[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Role of the cGAS–STING pathway in systemic and organ-specific diseases

Abstract

Cells are equipped with numerous sensors that recognize nucleic acids, which probably evolved for defence against viruses. Once triggered, these sensors stimulate the production of type I interferons and other cytokines that activate immune cells and promote an antiviral state. The evolutionary conserved enzyme cyclic GMP–AMP synthase (cGAS) is one of the most recently identified DNA sensors. Upon ligand engagement, cGAS dimerizes and synthesizes the dinucleotide second messenger 2′,3′-cyclic GMP–AMP (cGAMP), which binds to the endoplasmic reticulum protein stimulator of interferon genes (STING) with high affinity, thereby unleashing an inflammatory response. cGAS-binding DNA is not restricted by sequence and must only be >45 nucleotides in length; therefore, cGAS can also be stimulated by self genomic or mitochondrial DNA. This broad specificity probably explains why the cGAS–STING pathway has been implicated in a number of autoinflammatory, autoimmune and neurodegenerative diseases; this pathway might also be activated during acute and chronic kidney injury. Therapeutic manipulation of the cGAS–STING pathway, using synthetic cyclic dinucleotides or inhibitors of cGAMP metabolism, promises to enhance immune responses in cancer or viral infections. By contrast, inhibitors of cGAS or STING might be useful in diseases in which this pro-inflammatory pathway is chronically activated.

Key points

  • Cyclic GMP–AMP synthase (cGAS) is an evolutionarily conserved cytosolic nucleic acid sensor that synthesizes the cyclic dinucleotide second messenger 2′,3′-cyclic GMP–AMP (cGAMP), which engages stimulator of interferon genes (STING) to trigger the production of inflammatory cytokines, including type I interferons.

  • Extracellular cGAMP is hydrolysed by transmembrane and soluble ectonucleotide pyrophosphatase/phosphodiesterase 1, and enters neighbouring cells via cGAMP importers. Transfer to adjoining and distant cells enables cGAMP to act as an immunotransmitter and modulate antiviral responses, antitumour immunity and tumour metastasis.

  • Activation of cGAS–STING by genomic or mitochondrial self DNA has been implicated in numerous autoinflammatory, autoimmune and neurodegenerative diseases, cell senescence and ageing, as well as in acute and chronic kidney injury.

  • The microbiome can stimulate or inhibit cGAS–STING via cGAS sensing of commensal DNA, microorganism-induced endogenous retroviruses, or self DNA released owing to infection-induced cell damage. These interactions can affect gut and skin homeostasis.

  • Modulating the proteins involved in the activation of the cGAS–STING pathway and its regulators provides therapeutic opportunities to attenuate or enhance cGAS–STING-driven inflammatory responses.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Involvement of cGAS and/or STING in disease.
Fig. 2: Signalling pathways downstream of cGAS and of endosomal TLRs.
Fig. 3: Mechanisms of activation of the cGAS–STING pathway.
Fig. 4: Transport and metabolism of cGAMP.
Fig. 5: Targeting the cGAS–STING pathway.

Similar content being viewed by others

References

  1. Sun, L., Wu, J., Du, F., Chen, X. & Chen, Z. J. Cyclic GMP-AMP synthase is a cytosolic DNA sensor that activates the type I interferon pathway. Science 339, 786–791 (2013).

    Article  CAS  PubMed  Google Scholar 

  2. Li, X. D. et al. Pivotal roles of cGAS-cGAMP signaling in antiviral defense and immune adjuvant effects. Science 341, 1390–1394 (2013).

    Article  CAS  PubMed  Google Scholar 

  3. Ablasser, A. & Chen, Z. J. cGAS in action: expanding roles in immunity and inflammation. Science https://doi.org/10.1126/science.aat8657 (2019).

    Article  PubMed  Google Scholar 

  4. Zhang, X., Agborbesong, E. & Li, X. The role of mitochondria in acute kidney injury and chronic kidney disease and its therapeutic potential. Int. J. Mol. Sci. 22, 11253 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Gong, W. et al. The novel STING antagonist H151 ameliorates cisplatin-induced acute kidney injury and mitochondrial dysfunction. Am. J. Physiol. Renal Physiol. 320, F608–F616 (2021).

    Article  CAS  PubMed  Google Scholar 

  6. Maekawa, H. et al. Mitochondrial damage causes inflammation via cGAS-STING signaling in acute kidney injury. Cell Rep. 29, 1261–1273.e6 (2019).

    Article  CAS  PubMed  Google Scholar 

  7. Chung, K. W. et al. Mitochondrial damage and activation of the STING pathway lead to renal inflammation and fibrosis. Cell Metab. 30, 784–799.e5 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Ding, C., Song, Z., Shen, A., Chen, T. & Zhang, A. Small molecules targeting the innate immune cGAS–STING–TBK1 signaling pathway. Acta Pharm. Sin. B 10, 2272–2298 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Garland, K. M., Sheehy, T. L. & Wilson, J. T. Chemical and biomolecular strategies for STING pathway activation in cancer immunotherapy. Chem. Rev. 122, 5977–6039 (2022).

    Article  CAS  PubMed  Google Scholar 

  10. Fitzgerald, K. A. & Kagan, J. C. Toll-like receptors and the control of immunity. Cell 180, 1044–1066 (2020).

    Article  CAS  PubMed  Google Scholar 

  11. Ishikawa, H., Ma, Z. & Barber, G. N. STING regulates intracellular DNA-mediated, type I interferon-dependent innate immunity. Nature 461, 788–792 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Margolis, S. R., Wilson, S. C. & Vance, R. E. Evolutionary origins of cGAS-STING signaling. Trends Immunol. https://doi.org/10.1016/j.it.2017.03.004 (2017).

    Article  PubMed  Google Scholar 

  13. Morehouse, B. R. et al. STING cyclic dinucleotide sensing originated in bacteria. Nature 586, 429–433 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Cohen, D. et al. Cyclic GMP-AMP signalling protects bacteria against viral infection. Nature 574, 691–695 (2019).

    Article  CAS  PubMed  Google Scholar 

  15. Elkon, K. B. Review: cell death, nucleic acids, and immunity: inflammation beyond the grave. Arthritis Rheumatol. 70, 805–816 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Kato, K., Omura, H., Ishitani, R. & Nureki, O. Cyclic GMP-AMP as an endogenous second messenger in innate immune signaling by cytosolic DNA. Annu. Rev. Biochem. 86, 541–566 (2017).

    Article  CAS  PubMed  Google Scholar 

  17. Dobbs, N. et al. STING activation by translocation from the ER is associated with infection and autoinflammatory disease. Cell Host Microbe 18, 157–168 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Dunphy, G. et al. Non-canonical activation of the DNA sensing adaptor STING by ATM and IFI16 mediates NF-κB signaling after nuclear DNA damage. Mol. Cell 71, 745–760.e5 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Borden, E. C. et al. Interferons at age 50: past, current and future impact on biomedicine. Nat. Rev. Drug. Discov. 6, 975–990 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ronnblom, L. & Elkon, K. B. Cytokines as therapeutic targets in SLE. Nat. Rev. Rheumatol. 6, 339–347 (2010).

    Article  PubMed  CAS  Google Scholar 

  21. Schoggins, J. W. et al. A diverse range of gene products are effectors of the type I interferon antiviral response. Nature 472, 481–485 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Manzanillo, P. S., Shiloh, M. U., Portnoy, D. A. & Cox, J. S. Mycobacterium tuberculosis activates the DNA-dependent cytosolic surveillance pathway within macrophages. Cell Host Microbe 11, 469–480 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Monteith, A. J. et al. Defects in lysosomal maturation facilitate the activation of innate sensors in systemic lupus erythematosus. Proc. Natl Acad. Sci. USA 113, E2142–E2151 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Gordon, R. E., Nemeth, J. F., Singh, S., Lingham, R. B. & Grewal, I. S. Harnessing SLE autoantibodies for intracellular delivery of biologic therapeutics. Trends Biotechnol. 39, 298–310 (2021).

    Article  CAS  PubMed  Google Scholar 

  25. Liu, B. & Gao, C. Regulation of MAVS activation through post-translational modifications. Curr. Opin. Immunol. 50, 75–81 (2018).

    Article  CAS  PubMed  Google Scholar 

  26. Schlee, M. & Hartmann, G. Discriminating self from non-self in nucleic acid sensing. Nat. Rev. Immunol. 16, 566–580 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Elkon, K. B. Cell death, nucleic acids and immunity: inflammation beyond the grave. Arthritis Rheumatol. 70, 805–816 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Volkman, H. E., Cambier, S., Gray, E. E. & Stetson, D. B. Tight nuclear tethering of cGAS is essential for preventing autoreactivity. eLife https://doi.org/10.7554/eLife.47491 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Zhao, B. et al. The molecular basis of tight nuclear tethering and inactivation of cGAS. Nature 587, 673–677 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Pathare, G. R. et al. Structural mechanism of cGAS inhibition by the nucleosome. Nature 587, 668–672 (2020).

    Article  CAS  PubMed  Google Scholar 

  31. Boyer, J. A. et al. Structural basis of nucleosome-dependent cGAS inhibition. Science 370, 450–454 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kujirai, T. et al. Structural basis for the inhibition of cGAS by nucleosomes. Science 370, 455–458 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Michalski, S. et al. Structural basis for sequestration and autoinhibition of cGAS by chromatin. Nature 587, 678–682 (2020).

    Article  CAS  PubMed  Google Scholar 

  34. Ablasser, A. DNA sensor in standby mode during mitosis. Science 371, 1204–1205 (2021).

    Article  CAS  PubMed  Google Scholar 

  35. Guey, B. et al. BAF restricts cGAS on nuclear DNA to prevent innate immune activation. Science 369, 823–828 (2020).

    Article  CAS  PubMed  Google Scholar 

  36. Du, M. & Chen, Z. J. DNA-induced liquid phase condensation of cGAS activates innate immune signaling. Science 361, 704–709 (2018).

    Article  CAS  PubMed  Google Scholar 

  37. Li, T. et al. Phosphorylation and chromatin tethering prevent cGAS activation during mitosis. Science https://doi.org/10.1126/science.abc5386 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Wu, Y. & Li, S. Role of post-translational modifications of cGAS in innate immunity. Int. J. Mol. Sci. https://doi.org/10.3390/ijms21217842 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Zhong, L. et al. Phosphorylation of cGAS by CDK1 impairs self-DNA sensing in mitosis. Cell Discov. 6, 26 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Mackenzie, K. J. et al. cGAS surveillance of micronuclei links genome instability to innate immunity. Nature 548, 461–465 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Flynn, P. J., Koch, P. D. & Mitchison, T. J. Chromatin bridges, not micronuclei, activate cGAS after drug-induced mitotic errors in human cells. Proc. Natl Acad. Sci. USA https://doi.org/10.1073/pnas.2103585118 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Sun, H. et al. A nuclear export signal is required for cGAS to sense cytosolic DNA. Cell Rep. 34, 108586 (2021).

    Article  CAS  PubMed  Google Scholar 

  43. Sisirak, V. et al. Digestion of chromatin in apoptotic cell microparticles prevents autoimmunity. Cell 166, 88–101 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Volkman, H. E. & Stetson, D. B. The enemy within: endogenous retroelements and autoimmune disease. Nat. Immunol. 15, 415–422 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Lee-Kirsch, M. A., Wolf, C. & Gunther, C. Aicardi-Goutieres syndrome: a model disease for systemic autoimmunity. Clin. Exp. Immunol. 175, 17–24 (2014).

    Article  CAS  PubMed  Google Scholar 

  46. Gehrke, N. et al. Oxidative damage of DNA confers resistance to cytosolic nuclease TREX1 degradation and potentiates STING-dependent immune sensing. Immunity 39, 482–495 (2013).

    Article  CAS  PubMed  Google Scholar 

  47. Danilchanka, O. & Mekalanos, J. J. Cyclic dinucleotides and the innate immune response. Cell 154, 962–970 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Zhang, X. et al. Cyclic GMP-AMP containing mixed phosphodiester linkages is an endogenous high-affinity ligand for STING. Mol. Cell 51, 226–235 (2013).

    Article  CAS  PubMed  Google Scholar 

  49. Holleufer, A. et al. Two cGAS-like receptors induce antiviral immunity in Drosophila. Nature 597, 114–118 (2021).

    Article  CAS  PubMed  Google Scholar 

  50. Slavik, K. M. et al. cGAS-like receptors sense RNA and control 3′2′-cGAMP signalling in Drosophila. Nature 597, 109–113 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Carozza, J. A. et al. Extracellular cGAMP is a cancer cell-produced immunotransmitter involved in radiation-induced anti-cancer immunity. Nat. Cancer 1, 184–196 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Li, L. et al. Hydrolysis of 2′3′-cGAMP by ENPP1 and design of nonhydrolyzable analogs. Nat. Chem. Biol. 10, 1043–1048 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Belli, S. I., van Driel, I. R. & Goding, J. W. Identification and characterization of a soluble form of the plasma cell membrane glycoprotein PC-1 (5′-nucleotide phosphodiesterase). Eur. J. Biochem. 217, 421–428 (1993).

    Article  CAS  PubMed  Google Scholar 

  54. Carozza, J. A. et al. Extracellular cGAMP is a cancer cell-produced immunotransmitter involved in radiation-induced anti-cancer immunity. Nat. Cancer 1, 184–196 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Ablasser, A. et al. Cell intrinsic immunity spreads to bystander cells via the intercellular transfer of cGAMP. Nature 503, 530–534 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Pépin, G. et al. Connexin-dependent transfer of cGAMP to phagocytes modulates antiviral responses. mBio 11, e03187-19 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Chen, Q. et al. Carcinoma-astrocyte gap junctions promote brain metastasis by cGAMP transfer. Nature 533, 493–498 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Luther, J. et al. Hepatic gap junctions amplify alcohol liver injury by propagating cGAS-mediated IRF3 activation. Proc. Natl Acad. Sci. USA 117, 11667 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Li, J. et al. Metastasis and immune evasion from extracellular cGAMP hydrolysis. Cancer Discov. 11, 1212–1227 (2021).

    Article  CAS  PubMed  Google Scholar 

  60. Luteijn, R. D. et al. SLC19A1 transports immunoreactive cyclic dinucleotides. Nature 573, 434–438 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Ritchie, C., Cordova, A. F., Hess, G. T., Bassik, M. C. & Li, L. SLC19A1 is an importer of the immunotransmitter cGAMP. Mol. Cell 75, 372–381.e5 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Cordova, A. F., Ritchie, C., Böhnert, V. & Li, L. Human SLC46A2 is the dominant cGAMP importer in extracellular cGAMP-sensing macrophages and monocytes. ACS Cent. Sci. 7, 1073–1088 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Zhou, C. et al. Transfer of cGAMP into bystander cells via LRRC8 volume-regulated anion channels augments STING-mediated interferon responses and anti-viral immunity. Immunity 52, 767–781.e6 (2020).

    Article  CAS  PubMed  Google Scholar 

  64. Lahey, L. J. et al. LRRC8A:C/E heteromeric channels are ubiquitous transporters of cGAMP. Mol. Cell 80, 578–591.e5 (2020).

    Article  CAS  PubMed  Google Scholar 

  65. Gao, D. et al. Activation of cyclic GMP-AMP synthase by self-DNA causes autoimmune diseases. Proc. Natl Acad. Sci. USA 112, E5699–E5705 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Liu, D. et al. STING directly activates autophagy to tune the innate immune response. Cell Death Differ. 26, 1735–1749 (2019).

    Article  CAS  PubMed  Google Scholar 

  67. Liang, Q. et al. Crosstalk between the cGAS DNA sensor and Beclin-1 autophagy protein shapes innate antimicrobial immune responses. Cell Host Microbe 15, 228–238 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Yamazaki, T. et al. Mitochondrial DNA drives abscopal responses to radiation that are inhibited by autophagy. Nat. Immunol. 21, 1160–1171 (2020).

    Article  CAS  PubMed  Google Scholar 

  69. Watson, R. O., Manzanillo, P. S. & Cox, J. S. Extracellular M. tuberculosis DNA targets bacteria for autophagy by activating the host DNA-sensing pathway. Cell 150, 803–815 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Van Dis, E. et al. STING-activating adjuvants elicit a Th17 immune response and protect against mycobacterium tuberculosis infection. Cell Rep. 23, 1435–1447 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Gulen, M. F. et al. Signalling strength determines proapoptotic functions of STING. Nat. Commun. 8, 427 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Chen, D. et al. PUMA amplifies necroptosis signaling by activating cytosolic DNA sensors. Proc. Natl Acad. Sci. USA 115, 3930–3935 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Schock, S. N. et al. Induction of necroptotic cell death by viral activation of the RIG-I or STING pathway. Cell Death Differ. 24, 615–625 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Ma, Z. & Damania, B. The cGAS-STING defense pathway and its counteraction by viruses. Cell Host Microbe 19, 150–158 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Herzner, A. M. et al. Sequence-specific activation of the DNA sensor cGAS by Y-form DNA structures as found in primary HIV-1 cDNA. Nat. Immunol. 16, 1025–1033 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Yoh, S. M. et al. PQBP1 is a proximal sensor of the cGAS-dependent innate response to HIV-1. Cell 161, 1293–1305 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Lahaye, X. et al. NONO detects the nuclear HIV capsid to promote cGAS-mediated innate immune activation. Cell 175, 488–501.e22 (2018).

    Article  CAS  PubMed  Google Scholar 

  78. Domizio, J. D. et al. The cGAS-STING pathway drives type I IFN immunopathology in COVID-19. Nature 603, 145–151 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Zhou, Z. et al. Sensing of cytoplasmic chromatin by cGAS activates innate immune response in SARS-CoV-2 infection. Signal. Transduct. Target. Ther. 6, 382 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Sun, B. et al. Dengue virus activates cGAS through the release of mitochondrial DNA. Sci. Rep. 7, 3594 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Wan, L. et al. Translation stress and collided ribosomes are co-activators of cGAS. Mol. Cell 81, 2808–2822 e2810 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Hopfner, K. P. & Hornung, V. Molecular mechanisms and cellular functions of cGAS-STING signalling. Nat. Rev. Mol. Cell Biol. 21, 501–521 (2020).

    Article  CAS  PubMed  Google Scholar 

  83. Crow, Y. J. Type I interferonopathies: Mendelian type I interferon up-regulation. Curr. Opin. Immunol. 32, 7–12 (2015).

    Article  CAS  PubMed  Google Scholar 

  84. Rice, G. I. et al. Gain-of-function mutations in IFIH1 cause a spectrum of human disease phenotypes associated with upregulated type I interferon signaling. Nat. Genet. 46, 503–509 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Cuadrado, E. et al. Aicardi-Goutieres syndrome harbours abundant systemic and brain-reactive autoantibodies. Ann. Rheum. Dis. https://doi.org/10.1136/annrheumdis-2014-205396 (2014).

    Article  PubMed  Google Scholar 

  86. Grieves, J. L. et al. Exonuclease TREX1 degrades double-stranded DNA to prevent spontaneous lupus-like inflammatory disease. Proc. Natl Acad. Sci. USA 112, 5117–5122 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Gray, E. E., Treuting, P. M., Woodward, J. J. & Stetson, D. B. Cutting edge: cGAS is required for lethal autoimmune disease in the Trex1-deficient mouse model of Aicardi-Goutieres syndrome. J. Immunol. 195, 1939–1943 (2015).

    Article  CAS  PubMed  Google Scholar 

  88. Liu, Y. et al. Activated STING in a vascular and pulmonary syndrome. N. Engl. J. Med. 371, 507–518 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Fremond, M. L. et al. Overview of STING-associated vasculopathy with onset in infancy (SAVI) among 21 patients. J. Allergy Clin. Immunol. Pract. 9, 803–818.e11 (2021).

    Article  CAS  PubMed  Google Scholar 

  90. Warner, J. D. et al. STING-associated vasculopathy develops independently of IRF3 in mice. J. Exp. Med. 214, 3279–3292 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Siedel, H., Roers, A., Rosen-Wolff, A. & Luksch, H. Type I interferon-independent T cell impairment in a Tmem173 N153S/WT mouse model of STING associated vasculopathy with onset in infancy (SAVI). Clin. Immunol. 216, 108466 (2020).

    Article  CAS  PubMed  Google Scholar 

  92. Bouis, D. et al. Severe combined immunodeficiency in stimulator of interferon genes (STING) V154M/wild-type mice. J. Allergy Clin. Immunol. 143, 712–725.e5 (2019).

    Article  CAS  PubMed  Google Scholar 

  93. Fremond, M. L. & Crow, Y. J. STING-mediated lung inflammation and beyond. J. Clin. Immunol. 41, 501–514 (2021).

    Article  PubMed  Google Scholar 

  94. Lepelley, A. et al. Mutations in COPA lead to abnormal trafficking of STING to the Golgi and interferon signaling. J. Exp. Med. https://doi.org/10.1084/jem.20200600 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  95. Simpson, S. R. et al. T cells produce IFN-α in the TREX1 D18N model of lupus-like autoimmunity. J. Immunol. 204, 348–359 (2020).

    Article  CAS  PubMed  Google Scholar 

  96. Thim-Uam, A. et al. STING mediates lupus via the activation of conventional dendritic cell maturation and plasmacytoid dendritic cell differentiation. iScience 23, 101530 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Barrat, F. J., Crow, M. K. & Ivashkiv, L. B. Interferon target-gene expression and epigenomic signatures in health and disease. Nat. Immunol. 20, 1574–1583 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Hagberg, N. et al. IFN-α production by plasmacytoid dendritic cells stimulated with RNA-containing immune complexes is promoted by NK cells via MIP-1β and LFA-1. J. Immunol. 186, 5085–5094 (2011).

    Article  CAS  PubMed  Google Scholar 

  99. Lee-Kirsch, M. A. et al. Mutations in the gene encoding the 3′-5′ DNA exonuclease TREX1 are associated with systemic lupus erythematosus. Nat. Genet. 39, 1065–1067 (2007).

    Article  CAS  PubMed  Google Scholar 

  100. Namjou, B. et al. Evaluation of the TREX1 gene in a large multi-ancestral lupus cohort. Genes Immun. 12, 270–279 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Chen, Z. J. cGAS deficiency protects TREX1 deficient mice from disease and early mortality (Lupus Research Institute, 2014).

  102. An, J. et al. cGAMP and cGAS are expressed in a subset of patients with systemic lupus erythematosus and associate with disease activity. Arthritis Rheum. 69, 800–807 (2017).

    Article  CAS  Google Scholar 

  103. Kato, Y. et al. Apoptosis-derived membrane vesicles drive the cGAS-STING pathway and enhance type I IFN production in systemic lupus erythematosus. Ann. Rheum. Dis. https://doi.org/10.1136/annrheumdis-2018-212988 (2018).

    Article  PubMed  Google Scholar 

  104. Lood, C. et al. Neutrophil extracellular traps enriched in oxidized mitochondrial DNA are interferogenic and contribute to lupus-like disease. Nat. Med. https://doi.org/10.1038/nm.4027 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  105. Caielli, S. et al. Oxidized mitochondrial nucleoids released by neutrophils drive type I interferon production in human lupus. J. Exp. Med. 213, 697–713 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Sontheimer, C., Liggitt, D. & Elkon, K. B. Ultraviolet B irradiation causes stimulator of interferon genes-dependent production of protective type I interferon in mouse skin by recruited inflammatory monocytes. Arthritis Rheumatol. 69, 826–836 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Skopelja-Gardner, S. et al. The early local and systemic Type I interferon responses to ultraviolet B light exposure are cGAS dependent. Sci. Rep. 10, 7908 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Caielli, S. et al. Erythroid mitochondrial retention triggers myeloid-dependent type I interferon in human SLE. Cell 184, 4464–4479 e4419 (2021).

    Article  CAS  PubMed  Google Scholar 

  109. Patel, J., Maddukuri, S., Li, Y., Bax, C. & Werth, V. P. Highly multiplexed mass cytometry identifies the immunophenotype in the skin of dermatomyositis. J. Invest. Dermatol. 141, 2151–2160 (2021).

    Article  CAS  PubMed  Google Scholar 

  110. Wu, J., Dobbs, N., Yang, K. & Yan, N. Interferon-independent activities of mammalian STING mediate antiviral response and tumor immune evasion. Immunity 53, 115–126.e5 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Yamashiro, L. H. et al. Interferon-independent STING signaling promotes resistance to HSV-1 in vivo. Nat. Commun. 11, 3382 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Li, T. et al. TBK1 recruitment to STING mediates autoinflammatory arthritis caused by defective DNA clearance. J. Exp. Med. https://doi.org/10.1084/jem.20211539 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  113. Lodi, L. et al. Type I interferon-related kidney disorders. Kidney Int. https://doi.org/10.1016/j.kint.2022.02.031 (2022).

    Article  PubMed  Google Scholar 

  114. Bai, J. & Liu, F. cGAS–STING signaling and function in metabolism and kidney diseases. J. Mol. Cell Biol. 13, 728–738 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Zhang, D. et al. A non-canonical cGAS–STING–PERK pathway facilitates the translational program critical for senescence and organ fibrosis. Nat. Cell Biol. https://doi.org/10.1038/s41556-022-00894-z (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  116. Khedr, S., Dissanayake, L. V., Palygin, O. & Staruschenko, A. Potential role of cGAS-STING pathway in the induction of diabetic kidney disease. FASEB J. 34, 1–1 (2020).

    Google Scholar 

  117. Bai, J. et al. DsbA-L prevents obesity-induced inflammation and insulin resistance by suppressing the mtDNA release-activated cGAS-cGAMP-STING pathway. Proc. Natl Acad. Sci. USA 114, 12196 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Wang, T.-Y. et al. Association of metabolic dysfunction-associated fatty liver disease with kidney disease. Nat. Rev. Nephrol. 18, 259–268 (2022).

    Article  PubMed  Google Scholar 

  119. Yang, M. et al. DsbA-L ameliorates high glucose induced tubular damage through maintaining MAM integrity. EBioMedicine 43, 607–619 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  120. Sharma, S. et al. Suppression of systemic autoimmunity by the innate immune adaptor STING. Proc. Natl Acad. Sci. USA 112, E710–E717 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Motwani, M. et al. cGAS-STING pathway does not promote autoimmunity in murine models of SLE. Front. Immunol. 12, 689 (2021).

    Article  CAS  Google Scholar 

  122. Prabakaran, T. et al. A STING antagonist modulating the interaction with STIM1 blocks ER-to-Golgi trafficking and inhibits lupus pathology. EBioMedicine 66, 103314 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Yang, H., Wang, H., Ren, J., Chen, Q. & Chen, Z. J. cGAS is essential for cellular senescence. Proc. Natl Acad. Sci. USA 114, E4612–E4620 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Baker, D. J. et al. Naturally occurring p16Ink4a-positive cells shorten healthy lifespan. Nature 530, 184–189 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Faget, D. V., Ren, Q. & Stewart, S. A. Unmasking senescence: context-dependent effects of SASP in cancer. Nat. Rev. Cancer 19, 439–453 (2019).

    Article  CAS  PubMed  Google Scholar 

  126. Dou, Z. et al. Cytoplasmic chromatin triggers inflammation in senescence and cancer. Nature 550, 402–406 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Gluck, S. et al. Innate immune sensing of cytosolic chromatin fragments through cGAS promotes senescence. Nat. Cell Biol. 19, 1061–1070 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Campbell, I. L. et al. Structural and functional neuropathology in transgenic mice with CNS expression of IFN-α. Brain Res. 835, 46–61 (1999).

    Article  CAS  PubMed  Google Scholar 

  129. Bhaskar, M., Mukherjee, S. & Basu, A. Involvement of RIG-I pathway in neurotropic virus-induced acute flaccid paralysis and subsequent spinal motor neuron death. mBio 12, e0271221 (2021).

    Article  PubMed  Google Scholar 

  130. Miller, Z. A. et al. Increased prevalence of autoimmune disease within C9 and FTD/MND cohorts: completing the picture. Neurol. Neuroimmunol. Neuroinflamm. 3, e301 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  131. Miller, Z. A. et al. TDP-43 frontotemporal lobar degeneration and autoimmune disease. J. Neurol. Neurosurg. Psychiatry 84, 956–962 (2013).

    Article  PubMed  Google Scholar 

  132. Turner, M. R., Goldacre, R., Ramagopalan, S., Talbot, K. & Goldacre, M. J. Autoimmune disease preceding amyotrophic lateral sclerosis: an epidemiologic study. Neurology 81, 1222–1225 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Yu, C. H. et al. TDP-43 triggers mitochondrial DNA release via mPTP to activate cGAS/STING in ALS. Cell 183, 636–649.e18 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Newman, L. E. & Shadel, G. S. Pink1/Parkin link inflammation, mitochondrial stress, and neurodegeneration. J. Cell Biol. 217, 3327–3329 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Sliter, D. A. et al. Parkin and PINK1 mitigate STING-induced inflammation. Nature 561, 258–262 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Roy, E. R. et al. Type I interferon response drives neuroinflammation and synapse loss in Alzheimer disease. J. Clin. Investig. 130, 1912–1930 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Hou, Y. et al. NAD+ supplementation reduces neuroinflammation and cell senescence in a transgenic mouse model of Alzheimer’s disease via cGAS-STING. Proc. Natl Acad. Sci. USA https://doi.org/10.1073/pnas.2011226118 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  138. Jin, M. et al. Tau activates microglia via the PQBP1-cGAS-STING pathway to promote brain inflammation. Nat. Commun. 12, 6565 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Schaupp, L. et al. Microbiota-induced type I interferons instruct a poised basal state of dendritic cells. Cell 181, 1080–1096.e19 (2020).

    Article  CAS  PubMed  Google Scholar 

  140. Lima-Junior, D. S. et al. Endogenous retroviruses promote homeostatic and inflammatory responses to the microbiota. Cell 184, 3794–3811.e19 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Platt, D. J. et al. Transferrable protection by gut microbes against STING-associated lung disease. Cell Rep. 35, 109113 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Canesso, M. C. C. et al. The cytosolic sensor STING is required for intestinal homeostasis and control of inflammation. Mucosal Immunol. 11, 820–834 (2018).

    Article  CAS  PubMed  Google Scholar 

  143. Ahn, J., Son, S., Oliveira, S. C. & Barber, G. N. STING-dependent signaling underlies IL-10 controlled inflammatory colitis. Cell Rep. 21, 3873–3884 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Martin, G. R., Blomquist, C. M., Henare, K. L. & Jirik, F. R. Stimulator of interferon genes (STING) activation exacerbates experimental colitis in mice. Sci. Rep. 9, 14281–14281 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  145. Shmuel-Galia, L. et al. Dysbiosis exacerbates colitis by promoting ubiquitination and accumulation of the innate immune adaptor STING in myeloid cells. Immunity 54, 1137–1153.e1138 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Hu, Q. et al. STING-mediated intestinal barrier dysfunction contributes to lethal sepsis. EBioMedicine 41, 497–508 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  147. Zeng, L. et al. ALK is a therapeutic target for lethal sepsis. Sci. Transl. Med. https://doi.org/10.1126/scitranslmed.aan5689 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  148. Di Domizio, J. et al. The commensal skin microbiota triggers type I IFN-dependent innate repair responses in injured skin. Nat. Immunol. 21, 1034–1045 (2020).

    Article  PubMed  CAS  Google Scholar 

  149. Fischer, K. et al. Cutibacterium acnes infection induces type I interferon synthesis through the cGAS-STING pathway. Front. Immunol. 11, 571334–571334 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Lam, K. C. et al. Microbiota triggers STING-type I IFN-dependent monocyte reprogramming of the tumor microenvironment. Cell 184, 5338–5356.e21 (2021).

    Article  CAS  PubMed  Google Scholar 

  151. Si, W. et al. Lactobacillus rhamnosus GG induces cGAS/STING-dependent type I interferon and improves response to immune checkpoint blockade. Gut https://doi.org/10.1136/gutjnl-2020-323426 (2021).

    Article  PubMed  Google Scholar 

  152. Yang, K. et al. Suppression of local type I interferon by gut microbiota-derived butyrate impairs antitumor effects of ionizing radiation. J. Exp. Med. 218, e20201915 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Morand, E. F. et al. Trial of anifrolumab in active systemic lupus erythematosus. N. Engl. J. Med. 382, 211–221 (2020).

    Article  CAS  PubMed  Google Scholar 

  154. Antonelli, G., Scagnolari, C., Moschella, F. & Proietti, E. Twenty-five years of type I interferon-based treatment: a critical analysis of its therapeutic use. Cytokine Growth Factor Rev. 26, 121–131 (2015).

    Article  CAS  PubMed  Google Scholar 

  155. Weiss, J. M. et al. The STING agonist DMXAA triggers a cooperation between T lymphocytes and myeloid cells that leads to tumor regression. Oncoimmunology 6, e1346765 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  156. Downey, C. M., Aghaei, M., Schwendener, R. A. & Jirik, F. R. DMXAA causes tumor site-specific vascular disruption in murine non-small cell lung cancer, and like the endogenous non-canonical cyclic dinucleotide STING agonist, 2′3′-cGAMP, induces M2 macrophage repolarization. PLoS One 9, e99988 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  157. Li, M. et al. Pharmacological activation of STING blocks SARS-CoV-2 infection. Sci. Immunol. https://doi.org/10.1126/sciimmunol.abi9007 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  158. Takahashi, R.-u et al. Loss of microRNA-27b contributes to breast cancer stem cell generation by activating ENPP1. Nat. Commun. 6, 7318 (2015).

    Article  CAS  PubMed  Google Scholar 

  159. Schadt, L. et al. Cancer-cell-intrinsic cGAS expression mediates tumor immunogenicity. Cell Rep. 29, 1236–1248.e7 (2019).

    Article  CAS  PubMed  Google Scholar 

  160. Marcus, A. et al. Tumor-derived cGAMP triggers a STING-mediated interferon response in non-tumor cells to activate the NK cell response. Immunity 49, 754–763.e4 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Carozza, J. A. et al. Structure-aided development of small-molecule inhibitors of ENPP1, the extracellular phosphodiesterase of the immunotransmitter cGAMP. Cell Chem. Biol. 27, 1347–1358.e5 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Concepcion, A. R. et al. The volume-regulated anion channel LRRC8C suppresses T cell function by regulating cyclic dinucleotide transport and STING-p53 signaling. Nat. Immunol. 23, 287–302 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Hall, J. et al. Discovery of PF-06928215 as a high affinity inhibitor of cGAS enabled by a novel fluorescence polarization assay. PLoS One 12, e0184843 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  164. Lama, L. et al. Development of human cGAS-specific small-molecule inhibitors for repression of dsDNA-triggered interferon expression. Nat. Commun. 10, 2261 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  165. Vincent, J. et al. Small molecule inhibition of cGAS reduces interferon expression in primary macrophages from autoimmune mice. Nat. Commun. 8, 750 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  166. An, J. et al. Inhibition of cyclic GMP-AMP synthase using a novel antimalarial drug derivative in Trex1-deficient mice. Arthritis Rheumatol. 70, 1807–1819 (2018).

    Article  CAS  PubMed  Google Scholar 

  167. Dai, J. et al. Acetylation blocks cGAS activity and inhibits self-DNA-induced autoimmunity. Cell 176, 1447–1460.e14 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Elkon, K. B. Aspirin meets cGAS. Nat. Rev. Rheumatol. 15, 254–255 (2019).

    Article  PubMed  Google Scholar 

  169. Mukai, K. et al. Activation of STING requires palmitoylation at the Golgi. Nat. Commun. 7, 11932 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Hansen, A. L. et al. Nitro-fatty acids are formed in response to virus infection and are potent inhibitors of STING palmitoylation and signaling. Proc. Natl Acad. Sci. USA 115, E7768–E7775 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Haag, S. M. et al. Targeting STING with covalent small-molecule inhibitors. Nature 559, 269–273 (2018).

    Article  CAS  PubMed  Google Scholar 

  172. Hong, Z. et al. STING inhibitors target the cyclic dinucleotide binding pocket. Proc. Natl Acad. Sci. USA https://doi.org/10.1073/pnas.2105465118 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  173. Beck-Engeser, G., Eilat, D. & Wabl, M. An autoimmune disease prevented by anti-retroviral drugs. Retrovirology 8, 91 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Hasan, M. & Yan, N. Therapeutic potential of targeting TBK1 in autoimmune diseases and interferonopathies. Pharmacol. Res. 111, 336–342 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Hasan, M. et al. Cutting edge: inhibiting TBK1 by compound II ameliorates autoimmune disease in mice. J. Immunol. 195, 4573–4577 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Hammaker, D., Boyle, D. L. & Firestein, G. S. Synoviocyte innate immune responses: TANK-binding kinase-1 as a potential therapeutic target in rheumatoid arthritis. Rheumatology 51, 610–618 (2012).

    Article  CAS  PubMed  Google Scholar 

  177. Louis, C. et al. Therapeutic effects of a TANK-binding kinase 1 inhibitor in germinal center-driven collagen-induced arthritis. Arthritis Rheumatol. 71, 50–62 (2019).

    Article  CAS  PubMed  Google Scholar 

  178. An, J., Minie, M., Sasaki, S., Woodward, J. J. & Elkon, K. B. Anti-malarial drugs as immune modulators: new mechanisms for old drugs. Annu. Rev. Med. 68, 317–330 (2016).

    Article  PubMed  CAS  Google Scholar 

  179. Wallace, D. J., Gudsoorkar, V. S., Weisman, M. H. & Venuturupalli, S. R. New insights into mechanisms of therapeutic effects of antimalarial agents in SLE. Nat. Rev. Rheumatol. 8, 522–533 (2012).

    Article  CAS  PubMed  Google Scholar 

  180. Kerur, N. et al. cGAS drives noncanonical-inflammasome activation in age-related macular degeneration. Nat. Med. 24, 50–61 (2018).

    Article  CAS  PubMed  Google Scholar 

  181. King, K. R. et al. IRF3 and type I interferons fuel a fatal response to myocardial infarction. Nat. Med. 23, 1481–1487 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Cao, D. J. et al. Cytosolic DNA sensing promotes macrophage transformation and governs myocardial ischemic injury. Circulation 137, 2613–2634 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Verrier, E. R. et al. Hepatitis B virus evasion from cyclic guanosine monophosphate-adenosine monophosphate synthase sensing in human hepatocytes. Hepatology 68, 1695–1709 (2018).

    Article  CAS  PubMed  Google Scholar 

  184. Karimi-Googheri, M., Daneshvar, H., Khaleghinia, M., Bidaki, R. & Kazemi Arababadi, M. Decreased expressions of STING but not IRF3 molecules in chronic HBV infected patients. Arch. Iran. Med. 18, 351–354 (2015).

    PubMed  Google Scholar 

  185. Qiao, J. T. et al. Activation of the STING-IRF3 pathway promotes hepatocyte inflammation, apoptosis and induces metabolic disorders in nonalcoholic fatty liver disease. Metabolism 81, 13–24 (2018).

    Article  CAS  PubMed  Google Scholar 

  186. Luo, X. et al. Expression of STING is increased in liver tissues from patients with NAFLD and promotes macrophage-mediated hepatic inflammation and fibrosis in mice. Gastroenterology 155, 1971–1984.e4 (2018).

    Article  CAS  PubMed  Google Scholar 

  187. Yu, Y. et al. STING-mediated inflammation in Kupffer cells contributes to progression of nonalcoholic steatohepatitis. J. Clin. Invest. 129, 546–555 (2019).

    Article  PubMed  Google Scholar 

  188. Wang, X. et al. STING expression in monocyte-derived macrophages is associated with the progression of liver inflammation and fibrosis in patients with nonalcoholic fatty liver disease. Lab. Invest. 100, 542–552 (2020).

    Article  CAS  PubMed  Google Scholar 

  189. Petrasek, J. et al. STING-IRF3 pathway links endoplasmic reticulum stress with hepatocyte apoptosis in early alcoholic liver disease. Proc. Natl Acad. Sci. USA 110, 16544–16549 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Iracheta-Vellve, A. et al. Endoplasmic reticulum stress-induced hepatocellular death pathways mediate liver injury and fibrosis via stimulator of interferon genes. J. Biol. Chem. 291, 26794–26805 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Bai, J. et al. Mitochondrial stress-activated cGAS-STING pathway inhibits thermogenic program and contributes to overnutrition-induced obesity in mice. Commun. Biol. 3, 257 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Mao, Y. et al. STING-IRF3 triggers endothelial inflammation in response to free fatty acid-induced mitochondrial damage in diet-induced obesity. Arterioscler. Thromb. Vasc. Biol. 37, 920–929 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Baum, R. et al. Cutting edge: AIM2 and endosomal TLRs differentially regulate arthritis and autoantibody production in DNase II-deficient mice. J. Immunol. 194, 873–877 (2015).

    Article  CAS  PubMed  Google Scholar 

  194. Willemsen, J. et al. TNF leads to mtDNA release and cGAS/STING-dependent interferon responses that support inflammatory arthritis. Cell Rep. 37, 109977 (2021).

    Article  CAS  PubMed  Google Scholar 

  195. Ku, J. W. K. et al. Bacterial-induced cell fusion is a danger signal triggering cGAS-STING pathway via micronuclei formation. Proc. Natl Acad. Sci. USA 117, 15923–15934 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Tomas Mustelin, Christian Lood and Grant Hughes for helpful discussions. This work was supported by the following grants: 1R21AR079661-01, DOD LR200061 and Hitchcock Foundation Scholar Award (to SSG) and R21AR077842 and the Alliance for Lupus Research (to K.B.E.).

Author information

Authors and Affiliations

Authors

Contributions

All authors researched data for the article, made substantial contributions to discussions of the content and wrote, reviewed or edited the manuscript before submission.

Corresponding author

Correspondence to Keith B. Elkon.

Ethics declarations

Competing interests

K.B.E. and J.A. are co-founders of Amdax Therapeutics, LLC. S.S.-G. declares no competing interests.

Peer review

Peer review information

Nature Reviews Nephrology thanks A. Davidson, L. Li, J.T. Wilson and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Micronuclei

Small membrane-bound compartments that contain genomic DNA and form during mitosis in certain pathological states.

Retroelements

Genetic elements that can be incorporated into a DNA sequence after reverse transcription of an RNA molecule.

Necroptosis

A form of regulated cell death involving the activation of receptor-interacting protein kinases-1 (RIPK1) and RIPK3, and cell rupture (that is, necrosis).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Skopelja-Gardner, S., An, J. & Elkon, K.B. Role of the cGAS–STING pathway in systemic and organ-specific diseases. Nat Rev Nephrol 18, 558–572 (2022). https://doi.org/10.1038/s41581-022-00589-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41581-022-00589-6

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing