussenzweig, M. C. Progress toward active or passive HIV-1 vaccination. J. Exp. Med. 214, 3–16 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Kwong, P. D. & Mascola, J. R. HIV-1 vaccines based on antibody identification, B cell ontogeny, and epitope structure. Immunity 48, 855–871 (2018).

    CAS  PubMed  Google Scholar 

  5. Burton, D. R. & Hangartner, L. Broadly neutralizing antibodies to HIV and their role in vaccine design. Annu. Rev. Immunol. 34, 635–659 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. McCoy, L. E. & Burton, D. R. Identification and specificity of broadly neutralizing antibodies against HIV. Immunol. Rev. 275, 11–20 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Pegu, A., Hessell, A. J., Mascola, J. R. & Haigwood, N. L. Use of broadly neutralizing antibodies for HIV-1 prevention. Immunol. Rev. 275, 296–312 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Morris, L. & Mkhize, N. N. Prospects for passive immunity to prevent HIV infection. PLoS Med. 14, e1002436 (2017).

    PubMed  PubMed Central  Google Scholar 

  9. Subbaraman, H., Schanz, M. & Trkola, A. Broadly neutralizing antibodies: what is needed to move from a rare event in HIV-1 infection to vaccine efficacy? Retrovirology 15, 52 (2018).

    PubMed  PubMed Central  Google Scholar 

  10. Jardine, J. G. et al. Minimally mutated HIV-1 broadly neutralizing antibodies to guide reductionist vaccine design. PLoS Pathog. 12, e1005815 (2016).

    PubMed  PubMed Central  Google Scholar 

  11. Lee, J. H. et al. A broadly neutralizing antibody targets the dynamic HIV envelope trimer apex via a long, rigidified, and anionic β-hairpin structure. Immunity 46, 690–702 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Sok, D. et al. A prominent site of antibody vulnerability on HIV envelope incorporates a motif associated with CCR5 binding and its camouflaging glycans. Immunity 45, 31–45 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Pancera, M. et al. Structure and immune recognition of trimeric pre-fusion HIV-1 Env. Nature 514, 455–461 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Molinos-Albert, L. M., Clotet, B., Blanco, J. & Carrillo, J. Immunologic insights on the membrane proximal external region: a major human immunodeficiency virus type-1 vaccine target. Front. Immunol. 8, 1154 (2017).

    PubMed  PubMed Central  Google Scholar 

  15. Zhou, T. et al. A neutralizing antibody recognizing primarily N-linked glycan targets the silent face of the HIV envelope. Immunity 48, 500–513 (2018).

    CAS  PubMed  Google Scholar 

  16. Wyatt, R. & Sodroski, J. The HIV-1 envelope glycoproteins: fusogens, antigens, and immunogens. Science 280, 1884–1888 (1998).

    CAS  PubMed  Google Scholar 

  17. Walker, L. M. et al. Broad and potent neutralizing antibodies from an African donor reveal a new HIV-1 vaccine target. Science 326, 285–289 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Pejchal, R. et al. Structure and function of broadly reactive antibody PG16 reveal an H3 subdomain that mediates potent neutralization of HIV-1. Proc. Natl. Acad. Sci. USA 107, 11483–11488 (2010).

    PubMed  Google Scholar 

  19. Pancera, M. et al. Crystal structure of PG16 and chimeric dissection with somatically related PG9: structure-function analysis of two quaternary-specific antibodies that effectively neutralize HIV-1. J. Virol. 84, 8098–8110 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. McCoy, L. E. et al. Incomplete neutralization and deviation from sigmoidal neutralization curves for HIV broadly neutralizing monoclonal antibodies. PLoS Pathog. 11, e1005110 (2015).

    PubMed  PubMed Central  Google Scholar 

  21. Webb, N. E., Montefiori, D. C. & Lee, B. Dose-response curve slope helps predict therapeutic potency and breadth of HIV broadly neutralizing antibodies. Nat. Commun. 6, 8443 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Doria-Rose, N. A. et al. New member of the V1V2-directed CAP256-VRC26 lineage that shows increased breadth and exceptional potency. J. Virol. 90, 76–91 (2015).

    PubMed  PubMed Central  Google Scholar 

  23. Andrabi, R. et al. Glycans function as anchors for antibodies and help drive HIV broadly neutralizing antibody development. Immunity 47, 524–537.e3 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Cale, E. M. et al. Virus-like particles identify an HIV V1V2 apex-binding neutralizing antibody that lacks a protruding loop. Immunity 46, 777–791 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Landais, E. et al. HIV envelope glycoform heterogeneity and localized diversity govern the initiation and maturation of a V2 apex broadly neutralizing antibody lineage. Immunity 47, 990–1003.e9 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Rantalainen, K. et al. Co-evolution of HIV envelope and apex-targeting neutralizing antibody lineage provides benchmarks for vaccine design. Cell Rep. 23, 3249–3261 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Walker, L. M. et al. A limited number of antibody specificities mediate broad and potent serum neutralization in selected HIV-1 infected individuals. PLoS Pathog. 6, e1001028 (2010).

    PubMed  PubMed Central  Google Scholar 

  28. Landais, E. et al. Broadly neutralizing antibody responses in a large longitudinal sub-Saharan HIV primary infection cohort. PLoS Pathog. 12, e1005369 (2016).

    PubMed  PubMed Central  Google Scholar 

  29. Georgiev, I. S. et al. Delineating antibody recognition in polyclonal sera from patterns of HIV-1 isolate neutralization. Science 340, 751–756 (2013).

    CAS  PubMed  Google Scholar 

  30. MacLeod, D. T. et al. Early antibody lineage diversification and independent limb maturation lead to broad HIV-1 neutralization targeting the env high-mannose patch. Immunity 44, 1215–1226 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Longo, N. S. et al. Multiple antibody lineages in one donor target the glycan-V3 supersite of the HIV-1 envelope glycoprotein and display a preference for quaternary binding. J. Virol. 90, 10574–10586 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Simonich, C. A. et al. HIV-1 neutralizing antibodies with limited hypermutation from an infant. Cell 166, 77–87 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Ditse, Z. et al. HIV-1 subtype C-infected children with exceptional neutralization breadth exhibit polyclonal responses targeting known epitopes. J. Virol. 92, e00878–18 (2018).

    PubMed  PubMed Central  Google Scholar 

  34. Bonsignori, M. et al. Staged induction of HIV-1 glycan-dependent broadly neutralizing antibodies. Sci. Transl. Med. 9, eaai7514 (2017).

    PubMed  PubMed Central  Google Scholar 

  35. Freund, N. T. et al. Coexistence of potent HIV-1 broadly neutralizing antibodies and antibody-sensitive viruses in a viremic controller. Sci. Transl. Med. 9, eaal2144 (2017).

    PubMed  PubMed Central  Google Scholar 

  36. Steichen, J. M. et al. HIV vaccine design to target germline precursors of glycan-dependent broadly neutralizing antibodies. Immunity 45, 483–496 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Escolano, A. et al. Sequential immunization elicits broadly neutralizing anti-HIV-1 antibodies in Ig knockin mice. Cell 166, 1445–1458 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Barnes, C. O. et al. Structural characterization of a highly-potent V3-glycan broadly neutralizing antibody bound to natively-glycosylated HIV-1 envelope. Nat. Commun. 9, 1251 (2018).

    PubMed  PubMed Central  Google Scholar 

  39. Wu, X. et al. Rational design of envelope identifies broadly neutralizing human monoclonal antibodies to HIV-1. Science 329, 856–861 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Huang, J. et al. Identification of a CD4-binding-site antibody to HIV that evolved near-pan neutralization breadth. Immunity 45, 1108–1121 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Sajadi, M. M. et al. Identification of near-pan-neutralizing antibodies against HIV-1 by deconvolution of plasma humoral responses. Cell 173, 1783–1795 (2018).

    CAS  PubMed  Google Scholar 

  42. Jardine, J. G. et al. HIV-1 vaccines. Priming a broadly neutralizing antibody response to HIV-1 using a germline-targeting immunogen. Science 349, 156–161 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Briney, B. et al. Tailored immunogens direct affinity maturation toward HIV neutralizing antibodies. Cell 166, 1459–1470 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Sok, D. et al. Priming HIV-1 broadly neutralizing antibody precursors in human Ig loci transgenic mice. Science 353, 1557–1560 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Dosenovic, P. et al. Immunization for HIV-1 broadly neutralizing antibodies in human Ig knockin mice. Cell 161, 1505–1515 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Tian, M. et al. Induction of HIV neutralizing antibody lineages in mice with diverse precursor repertoires. Cell 166, 1471–1484 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Havenar-Daughton, C. et al. The human naive B cell repertoire contains distinct subclasses for a germline-targeting HIV-1 vaccine immunogen. Sci. Transl. Med. 10, eaat0381 (2018).

    PubMed  PubMed Central  Google Scholar 

  48. Burton, D. R. et al. Efficient neutralization of primary isolates of HIV-1 by a recombinant human monoclonal antibody. Science 266, 1024–1027 (1994).

    CAS  PubMed  Google Scholar 

  49. Corti, D. et al. Analysis of memory B cell responses and isolation of novel monoclonal antibodies with neutralizing breadth from HIV-1-infected individuals. PLoS One 5, e8805 (2010).

    PubMed  PubMed Central  Google Scholar 

  50. Liao, H. X. et al. Co-evolution of a broadly neutralizing HIV-1 antibody and founder virus. Nature 496, 469–476 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Bonsignori, M. et al. Maturation pathway from germline to broad HIV-1 neutralizer of a CD4-mimic antibody. Cell 165, 449–463 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Gristick, H. B. et al. Natively glycosylated HIV-1 Env structure reveals new mode for antibody recognition of the CD4-binding site. Nat. Struct. Mol. Biol. 23, 906–915 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Sok, D. et al. Rapid elicitation of broadly neutralizing antibodies to HIV by immunization in cows. Nature 548, 108–111 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Briney, B. S., Willis, J. R. & Crowe, J. E. Jr. Human peripheral blood antibodies with long HCDR3s are established primarily at original recombination using a limited subset of germline genes. PLoS One 7, e36750 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Falkowska, E. et al. Broadly neutralizing HIV antibodies define a glycan-dependent epitope on the prefusion conformation of gp41 on cleaved envelope trimers. Immunity 40, 657–668 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Scheid, J. F. et al. Sequence and structural convergence of broad and potent HIV antibodies that mimic CD4 binding. Science 333, 1633–1637 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Huang, J. et al. Broad and potent HIV-1 neutralization by a human antibody that binds the gp41-gp120 interface. Nature 515, 138–142 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Lee, J. H., Ozorowski, G. & Ward, A. B. Cryo-EM structure of a native, fully glycosylated, cleaved HIV-1 envelope trimer. Science 351, 1043–1048 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Kong, R. et al. Fusion peptide of HIV-1 as a site of vulnerability to neutralizing antibody. Science 352, 828–833 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. van Gils, M. J. et al. An HIV-1 antibody from an elite neutralizer implicates the fusion peptide as a site of vulnerability. Nat. Microbiol. 2, 16199 (2016).

    PubMed  PubMed Central  Google Scholar 

  61. Xu, K. et al. Epitope-based vaccine design yields fusion peptide-directed antibodies that neutralize diverse strains of HIV-1. Nat. Med. 24, 857–867 (2018).

    CAS  PubMed  Google Scholar 

  62. Dingens, A. S. et al. Complete functional mapping of infection- and vaccine-elicited antibodies against the fusion peptide of HIV. PLoS Pathog. 14, e1007159 (2018).

    PubMed  PubMed Central  Google Scholar 

  63. Irimia, A. et al. Lipid interactions and angle of approach to the HIV-1 viral membrane of broadly neutralizing antibody 10E8: Insights for vaccine and therapeutic design. PLoS Pathog. 13, e1006212 (2017).

    PubMed  PubMed Central  Google Scholar 

  64. Kwon, Y. D. et al. Surface-matrix screening identifies semi-specific interactions that improve potency of a near pan-reactive HIV-1-neutralizing antibody. Cell Reports 22, 1798–1809 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Williams, L. D. et al. Potent and broad HIV-neutralizing antibodies in memory B cells and plasma. Sci. Immunol. 2, eaal2200 (2017).

    PubMed  PubMed Central  Google Scholar 

  66. Cao, L. et al. Differential processing of HIV envelope glycans on the virus and soluble recombinant trimer. Nat. Commun. 9, 3693 (2018).

    PubMed  PubMed Central  Google Scholar 

  67. Struwe, W. B. et al. Site-specific glycosylation of virion-derived HIV-1 Env is mimicked by a soluble trimeric immunogen. Cell Rep. 24, 1958–1966 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Shivatare, V. S. et al. Unprecedented role of hybrid N-glycans as ligands for HIV-1 broadly neutralizing antibodies. J. Am. Chem. Soc. 140, 5202–5210 (2018).

    CAS  PubMed  Google Scholar 

  69. Gautam, R. et al. A single injection of crystallizable fragment domain-modified antibodies elicits durable protection from SHIV infection. Nat. Med. 24, 610–616 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Moldt, B. et al. Highly potent HIV-specific antibody neutralization in vitro translates into effective protection against mucosal SHIV challenge in vivo. Proc. Natl. Acad. Sci. USA 109, 18921–18925 (2012).

    CAS  PubMed  Google Scholar 

  71. van Gils, M. J. & Sanders, R. W. In vivo protection by broadly neutralizing HIV antibodies. Trends Microbiol. 22, 550–551 (2014).

    PubMed  Google Scholar 

  72. Hessell, A. J. & Haigwood, N. L. Animal models in HIV-1 protection and therapy. Curr. Opin. HIV AIDS 10, 170–176 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Li, H. et al. Envelope residue 375 substitutions in simian-human immunodeficiency viruses enhance CD4 binding and replication in rhesus macaques. Proc. Natl. Acad. Sci. USA 113, E3413–E3422 (2016).

    CAS  PubMed  Google Scholar 

  74. Julg, B. et al. Broadly neutralizing antibodies targeting the HIV-1 envelope V2 apex confer protection against a clade C SHIV challenge. Sci. Transl. Med. 9, eaal1321 (2017).

    PubMed  PubMed Central  Google Scholar 

  75. Chang, H. W. et al. Generation and evaluation of clade C simian-human immunodeficiency virus challenge stocks. J. Virol. 89, 1965–1974 (2015).

    PubMed  Google Scholar 

  76. Xu, L. et al. Trispecific broadly neutralizing HIV antibodies mediate potent SHIV protection in macaques. Science 358, 85–90 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Julg, B. et al. Protection against a mixed SHIV challenge by a broadly neutralizing antibody cocktail. Sci. Transl. Med. 9, eaao4235 (2017).

    PubMed  PubMed Central  Google Scholar 

  78. Abela, I. A. et al. Cell-cell transmission enables HIV-1 to evade inhibition by potent CD4bs directed antibodies. PLoS Pathog. 8, e1002634 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Duncan, C. J. et al. High-multiplicity HIV-1 infection and neutralizing antibody evasion mediated by the macrophage-T cell virological synapse. J. Virol. 88, 2025–2034 (2014).

    PubMed  PubMed Central  Google Scholar 

  80. Gombos, R. B. et al. Inhibitory effect of individual or combinations of broadly neutralizing antibodies and antiviral reagents against cell-free and cell-to-cell HIV-1 transmission. J. Virol. 89, 7813–7828 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Schiffner, T., Sattentau, Q. J. & Duncan, C. J. Cell-to-cell spread of HIV-1 and evasion of neutralizing antibodies. Vaccine 31, 5789–5797 (2013).

    CAS  PubMed  Google Scholar 

  82. Li, H., Zony, C., Chen, P. & Chen, B. K. Reduced potency and incomplete neutralization of broadly neutralizing antibodies against cell-to-cell transmission of HIV-1 with transmitted founder Envs. J. Virol. 91, e02425–e02416 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Reh, L. et al. Capacity of broadly neutralizing antibodies to inhibit HIV-1 cell-cell transmission is strain- and epitope-dependent. PLoS Pathog. 11, e1004966 (2015).

    PubMed  PubMed Central  Google Scholar 

  84. Malbec, M. et al. Broadly neutralizing antibodies that inhibit HIV-1 cell to cell transmission. J. Exp. Med. 210, 2813–2821 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. McCoy, L. E. et al. Neutralisation of HIV-1 cell-cell spread by human and llama antibodies. Retrovirology 11, 83 (2014).

    PubMed  PubMed Central  Google Scholar 

  86. Parsons, M. S. et al. Partial efficacy of a broadly neutralizing antibody against cell-associated SHIV infection. Sci. Transl. Med. 9, eaaf1483 (2017).

    PubMed  Google Scholar 

  87. Moldt, B. et al. Neutralizing antibody affords comparable protection against vaginal and rectal simian/human immunodeficiency virus challenge in macaques. AIDS 30, 1543–1551 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Pegu, A. et al. Neutralizing antibodies to HIV-1 envelope protect more effectively in vivo than those to the CD4 receptor. Sci. Transl. Med. 6, 243ra88 (2014).

    PubMed  PubMed Central  Google Scholar 

  89. Hessell, A. J. et al. Early short-term treatment with neutralizing human monoclonal antibodies halts SHIV infection in infant macaques. Nat. Med. 22, 362–368 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Shingai, M. et al. Passive transfer of modest titers of potent and broadly neutralizing anti-HIV monoclonal antibodies block SHIV infection in macaques. J. Exp. Med. 211, 2061–2074 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Hessell, A. J. et al. Broadly neutralizing human anti-HIV antibody 2G12 is effective in protection against mucosal SHIV challenge even at low serum neutralizing titers. PLoS Pathog. 5, e1000433 (2009).

    PubMed  PubMed Central  Google Scholar 

  92. Hessell, A. J. et al. Effective, low-titer antibody protection against low-dose repeated mucosal SHIV challenge in macaques. Nat. Med. 15, 951–954 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Quinn, C. P. et al. Humoral and cell-mediated immune responses to alternate booster schedules of anthrax vaccine adsorbed in humans. Clin. Vaccine Immunol. 23, 326–338 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Gilbert, P. B. et al. Basis and statistical design of the passive HIV-1 antibody mediated prevention (AMP) test-of-concept efficacy trials. Stat. Commun. Infect. Dis. 9, 20160001 (2017).

    PubMed  PubMed Central  Google Scholar 

  95. Liu, J. et al. Antibody-mediated protection against SHIV challenge includes systemic clearance of distal virus. Science 353, 1045–1049 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Scheid, J. F. et al. HIV-1 antibody 3BNC117 suppresses viral rebound in humans during treatment interruption. Nature 535, 556–560 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Bar, K. J. et al. Effect of HIV antibody VRC01 on viral rebound after treatment interruption. N. Engl. J. Med. 375, 2037–2050 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Caskey, M. et al. Antibody 10-1074 suppresses viremia in HIV-1-infected individuals. Nat. Med. 23, 185–191 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Bournazos, S. & Ravetch, J. V. Anti-retroviral antibody FcγR-mediated effector functions. Immunol. Rev. 275, 285–295 (2017).

    CAS  PubMed  Google Scholar 

  100. Yoon, H. et al. CATNAP: a tool to compile, analyze and tally neutralizing antibody panels. Nucleic Acids Res. 43(W1), W213–9 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Sarzotti-Kelsoe, M. et al. Optimization and validation of the TZM-bl assay for standardized assessments of neutralizing antibodies against HIV-1. J. Immunol. Methods 409, 131–146 (2014).

    CAS  PubMed  Google Scholar 

  102. Bonsignori, M. et al. Analysis of a clonal lineage of HIV-1 envelope V2/V3 conformational epitope-specific broadly neutralizing antibodies and Their inferred unmutated common ancestors. J. Virol. 85, 9998–10009 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Munir Alam, S. et al. Mimicry of an HIV broadly neutralizing antibody epitope with a synthetic glycopeptide. Sci. Transl. Med. 9, eaai7521 (2017).

  104. MacLeod, D.T. et al. Early antibody lineage diversification and independent limb maturation lead to broad HIV-1 neutralization targeting the Env high-mannose patch. Immunity 44, 1215–1226 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Mouquet, H. et al. Complex-type N-glycan recognition by potent broadly neutralizing HIV antibodies. Proc. Natl. Acad. Sci. USA 109, E3268–E3277 (2012).

    CAS  PubMed  Google Scholar 

  106. Gao, F. et al. Cooperation of B cell lineages in induction of HIV-1-broadly neutralizing antibodies. Cell 158, 481–491 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Buchacher, A. et al. Generation of human monoclonal antibodies against HIV-1 proteins; electrofusion and Epstein-Barr virus transformation for peripheral blood lymphocyte immortalization. AIDS Res. Hum. Retroviruses 10, 359–369 (1994).

    CAS  PubMed  Google Scholar 

  108. Simek, M. D. et al. Human immunodeficiency virus type 1 elite neutralizers: individuals with broad and potent neutralizing activity identified by using a high-Throughput neutralization assay together with an analytical selection algorithm. J. Virol. 83, 7337–7348 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Walker, L. M. et al. Broad neutralization coverage of HIV by multiple highly potent antibodies. Nature 477, 466–470 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Wu, X. et al. Rational design of envelope identifies broadly neutralizing human monoclonal antibodies to HIV-1. Science 329, 856–861 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Huang, J. et al. Broad and potent neutralization of HIV-1 by a gp41-specific human antibody. Nature 491, 406–412 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank I. Wilson and W. Schief for comments on the manuscript; and L. Hangartner, C. Corbaci and B. Briney for assistance with figure preparation. Supported by the US National Institute of Allergy and Infectious Diseases (D.R.B.), IAVI (D.R.B.), the Bill and Melinda Gates Foundation (D.R.B.), the Ragon Institute (D.R.B.), the Bill & Melinda Gates Foundation Collaboration for AIDS Vaccine Discovery (D.S.) and the United States Agency for International Development (D.S.). A full list of IAVI donors is available at https://www.iavi.org/what-we-do/partner/donors. Contributions from the International AIDS Vaccine Initiative do not necessarily reflect the views of USAID or the United States government.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Devin Sok or Dennis R. Burton.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sok, D., Burton, D.R. Recent progress in broadly neutralizing antibodies to HIV. Nat Immunol 19, 1179–1188 (2018). https://doi.org/10.1038/s41590-018-0235-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41590-018-0235-7

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing