[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Effective high-throughput isolation of fully human antibodies targeting infectious pathogens

Abstract

As exemplified by the ongoing severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic, there is a strong demand for rapid high-throughput isolation pipelines to identify potent neutralizing antibodies for prevention and therapy of infectious diseases. However, despite substantial progress and extensive efforts, the identification and production of antigen-specific antibodies remains labor- and cost-intensive. We have advanced existing concepts to develop a highly efficient high-throughput protocol with proven application for the isolation of potent antigen-specific antibodies against human immunodeficiency virus 1, hepatitis C virus, human cytomegalovirus, Middle East respiratory syndrome coronavirus, SARS-CoV-2 and Ebola virus. It is based on computationally optimized multiplex primer sets (openPrimeR), which guarantee high coverage of even highly mutated immunoglobulin gene segments as well as on optimized antibody cloning and production strategies. Here, we provide the detailed protocol, which covers all critical steps from sample collection to antibody production within 12–14 d.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Critical steps in single-cell B-cell cloning workflows.
Fig. 2: Detailed experimental outline.
Fig. 3: Anticipated results for the different stages of the antibody isolation pipeline.

Similar content being viewed by others

Data availability

Source data are provided with this paper.

References

  1. Grilo, A. L. & Mantalaris, A. The increasingly human and profitable monoclonal antibody market. Trends Biotechnol 37, 9–16 (2019).

    Article  CAS  PubMed  Google Scholar 

  2. Kaplon, H., Muralidharan, M., Schneider, Z. & Reichert, J. M. Antibodies to watch in 2020. MAbs 12, 1703531 (2020).

    Article  PubMed  Google Scholar 

  3. Corti, D. et al. Cross-neutralization of four paramyxoviruses by a human monoclonal antibody. Nature 501, 439–443 (2013).

    Article  CAS  PubMed  Google Scholar 

  4. Smith, S. A. et al. Isolation and characterization of broad and ultrapotent human monoclonal antibodies with therapeutic activity against Chikungunya virus. Cell Host Microbe 18, 86–95 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Stettler, K. et al. Specificity, cross-reactivity, and function of antibodies elicited by Zika virus infection. Science 353, 823–826 (2016).

    Article  CAS  PubMed  Google Scholar 

  6. Mendoza, P. et al. Combination therapy with anti-HIV-1 antibodies maintains viral suppression. Nature 561, 479–484 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Bournazos, S. et al. Broadly neutralizing anti-HIV-1 antibodies require Fc effector functions for in vivo activity. Cell 158, 1243–1253 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. van Erp, E. A., Luytjes, W., Ferwerda, G. & van Kasteren, P. B. Fc-mediated antibody effector functions during respiratory syncytial virus infection and disease. Front. Immunol. 10, 548 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Asokan, M. et al. Fc-mediated effector function contributes to the in vivo antiviral effect of an HIV neutralizing antibody. Proc. Natl Acad. Sci. USA 117, 18754–18763 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Keizer, R. J., Huitema, A. D. R., Schellens, J. H. M. & Beijnen, J. H. Clinical pharmacokinetics of therapeutic monoclonal antibodies. Clin. Pharmacokinet. 49, 493–507 (2010).

    Article  CAS  PubMed  Google Scholar 

  11. Ryman, J. T. & Meibohm, B. Pharmacokinetics of monoclonal antibodies. CPT Pharmacometrics Syst. Pharmacol. 6, 576–588 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Cohen, Y. Z. et al. Safety, pharmacokinetics, and immunogenicity of the combination of the broadly neutralizing anti-HIV-1 antibodies 3BNC117 and 10-1074 in healthy adults: A randomized, phase 1 study. PLoS ONE 14, e0219142 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Pelegrin, M., Naranjo-Gomez, M. & Piechaczyk, M. Antiviral monoclonal antibodies: can they be more than simple neutralizing agents? Trends Microbiol. 23, 653–665 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Panda, S. & Ding, J. L. Natural antibodies bridge innate and adaptive immunity. J. Immunol. 194, 13–20 (2015).

    Article  CAS  PubMed  Google Scholar 

  15. Zuniga, E. I., Macal, M., Lewis, G. M. & Harker, J. A. Innate and adaptive immune regulation during chronic viral infections. Annu. Rev. Virol. 2, 573–597 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Küppers, R., Zhao, M., Hansmann, M. L. & Rajewsky, K. Tracing B cell development in human germinal centres by molecular analysis of single cells picked from histological sections. EMBO J. 12, 4955–4967 (1993).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Wardemann, H. et al. Predominant autoantibody production by early human B cell precursors. Science 301, 1374–1377 (2003).

    Article  CAS  PubMed  Google Scholar 

  18. Smith, K. et al. Rapid generation of fully human monoclonal antibodies specific to a vaccinating antigen. Nat. Protoc. 4, 372–384 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. von Boehmer, L. et al. Sequencing and cloning of antigen-specific antibodies from mouse memory B cells. Nat. Protoc. 11, 1908–1923 (2016).

    Article  Google Scholar 

  20. Mascola, J. R. et al. Protection of macaques against pathogenic simian/human immunodeficiency virus 89.6PD by passive transfer of neutralizing antibodies. J. Virol. 73, 4009–4018 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Mascola, J. R. et al. Protection of macaques against vaginal transmission of a pathogenic HIV-1/SIV chimeric virus by passive infusion of neutralizing antibodies. Nat. Med. 6, 207–210 (2000).

    Article  CAS  PubMed  Google Scholar 

  22. Balazs, A. B. et al. Antibody-based protection against HIV infection by vectored immunoprophylaxis. Nature 481, 81–84 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Schepens, B. et al. Nanobodies® specific for respiratory syncytial virus fusion protein protect against infection by inhibition of fusion. J. Infect. Dis. 204, 1692–1701 (2011).

    Article  CAS  PubMed  Google Scholar 

  24. Detalle, L. et al. Generation and characterization of ALX-0171, a potent novel therapeutic nanobody for the treatment of respiratory syncytial virus infection. Antimicrob. Agents Chemother. 60, 6–13 (2016).

    Article  CAS  PubMed  Google Scholar 

  25. Mire, C. E. et al. Human-monoclonal-antibody therapy protects nonhuman primates against advanced Lassa fever. Nat. Med. 23, 1146–1149 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Paules, C. I. et al. The hemagglutinin A stem antibody MEDI8852 prevents and controls disease and limits transmission of pandemic influenza viruses. J. Infect. Dis. 216, 356–365 (2017).

    Article  CAS  PubMed  Google Scholar 

  27. Van Heeke, G. et al. Nanobodies® as inhaled biotherapeutics for lung diseases. Pharmacol. Ther. 169, 47–56 (2017).

    Article  PubMed  Google Scholar 

  28. Walker, L. M. & Burton, D. R. Passive immunotherapy of viral infections: ‘super-antibodies’ enter the fray. Nat. Rev. Immunol. 18, 297–308 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Graham, B. S., Gilman, M. S. A. & McLellan, J. S. Structure-based vaccine antigen design. Annu. Rev. Med. 70, 91–104 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kreer, C., Gruell, H., Mora, T., Walczak, A. M. & Klein, F. Exploiting B cell receptor analyses to inform on HIV-1 vaccination strategies. Vaccines 8, 13 (2020).

    Article  CAS  PubMed Central  Google Scholar 

  31. Gaebler, C. et al. Isolation of HIV-1-reactive antibodies using cell surface-expressed gp160Δc(BaL.). J. Immunol. Methods 397, 47–54 (2013).

    Article  CAS  PubMed  Google Scholar 

  32. Corti, D. et al. Prophylactic and postexposure efficacy of a potent human monoclonal antibody against MERS coronavirus. Proc. Natl Acad. Sci. USA 112, 10473–10478 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Xiao, X. et al. A novel antibody discovery platform identifies anti-influenza A broadly neutralizing antibodies from human memory B cells. MAbs 8, 916–927 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Ehrhardt, S. A. et al. Polyclonal and convergent antibody response to Ebola virus vaccine rVSV-ZEBOV. Nat. Med. 25, 1589–1600 (2019).

    Article  CAS  PubMed  Google Scholar 

  35. Schoofs, T. et al. Broad and potent neutralizing antibodies recognize the silent face of the HIV envelope. Immunity 50, 1513–1529.e9 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Schommers, P. et al. Restriction of HIV-1 escape by a highly broad and potent neutralizing antibody. Cell 180, 471–489.e22 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kreer, C. et al. Longitudinal isolation of potent near-germline SARS-CoV-2-neutralizing antibodies from COVID-19 patients. Cell 182, 843–854.e12 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Rogers, T. F. et al. Isolation of potent SARS-CoV-2 neutralizing antibodies and protection from disease in a small animal model. Science 369, 956–963 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Babcook, J. S., Leslie, K. B., Olsen, O. A., Salmon, R. A. & Schrader, J. W. A novel strategy for generating monoclonal antibodies from single, isolated lymphocytes producing antibodies of defined specificities. Proc. Natl Acad. Sci. USA 93, 7843–7848 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Harding, F. A., Stickler, M. M., Razo, J. & DuBridge, R. B. The immunogenicity of humanized and fully human antibodies: residual immunogenicity resides in the CDR regions. MAbs 2, 256–265 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Laffleur, B., Pascal, V., Sirac, C. & Cogné, M. Production of human or humanized antibodies in mice. Methods Mol. Biol. 901, 149–159 (2012).

    Article  CAS  PubMed  Google Scholar 

  42. Tiller, T. et al. Efficient generation of monoclonal antibodies from single human B cells by single cell RT-PCR and expression vector cloning. J. Immunol. Methods 329, 112–124 (2008).

    Article  CAS  PubMed  Google Scholar 

  43. Joyce, M. G. et al. Vaccine-induced antibodies that neutralize group 1 and group 2 influenza A viruses. Cell 166, 609–623 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Robbiani, D. F. et al. Recurrent potent human neutralizing antibodies to Zika virus in Brazil and Mexico. Cell 169, 597–609.e11 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Theobald, S. J. et al. Repertoire characterization and validation of gB-specific human IgGs directly cloned from humanized mice vaccinated with dendritic cells and protected against HCMV. PLoS Pathog. 16, e1008560 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Döring, M., Kreer, C., Lehnen, N., Klein, F. & Pfeifer, N. Modeling the amplification of immunoglobulins through machine learning on sequence-specific features. Sci. Rep. 9, 10748 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Kreer, C. et al. openPrimeR for multiplex amplification of highly diverse templates. J. Immunol. Methods 480, 112752 (2020).

    Article  CAS  PubMed  Google Scholar 

  48. Scheid, J. F. et al. Sequence and structural convergence of broad and potent HIV antibodies that mimic CD4 binding. Science 333, 1633–1637 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Liao, H.-X. et al. High-throughput isolation of immunoglobulin genes from single human B cells and expression as monoclonal antibodies. J. Virol. Methods 158, 171–179 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Sanders, R. W. et al. A next-generation cleaved, soluble HIV-1 Env trimer, BG505 SOSIP.664 gp140, expresses multiple epitopes for broadly neutralizing but not non-neutralizing antibodies. PLoS Pathog. 9, e1003618 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Lan, J. et al. Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor. Nature 581, 215–220 (2020).

    Article  CAS  Google Scholar 

  52. Pallesen, J. et al. Immunogenicity and structures of a rationally designed prefusion MERS-CoV spike antigen. Proc. Natl Acad. Sci. USA 114, E7348–E7357 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Scherer, E. M. et al. Characteristics of memory B cells elicited by a highly efficacious HPV vaccine in subjects with no pre-existing immunity. PLoS Pathog. 10, e1004461 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Bornholdt, Z. A. et al. Isolation of potent neutralizing antibodies from a survivor of the 2014 Ebola virus outbreak. Science 351, 1078–1083 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Gilman, M. S. A. et al. Rapid profiling of RSV antibody repertoires from the memory B cells of naturally infected adult donors. Sci. Immunol. 1, eaaj1879 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Andrews, S. F. et al. Preferential induction of cross-group influenza A hemagglutinin stem-specific memory B cells after H7N9 immunization in humans. Sci. Immunol. 2, eaan2676 (2017).

    Article  PubMed  Google Scholar 

  57. Dussupt, V. et al. Potent Zika and dengue cross-neutralizing antibodies induced by Zika vaccination in a dengue-experienced donor. Nat. Med. 26, 228–235 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Ma, K. et al. Multiple functions of B cells in the pathogenesis of systemic lupus erythematosus. Int. J. Mol. Sci. 20, 6021 (2019).

    Article  CAS  PubMed Central  Google Scholar 

  59. Tipton, C. M., Hom, J. R., Fucile, C. F., Rosenberg, A. F. & Sanz, I. Understanding B-cell activation and autoantibody repertoire selection in systemic lupus erythematosus: a B-cell immunomics approach. Immunol. Rev. 284, 120–131 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Marston, B., Palanichamy, A. & Anolik, J. H. B cells in the pathogenesis and treatment of rheumatoid arthritis. Curr. Opin. Rheumatol. 22, 307–315 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Sharonov, G. V., Serebrovskaya, E. O., Yuzhakova, D. V., Britanova, O. V. & Chudakov, D. M. B cells, plasma cells and antibody repertoires in the tumour microenvironment. Nat. Rev. Immunol. 20, 294–307 (2020).

    Article  CAS  PubMed  Google Scholar 

  62. Scheid, J. F. et al. A method for identification of HIV gp140 binding memory B cells in human blood. J. Immunol. Methods 343, 65–67 (2009).

    Article  CAS  PubMed  Google Scholar 

  63. Huse, W. D. et al. Generation of a large combinatorial library of the immunoglobulin repertoire in phage lambda. Science 246, 1275–1281 (1989).

    Article  CAS  PubMed  Google Scholar 

  64. Boder, E. T. & Wittrup, K. D. Yeast surface display for screening combinatorial polypeptide libraries. Nat. Biotechnol. 15, 553–557 (1997).

    Article  CAS  PubMed  Google Scholar 

  65. Wiesner, M. et al. Conditional immortalization of human B cells by CD40 ligation. PLoS ONE 3, e1464 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Huang, J. et al. Identification of a CD4-binding-site antibody to HIV that evolved near-pan neutralization breadth. Immunity 45, 1108–1121 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Wec, A. Z. et al. Antibodies from a human survivor define sites of vulnerability for broad protection against ebolaviruses. Cell 169, 878–890.e15 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. McCafferty, J., Griffiths, A. D., Winter, G. & Chiswell, D. J. Phage antibodies: filamentous phage displaying antibody variable domains. Nature 348, 552–554 (1990).

    Article  CAS  PubMed  Google Scholar 

  69. Kwakkenbos, M. J., van Helden, P. M., Beaumont, T. & Spits, H. Stable long-term cultures of self-renewing B cells and their applications. Immunol. Rev. 270, 65–77 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Doria-Rose, N. A. et al. New member of the V1V2-directed CAP256-VRC26 lineage that shows increased breadth and exceptional potency. J. Virol. 90, 76–91 (2016).

    Article  CAS  PubMed  Google Scholar 

  71. Kwakkenbos, M. J. et al. Generation of stable monoclonal antibody-producing B cell receptor-positive human memory B cells by genetic programming. Nat. Med. 16, 123–128 (2010).

    Article  CAS  PubMed  Google Scholar 

  72. Corti, D. et al. A neutralizing antibody selected from plasma cells that binds to group 1 and group 2 influenza A hemagglutinins. Science 333, 850–856 (2011).

    Article  CAS  PubMed  Google Scholar 

  73. Kwong, P. D. & Mascola, J. R. Human antibodies that neutralize HIV-1: identification, structures, and B cell ontogenies. Immunity 37, 412–425 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Sok, D. et al. Rapid elicitation of broadly neutralizing antibodies to HIV by immunization in cows. Nature 548, 108–111 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Zhao, X. et al. Immunization-elicited broadly protective antibody reveals Ebolavirus fusion loop as a site of vulnerability. Cell 169, 891–904.e15 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Ye, J., Ma, N., Madden, T. L. & Ostell, J. M. IgBLAST: an immunoglobulin variable domain sequence analysis tool. Nucleic Acids Res. 41, W34–W40 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  77. Lefranc, M. P. et al. IMGT, the international ImMunoGeneTics database. Nucleic Acids Res. 27, 209–212 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Hsieh, C.-L. et al. Structure-based design of prefusion-stabilized SARS-CoV-2 spikes. Science 369, 1501–1505 (2020).

    Article  CAS  PubMed  Google Scholar 

  79. Giudicelli, V., Chaume, D. & Lefranc, M.-P. IMGT/V-QUEST, an integrated software program for immunoglobulin and T cell receptor V-J and V-D-J rearrangement analysis. Nucleic Acids Res. 32, W435–W440 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank M. Nussenzweig and members of the Nussenzweig lab for valuable support as well as intital protocols on single B-cell cloning and antibody production. We thank all members of the Klein lab for helpful discussion. This work was funded by grants from the European Research Council (ERC-StG639961, to F.K.), the German Centre for Infection Research (DZIF, to F.K., H.G. and L.G.), the Bill and Melinda Gates Foundation (BMGF, INV-002143 to F.K.), the German Research Foundation (DFG) (CRC 1279 and CRC 1310 to F.K.) and the COVIM: NaFoUniMedCovid19 (FKZ: 01KX2021 to F.K.).

Author information

Authors and Affiliations

Authors

Contributions

L.G., C.K. and F.K. conceptualized the workflow. L.G, C.K, M.S.E., M.Z., N.L., H.G., P.S. and J.P. established protocols and performed experiments. F.K. and C.K. supervised the development of the protocol. L.G., C.K. and F.K. wrote the manuscript. All authors were involved in editing of the final manuscript.

Corresponding author

Correspondence to Florian Klein.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Protocols thanks the anonymous reviewers for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Key references using this protocol

Ehrhardt, S. A. et al. Nat. Med. 25, 1589–1600 (2019): https://doi.org/10.1038/s41591-019-0602-4

Schommers, P. et al. Cell 180, 471–489.e22 (2020): https://doi.org/10.1016/j.cell.2020.01.010

Kreer, C. et al. Cell 182, 843–854.e12 (2020): https://doi.org/10.1016/j.cell.2020.06.044

Supplementary information

Source data

Source Data Fig. 3

Unprocessed gel pictures.

Source Data Fig. 3

Statistical source data.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gieselmann, L., Kreer, C., Ercanoglu, M.S. et al. Effective high-throughput isolation of fully human antibodies targeting infectious pathogens. Nat Protoc 16, 3639–3671 (2021). https://doi.org/10.1038/s41596-021-00554-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41596-021-00554-w

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing