[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Molecular mechanisms of mitochondrial dynamics

Abstract

Mitochondria not only synthesize energy required for cellular functions but are also involved in numerous cellular pathways including apoptosis, calcium homoeostasis, inflammation and immunity. Mitochondria are dynamic organelles that undergo cycles of fission and fusion, and these transitions between fragmented and hyperfused networks ensure mitochondrial function, enabling adaptations to metabolic changes or cellular stress. Defects in mitochondrial morphology have been associated with numerous diseases, highlighting the importance of elucidating the molecular mechanisms regulating mitochondrial morphology. Here, we discuss recent structural insights into the assembly and mechanism of action of the core mitochondrial dynamics proteins, such as the dynamin-related protein 1 (DRP1) that controls division, and the mitofusins (MFN1 and MFN2) and optic atrophy 1 (OPA1) driving membrane fusion. Furthermore, we provide an updated view of the complex interplay between different proteins, lipids and organelles during the processes of mitochondrial membrane fusion and fission. Overall, we aim to present a valuable framework reflecting current perspectives on how mitochondrial membrane remodelling is regulated.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Mitochondrial structure and life cycle.
Fig. 2: Topology and domains of the core fission and fusion factors.
Fig. 3: The mitochondrial division process.
Fig. 4: The mitochondrial fusion process.

Similar content being viewed by others

References

  1. Karnkowska, A. et al. A eukaryote without a mitochondrial organelle. Curr. Biol. 26, 1274–1284 (2016).

    Article  CAS  PubMed  Google Scholar 

  2. Sagan, L. On the origin of mitosing cells. J. Theor. Biol. 14, 225–274 (1967).

    Article  CAS  Google Scholar 

  3. Gabaldón, T. Origin and early evolution of the eukaryotic cell. Annu. Rev. Microbiol. 75, 631–647 (2021).

    Article  PubMed  Google Scholar 

  4. Adams, K. Evolution of mitochondrial gene content: gene loss and transfer to the nucleus. Mol. Phylogenet. Evol. 29, 380–395 (2003).

    Article  CAS  PubMed  Google Scholar 

  5. Gustafsson, C. M., Falkenberg, M. & Larsson, N. G. Maintenance and expression of mammalian mitochondrial DNA. Annu. Rev. Biochem. 85, 133–160 (2016).

    Article  CAS  PubMed  Google Scholar 

  6. Rath, S. et al. MitoCarta3.0: an updated mitochondrial proteome now with sub-organelle localization and pathway annotations. Nucleic Acids Res. 49, D1541–D1547 (2021).

    Article  CAS  PubMed  Google Scholar 

  7. Morgenstern, M. et al. Quantitative high-confidence human mitochondrial proteome and its dynamics in cellular context. Cell Metab. 33, 2464–2483.e18 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Sperka-Gottlieb, C. D. M., Hermetter, A., Paltauf, F. & Daum, G. Lipid topology and physical properties of the outer mitochondrial membrane of the yeast, Saccharomyces cerevisiae. Biochim. Biophys. Acta Biomembr. 946, 227–234 (1988).

    Article  CAS  Google Scholar 

  9. De Kroon, A. I. P. M., Dolis, D., Mayer, A., Lill, R. & De Kruijff, B. Phospholipid composition of highly purified mitochondrial outer membranes of rat liver and Neurospora crassa. Is cardiolipin present in the mitochondrial outer membrane? Biochim. Biophys. Acta Biomembr. 1325, 108–116 (1997).

    Article  Google Scholar 

  10. Tilokani, L., Nagashima, S., Paupe, V. & Prudent, J. Mitochondrial dynamics: overview of molecular mechanisms. Essays Biochem. 62, 341–360 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Wiedemann, N. & Pfanner, N. Mitochondrial machineries for protein import and assembly. Annu. Rev. Biochem. 86, 685–714 (2017).

    Article  CAS  PubMed  Google Scholar 

  12. Ng, M. Y. W., Wai, T. & Simonsen, A. Quality control of the mitochondrion. Dev. Cell 56, 881–905 (2021).

    Article  CAS  PubMed  Google Scholar 

  13. Xian, H. & Liou, Y. C. Functions of outer mitochondrial membrane proteins: mediating the crosstalk between mitochondrial dynamics and mitophagy. Cell Death Differ. 28, 827–842 (2021).

    Article  PubMed  Google Scholar 

  14. Susin, S. A. et al. Molecular characterization of mitochondrial apoptosis-inducing factor. Nature 397, 441–446 (1999).

    Article  CAS  PubMed  Google Scholar 

  15. Verhagen, A. M. et al. Identification of DIABLO, a mammalian protein that promotes apoptosis by binding to and antagonizing IAP proteins. Cell 102, 43–53 (2000).

    Article  CAS  PubMed  Google Scholar 

  16. Liu, X., Kim, C. N., Yang, J., Jemmerson, R. & Wang, X. Induction of apoptotic program in cell-free extracts: requirement for dATP and cytochrome c. Cell 86, 147–157 (1996).

    Article  CAS  PubMed  Google Scholar 

  17. Suzuki, Y. et al. A serine protease, HtrA2, is released from the mitochondria and interacts with XIAP, inducing cell death. Mol. Cell 8, 613–621 (2001).

    Article  CAS  PubMed  Google Scholar 

  18. Vogel, F., Bornhövd, C., Neupert, W. & Reichert, A. S. Dynamic subcompartmentalization of the mitochondrial inner membrane. J. Cell Biol. 175, 237–247 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Wilkens, V., Kohl, W. & Busch, K. Restricted diffusion of OXPHOS complexes in dynamic mitochondria delays their exchange between cristae and engenders a transitory mosaic distribution. J. Cell Sci. 126, 103–116 (2013).

    Article  CAS  PubMed  Google Scholar 

  20. Dudkina, N. V., Heinemeyer, J., Keegstra, W., Boekema, E. J. & Braun, H. P. Structure of dimeric ATP synthase from mitochondria: an angular association of monomers induces the strong curvature of the inner membrane. FEBS Lett. 579, 5769–5772 (2005).

    Article  CAS  PubMed  Google Scholar 

  21. Strauss, M., Hofhaus, G., Schröder, R. R. & Kühlbrandt, W. Dimer ribbons of ATP synthase shape the inner mitochondrial membrane. EMBO J. 27, 1154–1160 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Davies, K. M. et al. Macromolecular organization of ATP synthase and complex I in whole mitochondria. Proc. Natl Acad. Sci. USA 108, 14121–14126 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Frezza, C. et al. OPA1 controls apoptotic cristae remodeling independently from mitochondrial fusion. Cell 126, 177–189 (2006).

    Article  CAS  PubMed  Google Scholar 

  24. Wolf, D. M. et al. Individual cristae within the same mitochondrion display different membrane potentials and are functionally independent. EMBO J. 38, e101056 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Mitchell, P. Coupling of phosphorylation to electron and hydrogen transfer by a chemi-osmotic type of mechanism. Nature 191, 144–148 (1961).

    Article  CAS  PubMed  Google Scholar 

  26. Mitchell, P. & Moyle, J. Translocation of some anions cations and acids in rat liver mitochondria. Eur. J. Biochem. 9, 149–155 (1969).

    Article  CAS  PubMed  Google Scholar 

  27. Srere, P. A. The infrastructure of the mitochondrial matrix. Trends Biochem. Sci. 5, 120–121 (1980).

    Article  CAS  Google Scholar 

  28. Lewis, M. R. & Lewis, W. H. Mitochondria (and other cytoplasmic structures) in tissue cultures. Am. J. Anat. 17, 339–401 (1915). This study provides an observation of the dynamic nature of mitochondria.

    Article  Google Scholar 

  29. Kraus, F., Roy, K., Pucadyil, T. J. & Ryan, M. T. Function and regulation of the divisome for mitochondrial fission. Nature 590, 57–66 (2021).

    Article  CAS  PubMed  Google Scholar 

  30. Guo, L. & Bramkamp, M. Bacterial dynamin-like protein DynA mediates lipid and content mixing. FASEB J. 33, 11746–11757 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Wang, M. et al. Mycobacterial dynamin-like protein IniA mediates membrane fission. Nat. Commun. 10, 3906 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Jimah, J. R. & Hinshaw, J. E. Structural insights into the mechanism of dynamin superfamily proteins. Trends Cell Biol. 29, 257–273 (2019).

    Article  CAS  PubMed  Google Scholar 

  33. Gao, S. & Hu, J. Mitochondrial fusion: the machineries in and out. Trends Cell Biol. 31, 62–74 (2021).

    Article  CAS  PubMed  Google Scholar 

  34. Chan, D. C. Mitochondrial dynamics and its involvement in disease. Annu. Rev. Pathol. Mech. Dis. 15, 235–259 (2020).

    Article  CAS  Google Scholar 

  35. Kashatus, D. F. et al. RALA and RALBP1 regulate mitochondrial fission at mitosis. Nat. Cell Biol. 13, 1108–1115 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Mishra, P. & Chan, D. C. Metabolic regulation of mitochondrial dynamics. J. Cell Biol. 212, 379–387 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Toyama, E. Q. et al. Metabolism: AMP-activated protein kinase mediates mitochondrial fission in response to energy stress. Science 351, 275–281 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Morita, M. et al. mTOR controls mitochondrial dynamics and cell survival via MTFP1. Mol. Cell 67, 922–935.e5 (2017).

    Article  CAS  PubMed  Google Scholar 

  39. Kraft, L. M. & Lackner, L. L. Mitochondrial anchors: positioning mitochondria and more. Biochem. Biophys. Res. Commun. 500, 2–8 (2018).

    Article  CAS  PubMed  Google Scholar 

  40. Sabouny, R. & Shutt, T. E. The role of mitochondrial dynamics in mtDNA maintenance. J. Cell Sci. 134, jcs258944 (2021).

    Article  CAS  PubMed  Google Scholar 

  41. Twig, G. et al. Fission and selective fusion govern mitochondrial segregation and elimination by autophagy. EMBO J. 27, 433–446 (2008). This study characterizes the mitochondrial life cycle by analysing how mitochondrial fission and selective fusion regulate the removal of damaged mitochondria.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Burman, J. L. et al. Mitochondrial fission facilitates the selective mitophagy of protein aggregates. J. Cell Biol. 216, 3231–3247 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Erickson, H. P., Anderson, D. E. & Osawa, M. FtsZ in bacterial cytokinesis: cytoskeleton and force generator all in one. Microbiol. Mol. Biol. Rev. 74, 504–528 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Rowlett, V. W. & Margolin, W. The bacterial Min system. Curr. Biol. 23, R553–R556 (2013).

    Article  CAS  PubMed  Google Scholar 

  45. Leger, M. M. et al. An ancestral bacterial division system is widespread in eukaryotic mitochondria. Proc. Natl Acad. Sci. USA 112, 10239–10246 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Bleazard, W. et al. The dynamin-related GTPase Dnm1 regulates mitochondrial fission in yeast. Nat. Cell Biol. 1, 298–304 (1999). This study identifies Dnm1 as a mitochondrial fission protein in yeast.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Cereghetti, G. M. et al. Dephosphorylation by calcineurin regulates translocation of Drp1 to mitochondria. Proc. Natl Acad. Sci. USA 105, 15803–15808 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Friedman, J. R. et al. ER tubules mark sites of mitochondrial division. Science 334, 358–362 (2011). This study demonstrates the role of interorganelle contact in mitochondrial dynamics.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Chang, C. R. & Blackstone, C. Cyclic AMP-dependent protein kinase phosphorylation of Drp1 regulates its GTPase activity and mitochondrial morphology. J. Biol. Chem. 282, 21583–21587 (2007).

    Article  CAS  PubMed  Google Scholar 

  50. Cribbs, J. T. & Strack, S. Reversible phosphorylation of Drp1 by cyclic AMP-dependent protein kinase and calcineurin regulates mitochondrial fission and cell death. EMBO Rep. 8, 939–944 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Kornmann, B. et al. An ER-mitochondria tethering complex revealed by a synthetic biology screen. Science 325, 477–481 (2009). This study identifies a molecular tethering complex between the ER and mitochondria.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Murley, A. et al. ER-associated mitochondrial division links the distribution of mitochondria and mitochondrial DNA in yeast. eLife 2, e00422 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Prinz, W. A., Toulmay, A. & Balla, T. The functional universe of membrane contact sites. Nat. Rev. Mol. Cell Biol. 21, 7–24 (2020).

    Article  CAS  PubMed  Google Scholar 

  54. Lewis, S. C., Uchiyama, L. F. & Nunnari, J. ER-mitochondria contacts couple mtDNA synthesis with mitochondrial division in human cells. Science 353, aaf5549 (2016). This study shows the interplay between ER–mitochondria contact sites, mtDNA replication and mitochondrial division.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Ban-Ishihara, R., Ishihara, T., Sasaki, N., Mihara, K. & Ishihara, N. Dynamics of nucleoid structure regulated by mitochondrial fission contributes to cristae reformation and release of cytochrome c. Proc. Natl Acad. Sci. USA 110, 11863–11868 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Kleele, T. et al. Distinct fission signatures predict mitochondrial degradation or biogenesis. Nature 593, 435–439 (2021). This study describes peripheral and midzone fission types, associated with mitochondrial degradation and biogenesis, respectively.

    Article  CAS  PubMed  Google Scholar 

  57. Martin, L. A., Kennedy, B. E. & Karten, B. Mitochondrial cholesterol: mechanisms of import and effects on mitochondrial function. J. Bioenerg. Biomembr. 48, 137–151 (2016).

    Article  CAS  PubMed  Google Scholar 

  58. Gerhold, J. M. et al. Human mitochondrial DNA-protein complexes attach to a cholesterol-rich membrane structure. Sci. Rep. 5, 15292 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Flis, V. V. & Daum, G. Lipid transport between the endoplasmic reticulum and mitochondria. Cold Spring Harb. Perspect. Biol. 5, a013235 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Luévano-Martínez, L. A., Forni, M. F., Dos Santos, V. T., Souza-Pinto, N. C. & Kowaltowski, A. J. Cardiolipin is a key determinant for mtDNA stability and segregation during mitochondrial stress. Biochim. Biophys. Acta Bioenerg. 1847, 587–598 (2015).

    Article  Google Scholar 

  61. Chen, S., Liu, D., Finley, R. L. & Greenberg, M. L. Loss of mitochondrial DNA in the yeast cardiolipin synthase crd1 mutant leads to up-regulation of the protein kinase Swe1p that regulates the G2/M transition. J. Biol. Chem. 285, 10397–10407 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Stephan, T., Roesch, A., Riedel, D. & Jakobs, S. Live-cell STED nanoscopy of mitochondrial cristae. Sci. Rep. 9, 12419 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Ji, W. K. et al. Receptor-mediated Drp1 oligomerization on endoplasmic reticulum. J. Cell Biol. 216, 4123–4139 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Moore, A. S., Wong, Y. C., Simpson, C. L. & Holzbaur, E. L. F. Dynamic actin cycling through mitochondrial subpopulations locally regulates the fission-fusion balance within mitochondrial networks. Nat. Commun. 7, 12886 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Schiavon, C. R. et al. Actin chromobody imaging reveals sub-organellar actin dynamics. Nat. Methods 17, 917–921 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Korobova, F., Ramabhadran, V. & Higgs, H. N. An actin-dependent step in mitochondrial fission mediated by the ER-associated formin INF2. Science 339, 464–467 (2013). This study characterizes the contribution of actin to mitochondrial fission.

    Article  CAS  PubMed  Google Scholar 

  67. Manor, U. et al. A mitochondria-anchored isoform of the actin-nucleating spire protein regulates mitochondrial division. eLife 4, e08828 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Korobova, F., Gauvin, T. J. & Higgs, H. N. A role for myosin II in mammalian mitochondrial fission. Curr. Biol. 24, 409–414 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Ji, W., Hatch, A. L., Merrill, R. A., Strack, S. & Higgs, H. N. Actin filaments target the oligomeric maturation of the dynamin GTPase Drp1 to mitochondrial fission sites. eLife 4, e11553 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Yang, C. & Svitkina, T. M. Ultrastructure and dynamics of the actin–myosin II cytoskeleton during mitochondrial fission. Nat. Cell Biol. 21, 603–613 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Coscia, S. M. et al. Myo19 tethers mitochondria to endoplasmic reticulum-associated actin to promote mitochondrial fission. J. Cell Sci. 136, jcs260612 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Lin, S. et al. Fascin controls metastatic colonization and mitochondrial oxidative phosphorylation by remodeling mitochondrial actin filaments. Cell Rep. 28, 2824–2836.e8 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Fung, T. S., Chakrabarti, R. & Higgs, H. N. The multiple links between actin and mitochondria. Nat. Rev. Mol. Cell Biol. 24, 651–667 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Helle, S. C. J. et al. Mechanical force induces mitochondrial fission. eLife 6, e30292 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  75. Fujioka, H., Tandler, B. & Hoppel, C. L. Mitochondrial division in rat cardiomyocytes: an electron microscope study. Anat. Rec. 295, 1455–1461 (2012).

    Article  Google Scholar 

  76. Wakabayashi, T., Asano, M. & Kurono, C. Some aspects of mitochondria having a “septum”. Microscopy 23, 247–254 (1974).

    CAS  Google Scholar 

  77. Labrousse, A. M., Zappaterra, M. D., Rube, D. A. & Van der Bliek, A. M. C. elegans dynamin-related protein DRP-1 controls severing of the mitochondrial outer membrane. Mol. Cell 4, 815–826 (1999).

    Article  CAS  PubMed  Google Scholar 

  78. Böhler, P. et al. The mycotoxin phomoxanthone A disturbs the form and function of the inner mitochondrial membrane. Cell Death Dis. 9, 286 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  79. Lee, H. & Yoon, Y. Transient contraction of mitochondria induces depolarization through the inner membrane dynamin OPA1 protein. J. Biol. Chem. 289, 11862–11872 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Breckwoldt, M. O. et al. Multiparametric optical analysis of mitochondrial redox signals during neuronal physiology and pathology in vivo. Nat. Med. 20, 555–560 (2014).

    Article  CAS  PubMed  Google Scholar 

  81. Cho, B. et al. Constriction of the mitochondrial inner compartment is a priming event for mitochondrial division. Nat. Commun. 8, 15754 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  82. Chakrabarti, R. et al. INF2-mediated actin polymerization at the ER stimulates mitochondrial calcium uptake, inner membrane constriction, and division. J. Cell Biol. 217, 251–268 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Antonny, B. et al. Membrane fission by dynamin: what we know and what we need to know. EMBO J. 35, 2270–2284 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Kalia, R. & Frost, A. Open and cut: allosteric motion and membrane fission by dynamin superfamily proteins. Mol. Biol. Cell 30, 2097–2104 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Ramachandran, R. & Schmid, S. L. The dynamin superfamily. Curr. Biol. 28, R411–R416 (2018).

    Article  CAS  PubMed  Google Scholar 

  86. Shin, H. W., Shinotsuka, C., Torii, S., Murakami, K. & Nakayama, K. Identification and subcellular localization of a novel mammalian dynamin-related protein homologous to yeast Vps1p and Dnm1p. J. Biochem. 122, 525–530 (1997).

    Article  CAS  PubMed  Google Scholar 

  87. Smirnova, E., Griparic, L., Shurland, D.-L. & Van Der Bliek, A. M. Drp1 is required for mitochondrial division in mammalian cells. Mol. Biol. Cell 12, 2245–2256 (2001). This study describes DRP1 as a mitochondrial fission protein in mammals.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Ishihara, N. et al. Mitochondrial fission factor Drp1 is essential for embryonic development and synapse formation in mice. Nat. Cell Biol. 11, 958–966 (2009).

    Article  CAS  PubMed  Google Scholar 

  89. Smirnova, E., Shurland, D. L., Ryazantsev, S. N. & Van Der Bliek, A. M. A human dynamin-related protein controls the distribution of mitochondria. J. Cell Biol. 143, 351–358 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Kamerkar, S. C., Kraus, F., Sharpe, A. J., Pucadyil, T. J. & Ryan, M. T. Dynamin-related protein 1 has membrane constricting and severing abilities sufficient for mitochondrial and peroxisomal fission. Nat. Commun. 9, 5239 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Wakabayashi, J. et al. The dynamin-related GTPase Drp1 is required for embryonic and brain development in mice. J. Cell Biol. 186, 805–816 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Chappie, J. S., Acharya, S., Leonard, M., Schmid, S. L. & Dyda, F. G domain dimerization controls dynamin’s assembly-stimulated GTPase activity. Nature 465, 435–440 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Chen, Y. J., Zhang, P., Egelman, E. H. & Hinshaw, J. E. The stalk region of dynamin drives the constriction of dynamin tubes. Nat. Struct. Mol. Biol. 11, 574–575 (2004).

    Article  CAS  PubMed  Google Scholar 

  94. Faelber, K. et al. Crystal structure of nucleotide-free dynamin. Nature 477, 556–560 (2011).

    Article  CAS  PubMed  Google Scholar 

  95. Chappie, J. S. et al. An intramolecular signaling element that modulates dynamin function in vitro and in vivo. Mol. Biol. Cell 20, 3561–3571 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Yan, L. et al. Structural basis for mechanochemical role of Arabidopsis thaliana dynamin-related protein in membrane fission. J. Mol. Cell Biol. 3, 378–381 (2011).

    Article  CAS  PubMed  Google Scholar 

  97. Kalia, R. et al. Structural basis of mitochondrial receptor binding and constriction by DRP1. Nature 558, 401–405 (2018). This study reveals the cryo-EM structure of full-length human DRP1 bound to MiD49, providing insights into mitochondrial membrane constriction.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Reubold, T. F. et al. Crystal structure of the dynamin tetramer. Nature 525, 404–408 (2015).

    Article  CAS  PubMed  Google Scholar 

  99. Bustillo-Zabalbeitia, I. et al. Specific interaction with cardiolipin triggers functional activation of dynamin-related protein 1. PLoS ONE 9, e102738 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  100. Francy, C. A., Clinton, R. W., Fröhlich, C., Murphy, C. & Mears, J. A. Cryo-EM studies of Drp1 reveal cardiolipin interactions that activate the helical oligomer. Sci. Rep. 7, 10744 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  101. Clinton, R. W., Francy, C. A., Ramachandran, R., Qi, X. & Mears, J. A. Dynamin-related protein 1 oligomerization in solution impairs functional interactions with membrane-anchored mitochondrial fission factor. J. Biol. Chem. 291, 478–492 (2016).

    Article  CAS  PubMed  Google Scholar 

  102. Francy, C. A., Alvarez, F. J. D., Zhou, L., Ramachandran, R. & Mears, J. A. The mechanoenzymatic core of dynamin-related protein 1 comprises the minimal machinery required for membrane constriction. J. Biol. Chem. 290, 11692–11703 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Mahajan, M. et al. NMR identification of a conserved Drp1 cardiolipin-binding motif essential for stress-induced mitochondrial fission. Proc. Natl Acad. Sci. USA 118, e2023079118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Kong, L. et al. Cryo-EM of the dynamin polymer assembled on lipid membrane. Nature 560, 258–262 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Ford, M. G. J., Jenni, S. & Nunnari, J. The crystal structure of dynamin. Nature 477, 561–566 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Bohuszewicz, O. & Low, H. H. Structure of a mitochondrial fission dynamin in the closed conformation. Nat. Struct. Mol. Biol. 25, 722–731 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Chang, C. R. & Blackstone, C. Dynamic regulation of mitochondrial fission through modification of the dynamin-related protein Drp1. Ann. N. Y. Acad. Sci. 1201, 34–39 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Macdonald, P. J. et al. A dimeric equilibrium intermediate nucleates Drp1 reassembly on mitochondrial membranes for fission. Mol. Biol. Cell 25, 1905–1915 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  109. Rochon, K. et al. Structural basis for regulated assembly of the mitochondrial fission GTPase Drp1. Nat. Commun. 15, 1328 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Strack, S. & Cribbs, J. T. Allosteric modulation of Drp1 mechanoenzyme assembly and mitochondrial fission by the variable domain. J. Biol. Chem. 287, 10990–11001 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Ingerman, E. et al. Dnm1 forms spirals that are structurally tailored to fit mitochondria. J. Cell Biol. 170, 1021–1027 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Yoon, Y., Pitts, K. R. & McNiven, M. A. Mammalian dynamin-like protein DLP1 tubulates membranes. Mol. Biol. Cell 12, 2894–2905 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Ugarte-Uribe, B., Müller, H. M., Otsuki, M., Nickel, W. & García-Sáez, A. J. Dynamin-related protein 1 (Drp1) promotes structural intermediates of membrane division. J. Biol. Chem. 289, 30645–30656 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Stepanyants, N. et al. Cardiolipin’s propensity for phase transition and its reorganization by dynamin-related protein 1 form a basis for mitochondrial membrane fission. Mol. Biol. Cell 26, 3104–3116 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Peng, R., Rochon, K., Stagg, S. M. & Mears, J. A. The structure of the Drp1 lattice on membrane. Preprint at bioRxiv https://doi.org/10.1101/2024.04.04.588123 (2024).

  116. Mears, J. A. et al. Conformational changes in Dnm1 support a contractile mechanism for mitochondrial fission. Nat. Struct. Mol. Biol. 18, 20–26 (2011).

    Article  CAS  PubMed  Google Scholar 

  117. Tieu, Q. & Nunnari, J. Mdv1p is a WD repeat protein that interacts with the dynamin-related GTPase, Dnm1p, to trigger mitochondrial division. J. Cell Biol. 151, 353–366 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Griffin, E. E., Graumann, J. & Chan, D. C. The WD40 protein Caf4p is a component of the mitochondrial fission machinery and recruits Dnm1p to mitochondria. J. Cell Biol. 170, 237–248 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Mozdy, A. D., McCaffery, J. M. & Shaw, J. M. Dnm1p GTPase-mediated mitochondrial fission is a multi-step process requiring the novel integral membrane component Fis1p. J. Cell Biol. 151, 367–380 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Koirala, S. et al. Interchangeable adaptors regulate mitochondrial dynamin assembly for membrane scission. Proc. Natl Acad. Sci. USA 110, e1300855110 (2013).

    Article  Google Scholar 

  121. Otera, H. et al. Mff is an essential factor for mitochondrial recruitment of Drp1 during mitochondrial fission in mammalian cells. J. Cell Biol. 191, 1141–1158 (2010). This study identifies and characterizes MFF as a DRP1 adaptor regulating mitochondrial division.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Osellame, L. D. et al. Cooperative and independent roles of the Drp1 adaptors Mff, MiD49 and MiD51 in mitochondrial fission. J. Cell Sci. 129, 2170–2181 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Gomes, L. C. & Scorrano, L. High levels of Fis1, a pro-fission mitochondrial protein, trigger autophagy. Biochim. Biophys. Acta Bioenerg. 1777, 860–866 (2008).

    Article  CAS  Google Scholar 

  124. Shen, Q. et al. Mutations in Fis1 disrupt orderly disposal of defective mitochondria. Mol. Biol. Cell 25, 145–159 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  125. Xian, H., Yang, Q., Xiao, L., Shen, H. M. & Liou, Y. C. STX17 dynamically regulated by Fis1 induces mitophagy via hierarchical macroautophagic mechanism. Nat. Commun. 10, 2059 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  126. Wong, Y. C., Ysselstein, D. & Krainc, D. Mitochondria-lysosome contacts regulate mitochondrial fission via RAB7 GTP hydrolysis. Nature 554, 382–386 (2018). This study provides evidence of the role of lysosomes in mitochondrial fission.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Gandre-Babbe, S. & Van Der Bliek, A. M. The novel tail-anchored membrane protein Mff controls mitochondrial and peroxisomal fission in mammalian cells. Mol. Biol. Cell 19, 2402–2412 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Palmer, C. S. et al. MiD49 and MiD51, new components of the mitochondrial fission machinery. EMBO Rep. 12, 565–573 (2011). This study identifies MiDs as novel regulators of mitochondrial division recruiting DRP1 to the OMM.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Atkins, K., Dasgupta, A., Chen, K. H., Mewburn, J. & Archer, S. L. The role of Drp1 adaptor proteins MiD49 and MiD51 in mitochondrial fission: implications for human disease. Clin. Sci. 130, 1861–1874 (2016).

    Article  CAS  Google Scholar 

  130. Losó n, O. C., Song, Z., Chen, H. & Chan, D. C. Fis1, Mff, MiD49, and MiD51 mediate Drp1 recruitment in mitochondrial fission. Mol. Biol. Cell 24, 659–667 (2013).

    Article  Google Scholar 

  131. Losón, O. C. et al. The mitochondrial fission receptor MiD51 requires ADP as a cofactor. Structure 22, 367–377 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  132. Palmer, C. S. et al. Adaptor proteins MiD49 and MiD51 can act independently of Mff and Fis1 in Drp1 recruitment and are specific for mitochondrial fission. J. Biol. Chem. 288, 27584–27593 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Zhao, J. et al. Human MIEF1 recruits Drp1 to mitochondrial outer membranes and promotes mitochondrial fusion rather than fission. EMBO J. 30, 2762–2778 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Elgass, K. D., Smith, E. A., LeGros, M. A., Larabell, C. A. & Ryan, M. T. Analysis of ER-mitochondria contacts using correlative fluorescence microscopy and soft X-ray tomography of mammalian cells. J. Cell Sci. 128, 2795–2804 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Richter, V. et al. Structural and functional analysis of MiD51, a dynamin receptor required for mitochondrial fission. J. Cell Biol. 204, 477–486 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Otera, H., Miyata, N., Kuge, O. & Mihara, K. Drp1-dependent mitochondrial fission via MiD49/51 is essential for apoptotic cristae remodeling. J. Cell Biol. 212, 531–544 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Macdonald, P. J. et al. Distinct splice variants of dynamin-related protein 1 differentially utilize mitochondrial fission factor as an effector of cooperative GTPase activity. J. Biol. Chem. 291, 493–507 (2016).

    Article  CAS  PubMed  Google Scholar 

  138. Clinton, R. W. & Mears, J. A. Using scaffold liposomes to reconstitute lipid-proximal protein-protein interactions in vitro. J. Vis. Exp. https://doi.org/10.3791/54971 (2017).

  139. Liu, R. & Chan, D. C. The mitochondrial fission receptor Mff selectively recruits oligomerized Drp1. Mol. Biol. Cell 26, 4466–4477 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Montecinos-Franjola, F., Bauer, B. L., Mears, J. A. & Ramachandran, R. GFP fluorescence tagging alters dynamin-related protein 1 oligomerization dynamics and creates disassembly-refractory puncta to mediate mitochondrial fission. Sci. Rep. 10, 14777 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Liu, A., Kage, F. & Higgs, H. N. Mff oligomerization is required for Drp1 activation and synergy with actin filaments during mitochondrial division. Mol. Biol. Cell 32, ar5 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Lu, B. et al. Steric interference from intrinsically disordered regions controls dynamin-related protein 1 self-assembly during mitochondrial fission. Sci. Rep. 8, 10879 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  143. Ferguson, S. M. & De Camilli, P. Dynamin, a membrane-remodelling GTPase. Nat. Rev. Mol. Cell Biol. 13, 75–88 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Perkins, G. et al. Electron tomography of neuronal mitochondria: three-dimensional structure and organization of cristae and membrane contacts. J. Struct. Biol. 119, 260–272 (1997).

    Article  CAS  PubMed  Google Scholar 

  145. Frolov, V. A., Escalada, A., Akimov, S. A. & Shnyrova, A. V. Geometry of membrane fission. Chem. Phys. Lipids 185, 129–140 (2015).

    Article  CAS  PubMed  Google Scholar 

  146. Lee, J. E., Westrate, L. M., Wu, H., Page, C. & Voeltz, G. K. Multiple dynamin family members collaborate to drive mitochondrial division. Nature 540, 139–143 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Fonseca, T. B., Sánchez-Guerrero, Á., Milosevic, I. & Raimundo, N. Mitochondrial fission requires DRP1 but not dynamins. Nature 570, E34–E42 (2019).

    Article  CAS  PubMed  Google Scholar 

  148. Nagashima, S. et al. Golgi-derived PI(4)P-containing vesicles drive late steps of mitochondrial division. Science 367, 1366–1371 (2020). This study identifies the contribution of trans-Golgi-derived vesicles in mitochondrial fission downstream of DRP1.

    Article  CAS  PubMed  Google Scholar 

  149. Tábara, L. C., Morris, J. L. & Prudent, J. The complex dance of organelles during mitochondrial division. Trends Cell Biol. 31, 241–253 (2021).

    Article  PubMed  Google Scholar 

  150. De Matteis, M. A. & Godi, A. Protein-lipid interactions in membrane trafficking at the Golgi complex. Biochim. Biophys. Acta Biomembr. 1666, 264–274 (2004).

    Article  Google Scholar 

  151. Boutry, M. & Kim, P. K. ORP1L mediated PI(4)P signaling at ER-lysosome-mitochondrion three-way contact contributes to mitochondrial division. Nat. Commun. 12, 5354 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Li, S. et al. Transient assembly of F-actin on the outer mitochondrial membrane contributes to mitochondrial fission. J. Cell Biol. 208, 109–123 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Dong, R. et al. Endosome-ER contacts control actin nucleation and retromer function through VAP-dependent regulation of PI4P. Cell 166, 408–423 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Duan, X. et al. PI4P-containing vesicles from Golgi contribute to mitochondrial division by coordinating with polymerized actin. Int. J. Mol. Sci. 24, 6593 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Nunnari, J. et al. Mitochondrial transmission during mating in Saccharomyces cerevisiae is determined by mitochondrial fusion and fission and the intramitochondrial segregation of mitochondrial DNA. Mol. Biol. Cell 8, 1233–1242 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Okamoto, K., Perlman, P. S. & Butow, R. A. The sorting of mitochondrial DNA and mitochondrial proteins in zygotes: preferential transmission of mitochondrial DNA to the medial bud. J. Cell Biol. 142, 613–623 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Mishra, P., Carelli, V., Manfredi, G. & Chan, D. C. Proteolytic cleavage of Opa1 stimulates mitochondrial inner membrane fusion and couples fusion to oxidative phosphorylation. Cell Metab. 19, 630–641 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Rambold, A. S., Kostelecky, B., Elia, N. & Lippincott-Schwartz, J. Tubular network formation protects mitochondria from autophagosomal degradation during nutrient starvation. Proc. Natl Acad. Sci. USA 108, 10190–10195 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Gomes, L. C., Benedetto, G. D. & Scorrano, L. During autophagy mitochondria elongate, are spared from degradation and sustain cell viability. Nat. Cell Biol. 13, 589–598 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Buck, M. D. et al. Mitochondrial dynamics controls T cell fate through metabolic programming. Cell 166, 63–76 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Baixauli, F. et al. An LKB1–mitochondria axis controls TH17 effector function. Nature 610, 555–561 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Corrado, M. et al. Deletion of the mitochondria-shaping protein Opa1 during early thymocyte maturation impacts mature memory T cell metabolism. Cell Death Differ. 28, 2194–2206 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Baker, N. et al. The mitochondrial protein OPA1 regulates the quiescent state of adult muscle stem cells. Cell Stem Cell 29, 1315–1332.e9 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Son, M. J. et al. Mitofusins deficiency elicits mitochondrial metabolic reprogramming to pluripotency. Cell Death Differ. 22, 1957–1969 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Meeusen, S., McCaffery, J. M. & Nunnari, J. Mitochondrial fusion intermediates revealed in vitro. Science 22, 1747–1752 (2004). This study reveals that the fusion of mitochondrial membranes occurs sequentially.

    Article  Google Scholar 

  166. Guo, Y. et al. Visualizing intracellular organelle and cytoskeletal interactions at nanoscale resolution on millisecond timescales. Cell 175, 1430–1442.e17 (2018).

    Article  CAS  PubMed  Google Scholar 

  167. Wong, Y. C., Peng, W. & Krainc, D. Lysosomal regulation of inter-mitochondrial contact fate and motility in Charcot-Marie-Tooth type 2. Dev. Cell 50, 339–354.e4 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Santel, A. & Fuller, M. T. Control of mitochondrial morphology by a human mitofusin. J. Cell Sci. 114, 867–874 (2001). This study characterizes MFNs as regulators of mitochondrial fusion proteins in mammals.

    Article  CAS  PubMed  Google Scholar 

  169. Hales, K. G. & Fuller, M. T. Developmentally regulated mitochondrial fusion mediated by a conserved, novel, predicted GTPase. Cell 90, 121–129 (1997). This study identifies Fzo as regulator of mitochondrial morphology driving fusion in a GTPase-dependent manner during Drosophila spermatogenesis.

    Article  CAS  PubMed  Google Scholar 

  170. Rapaport, D., Brunner, M., Neupert, W. & Westermann, B. Fzo1p is a mitochondrial outer membrane protein essential for the biogenesis of functional mitochondria in Saccharomyces cerevisiae. J. Biol. Chem. 273, 20150–20155 (1998).

    Article  CAS  PubMed  Google Scholar 

  171. Hermann, G. J. et al. Mitochondrial fusion in yeast requires the transmembrane GTPase Fzo1p. J. Cell Biol. 143, 359–373 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Chen, H. et al. Mitofusins Mfn1 and Mfn2 coordinately regulate mitochondrial fusion and are essential for embryonic development. J. Cell Biol. 160, 189–200 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Santetl, A. et al. Mitofusin-1 protein is a generally expressed mediator of mitochondrial fusion in mammalian cells. J. Cell Sci. 116, 2763–2774 (2003).

    Article  Google Scholar 

  174. Eura, Y. Two mitofusin proteins, mammalian homologues of FZO, with distinct functions are both required for mitochondrial fusion. J. Biochem. 134, 333–344 (2003).

    Article  CAS  PubMed  Google Scholar 

  175. Ishihara, N., Eura, Y. & Mihara, K. Mitofusin 1 and 2 play distinct roles in mitochondrial fusion reactions via GTPase activity. J. Cell Sci. 117, 6535–6546 (2004).

    Article  CAS  PubMed  Google Scholar 

  176. Sloat, S. R., Whitley, B. N., Engelhart, E. A. & Hoppins, S. Identification of a mitofusin specificity region that confers unique activities to Mfn1 and Mfn2. Mol. Biol. Cell 30, 2309–2319 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. De Brito, O. M. & Scorrano, L. Mitofusin 2 tethers endoplasmic reticulum to mitochondria. Nature 456, 605–610 (2008).

    Article  PubMed  Google Scholar 

  178. Naón, D. et al. Splice variants of mitofusin 2 shape the endoplasmic reticulum and tether it to mitochondria. Science 380, eadh9351 (2023).

    Article  PubMed  Google Scholar 

  179. Hernández-Alvarez, M. I. et al. Deficient endoplasmic reticulum-mitochondrial phosphatidylserine transfer causes liver disease. Cell 177, 881–895.e17 (2019).

    Article  PubMed  Google Scholar 

  180. Misko, A., Jiang, S., Wegorzewska, I., Milbrandt, J. & Baloh, R. H. Mitofusin 2 is necessary for transport of axonal mitochondria and interacts with the Miro/Milton complex. J. Neurosci. 30, 4232–4240 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Cipolat, S., De Brito, O. M., Dal Zilio, B. & Scorrano, L. OPA1 requires mitofusin 1 to promote mitochondrial fusion. Proc. Natl Acad. Sci. USA 101, 15927–15932 (2004). This study identifies OPA1 as a mitochondrial fusion protein in mammals, coordinating with MFN1 to promote the sequential fusion of both mitochondrial membranes.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Niemann, H. H. Crystal structure of a dynamin GTPase domain in both nucleotide-free and GDP-bound forms. EMBO J. 20, 5813–5821 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Bramkamp, M. Structure and function of bacterial dynamin-like proteins. Biol. Chem. 393, 1203–1214 (2012).

    Article  CAS  PubMed  Google Scholar 

  184. Yan, L. et al. Structural basis for GTP hydrolysis and conformational change of MFN1 in mediating membrane fusion. Nat. Struct. Mol. Biol. 25, 233–243 (2018).

    Article  CAS  PubMed  Google Scholar 

  185. Samanas, N. B., Engelhart, E. A. & Hoppins, S. Defective nucleotide-dependent assembly and membrane fusion in Mfn2 CMT2A variants improved by Bax. Life Sci. Alliance 3, e201900527 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  186. Mattie, S., Riemer, J., Wideman, J. G. & McBride, H. M. A new mitofusin topology places the redox-regulated C terminus in the mitochondrial intermembrane space. J. Cell Biol. 217, 507–515 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Rojo, M., Legros, F., Chateau, D. & Lombès, A. Membrane topology and mitochondrial targeting of mitofusins, ubiquitous mammalian homologs of the transmembrane GTPase Fzo. J. Cell Sci. 115, 1663–1674 (2002).

    Article  CAS  PubMed  Google Scholar 

  188. Koshiba, T. et al. Structural basis of mitochondrial tethering by mitofusin complexes. Science 305, 858–862 (2004).

    Article  CAS  PubMed  Google Scholar 

  189. Bian, X. et al. Structures of the atlastin GTPase provide insight into homotypic fusion of endoplasmic reticulum membranes. Proc. Natl Acad. Sci. USA 108, 3976–3981 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Byrnes, L. J. & Sondermann, H. Structural basis for the nucleotide-dependent dimerization of the large G protein atlastin-1/SPG3A. Proc. Natl Acad. Sci. USA 108, 2216–2221 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Qi, Y. et al. Structures of human mitofusin 1 provide insight into mitochondrial tethering. J. Cell Biol. 215, 621–629 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Cao, Y. L. et al. MFN1 structures reveal nucleotide-triggered dimerization critical for mitochondrial fusion. Nature 542, 372–376 (2017). Together with Qi et al. (2016), this study provides structural models for MFN-mediated mitochondrial tethering.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Low, H. H. & Löwe, J. A bacterial dynamin-like protein. Nature 444, 766–769 (2006).

    Article  CAS  PubMed  Google Scholar 

  194. Guo, Y. et al. Small molecule agonist of mitochondrial fusion repairs mitochondrial dysfunction. Nat. Chem. Biol. 19, 468–477 (2023).

    Article  CAS  PubMed  Google Scholar 

  195. Byrnes, L. J. et al. Structural basis for conformational switching and GTP loading of the large G protein atlastin. EMBO J. 32, 369–384 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Winsor, J., Hackney, D. D. & Lee, T. H. The crossover conformational shift of the GTPase atlastin provides the energy driving ER fusion. J. Cell Biol. 216, 1321–1335 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Li, Y. J. et al. Structural insights of human mitofusin-2 into mitochondrial fusion and CMT2A onset. Nat. Commun. 10, 4914 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  198. Hoppins, S. et al. The soluble form of Bax regulates mitochondrial fusion via MFN2 homotypic complexes. Mol. Cell 41, 150–160 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Brandt, T., Cavellini, L., Kühlbrandt, W. & Cohen, M. M. A mitofusin-dependent docking ring complex triggers mitochondrial fusion in vitro. eLife 5, e14618 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  200. Sardar, A., Dewangan, N., Panda, B., Bhowmick, D. & Tarafdar, P. K. Lipid and lipidation in membrane fusion. J. Membr. Biol. 255, 691–703 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Huang, X. et al. Sequences flanking the transmembrane segments facilitate mitochondrial localization and membrane fusion by mitofusin. Proc. Natl Acad. Sci. USA 114, E9863–E9872 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Daste, F. et al. The heptad repeat domain 1 of Mitofusin has membrane destabilization function in mitochondrial fusion. EMBO Rep. 19, e43637 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  203. Alexander, C. et al. OPA1, encoding a dynamin-related GTPase, is mutated in autosomal dominant optic atrophy linked to chromosome 3q28. Nat. Genet. 26, 211–215 (2000).

    Article  CAS  PubMed  Google Scholar 

  204. Delettre, C. et al. Nuclear gene OPA1, encoding a mitochondrial dynamin-related protein, is mutated in dominant optic atrophy. Nat. Genet. 26, 207–210 (2000).

    Article  CAS  PubMed  Google Scholar 

  205. Olichon, A. et al. The human dynamin-related protein OPA1 is anchored to the mitochondrial inner membrane facing the inter-membrane space. FEBS Lett. 523, 171–176 (2002).

    Article  CAS  PubMed  Google Scholar 

  206. Olichon, A. et al. Loss of OPA1 perturbates the mitochondrial inner membrane structure and integrity, leading to cytochrome c release and apoptosis. J. Biol. Chem. 278, 7743–7746 (2003).

    Article  CAS  PubMed  Google Scholar 

  207. Wong, E. D. et al. The dynamin-related GTPase, Mgm1p, is intermembrane space protein required for maintenance of fusion competent mitochondria. J. Cell Biol. 151, 341–352 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Davies, V. J. et al. Opa1 deficiency in a mouse model of autosomal dominant optic atrophy impairs mitochondrial morphology, optic nerve structure and visual function. Hum. Mol. Genet. 16, 1307–1318 (2007).

    Article  CAS  PubMed  Google Scholar 

  209. Olichon, A. et al. OPA1 alternate splicing uncouples an evolutionary conserved function in mitochondrial fusion from a vertebrate restricted function in apoptosis. Cell Death Differ. 14, 682–692 (2007).

    Article  CAS  PubMed  Google Scholar 

  210. Ishihara, N., Fujita, Y., Oka, T. & Mihara, K. Regulation of mitochondrial morphology through proteolytic cleavage of OPA1. EMBO J. 25, 2966–2977 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Baricault, L. et al. OPA1 cleavage depends on decreased mitochondrial ATP level and bivalent metals. Exp. Cell Res. 313, 3800–3808 (2007).

    Article  CAS  PubMed  Google Scholar 

  212. Merkwirth, C. et al. Prohibitins control cell proliferation and apoptosis by regulating OPA1-dependent cristae morphogenesis in mitochondria. Genes Dev. 22, 476–488 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Griparic, L., Kanazawa, T. & Van Der Bliek, A. M. Regulation of the mitochondrial dynamin-like protein Opa1 by proteolytic cleavage. J. Cell Biol. 178, 757–764 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Song, Z., Chen, H., Fiket, M., Alexander, C. & Chan, D. C. OPA1 processing controls mitochondrial fusion and is regulated by mRNA splicing, membrane potential, and Yme1L. J. Cell Biol. 178, 749–755 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Wang, R. et al. Identification of new OPA1 cleavage site reveals that short isoforms regulate mitochondrial fusion. Mol. Biol. Cell 32, 157–168 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. Anand, R. et al. The i-AAA protease YME1L and OMA1 cleave OPA1 to balance mitochondrial fusion and fission. J. Cell Biol. 204, 919–929 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  217. Wai, T. et al. Imbalanced OPA1 processing and mitochondrial fragmentation cause heart failure in mice. Science 350, 919–929 (2015).

    Article  Google Scholar 

  218. Tondera, D. et al. SLP-2 is required for stress-induced mitochondrial hyperfusion. EMBO J. 28, 1589–1600 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. Ge, Y. et al. Two forms of Opa1 cooperate to complete fusion of the mitochondrial inner-membrane. eLife 9, e50973 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  220. Meeusen, S. et al. Mitochondrial inner-membrane fusion and crista maintenance requires the dynamin-related GTPase Mgm1. Cell 127, 383–395 (2006).

    Article  CAS  PubMed  Google Scholar 

  221. Lee, H., Smith, S. B. & Yoon, Y. The short variant of the mitochondrial dynamin OPA1 maintains mitochondrial energetics and cristae structure. J. Biol. Chem. 292, 7115–7130 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  222. Glytsou, C. et al. Optic atrophy 1 is epistatic to the core MICOS component MIC60 in mitochondrial cristae shape control. Cell Rep. 17, 3024–3034 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  223. Hu, C. et al. OPA1 and MICOS regulate mitochondrial crista dynamics and formation. Cell Death Dis. 11, 940 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. Giacomello, M., Pyakurel, A., Glytsou, C. & Scorrano, L. The cell biology of mitochondrial membrane dynamics. Nat. Rev. Mol. Cell Biol. 21, 204–224 (2020).

    Article  CAS  PubMed  Google Scholar 

  225. Klecker, T. & Westermann, B. Pathways shaping the mitochondrial inner membrane. Open Biol. 11, 210238 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  226. Faelber, K. et al. Structure and assembly of the mitochondrial membrane remodelling GTPase Mgm1. Nature 571, 429–433 (2019). This study shows crystal and electron cryo-tomography structures of the OPA1 orthologue, Mgm1, from C. thermophilum.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  227. Yan, L. et al. Structural analysis of a trimeric assembly of the mitochondrial dynamin-like GTPase Mgm1. Proc. Natl Acad. Sci. USA 117, 4061–4070 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  228. Zhang, D. et al. Cryo-EM structures of S-OPA1 reveal its interactions with membrane and changes upon nucleotide binding. eLife 9, 210238 (2020).

    Article  Google Scholar 

  229. von der Malsburg, A. et al. Structural mechanism of mitochondrial membrane remodelling by human OPA1. Nature 620, 1101–1108 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  230. Nyenhuis, S. B. et al. OPA1 helical structures give perspective to mitochondrial dysfunction. Nature 620, 1109–1116 (2023). Together with von der Malsburg et al. (2023), this study provides essential structural insights into human OPA1-driven IMM fusion.

    Article  CAS  PubMed  Google Scholar 

  231. Tadato, B., Heymann, J. A. W., Song, Z., Hinshaw, J. E. & Chan, D. C. OPA1 disease alleles causing dominant optic atrophy have defects in cardiolipin-stimulated GTP hydrolysis and membrane tubulation. Hum. Mol. Genet. 19, 2113–2122 (2010).

    Article  Google Scholar 

  232. Rujiviphat, J. et al. Mitochondrial genome maintenance 1 (Mgm1) protein alters membrane topology and promotes local membrane bending. J. Mol. Biol. 427, 2599–2609 (2015).

    Article  CAS  PubMed  Google Scholar 

  233. DeVay, R. M. et al. Coassembly of Mgm1 isoforms requires cardiolipin and mediates mitochondrial inner membrane fusion. J. Cell Biol. 186, 793–803 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  234. Meglei, G. & McQuibban, G. A. The dynamin-related protein Mgm1p assembles into oligomers and hydrolyzes GTP to function in mitochondrial membrane fusion. Biochemistry 48, 1774–1784 (2009).

    Article  CAS  PubMed  Google Scholar 

  235. Ban, T. et al. Molecular basis of selective mitochondrial fusion by heterotypic action between OPA1 and cardiolipin. Nat. Cell Biol. 19, 856–863 (2017).

    Article  CAS  PubMed  Google Scholar 

  236. Del Dotto, V. et al. OPA1 isoforms in the hierarchical organization of mitochondrial functions. Cell Rep. 19, 2557–2571 (2017).

    Article  PubMed  Google Scholar 

  237. Yu, C. et al. Structural insights into G domain dimerization and pathogenic mutation of OPA1. J. Cell Biol. 219, e201907098 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  238. Chappie, J. S. et al. A pseudoatomic model of the dynamin polymer identifies a hydrolysis-dependent powerstroke. Cell 147, 209–222 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  239. Segawa, M. et al. Quantification of cristae architecture reveals time-dependent characteristics of individual mitochondria. Life Sci. Alliance 3, e201900620 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  240. Connor, O. M., Matta, S. K. & Friedman, J. R. Completion of mitochondrial division requires the intermembrane space protein Mdi1/Atg44. J. Cell Biol. 222, e202303147 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  241. Jacquemyn, J., Cascalho, A. & Goodchild, R. E. The ins and outs of endoplasmic reticulum‐controlled lipid biosynthesis. EMBO Rep. 18, 1905–1921 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  242. Abrisch, R. G., Gumbin, S. C., Wisniewski, B. T., Lackner, L. L. & Voeltz, G. K. Fission and fusion machineries converge at ER contact sites to regulate mitochondrial morphology. J. Cell Biol. 219, e20191122 (2020).

    Article  Google Scholar 

  243. Onoue, K. et al. Fis1 acts as a mitochondrial recruitment factor for TBC1D15 that is involved in regulation of mitochondrial morphology. J. Cell Sci. 126, 176–185 (2013).

    Article  CAS  PubMed  Google Scholar 

  244. Benador, I. Y. et al. Mitochondria bound to lipid droplets have unique bioenergetics, composition, and dynamics that support lipid droplet expansion. Cell Metab. 27, 869–885.e6 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  245. Han, M. et al. Spatial mapping of mitochondrial networks and bioenergetics in lung cancer. Nature 615, 712–719 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  246. Tábara, L. C. et al. MTFP1 controls mitochondrial fusion to regulate inner membrane quality control and maintain mtDNA levels. Cell 187, 3619–3637.e27 (2024).

    Article  PubMed  Google Scholar 

  247. Pilic, J. et al. Hexokinase 1 forms rings that regulate mitochondrial fission during energy stress Hexokinase 1 forms rings that regulate mitochondrial fission during energy stress. Mol. Cell 84, 2732–2746.e5 (2024).

    Article  CAS  PubMed  Google Scholar 

  248. Franco, A. et al. Correcting mitochondrial fusion by manipulating mitofusin conformations. Nature 540, 74–79 (2016). This study characterizes a pharmacological activator of mitochondrial fusion.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  249. Rocha, A. G. et al. MFN2 agonists reverse mitochondrial defects in preclinical models of Charcot-Marie-Tooth disease type 2A. Science 360, 336–341 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  250. Neuspiel, M. et al. Cargo-selected transport from the mitochondria to peroxisomes is mediated by vesicular carriers. Curr. Biol. 18, 102–108 (2008). This study proposes that mitochondrial dynamics extend beyond fission and fusion, showing the ability to form MDVs.

    Article  CAS  PubMed  Google Scholar 

  251. Gould, S. B., Garg, S. G. & Martin, W. F. Bacterial vesicle secretion and the evolutionary origin of the eukaryotic endomembrane system. Trends Microbiol. 24, 525–534 (2016).

    Article  CAS  PubMed  Google Scholar 

  252. Martijn, J., Vosseberg, J., Guy, L., Offre, P. & Ettema, T. J. G. Deep mitochondrial origin outside the sampled alphaproteobacteria. Nature 557, 101–105 (2018).

    Article  CAS  PubMed  Google Scholar 

  253. Sugiura, A., McLelland, G.-L., Fon, E. A. & McBride, H. M. A new pathway for mitochondrial quality control: mitochondrial-derived vesicles. EMBO J. 33, 2142–2156 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  254. Soubannier, V. et al. A vesicular transport pathway shuttles cargo from mitochondria to lysosomes. Curr. Biol. 22, 135–141 (2012).

    Article  CAS  PubMed  Google Scholar 

  255. Towers, C. G. et al. Mitochondrial-derived vesicles compensate for loss of LC3-mediated mitophagy. Dev. Cell 56, 2029–2042.e5 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  256. Ryan, T. A. et al. Tollip coordinates Parkin‐dependent trafficking of mitochondrial‐derived vesicles. EMBO J. 39, e102539 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  257. Matheoud, D. et al. Parkinson’s disease-related proteins PINK1 and parkin repress mitochondrial antigen presentation. Cell 166, 314–327 (2016).

    Article  CAS  PubMed  Google Scholar 

  258. Braschi, E. et al. Vps35 mediates vesicle transport between the mitochondria and peroxisomes. Curr. Biol. 20, 1310–1315 (2010).

    Article  CAS  PubMed  Google Scholar 

  259. Sugiura, A., Mattie, S., Prudent, J. & Mcbride, H. M. Newly born peroxisomes are a hybrid of mitochondrial and ER-derived pre-peroxisomes. Nature 542, 251–254 (2017).

    Article  CAS  PubMed  Google Scholar 

  260. Zecchini, V. et al. Fumarate induces vesicular release of mtDNA to drive innate immunity. Nature 615, 499–506 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  261. Todkar, K. et al. Selective packaging of mitochondrial proteins into extracellular vesicles prevents the release of mitochondrial DAMPs. Nat. Commun. 12, 1971 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  262. Wang, W. et al. Parkinson’s disease-associated mutant VPS35 causes mitochondrial dysfunction by recycling DLP1 complexes. Nat. Med. 22, 54–63 (2016).

    Article  CAS  PubMed  Google Scholar 

  263. Soubannier, V., Rippstein, P., Kaufman, B. A., Shoubridge, E. A. & McBride, H. M. Reconstitution of mitochondria derived vesicle formation demonstrates selective enrichment of oxidized cargo. PLoS ONE 7, e52830 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  264. König, T. & McBride, H. M. Mitochondrial-derived vesicles in metabolism, disease, and aging. Cell Metab. 36, 21–35 (2024).

    Article  PubMed  Google Scholar 

  265. König, T. et al. MIROs and DRP1 drive mitochondrial-derived vesicle biogenesis and promote quality control. Nat. Cell Biol. 23, 1271–1286 (2021).

    Article  PubMed  Google Scholar 

  266. Hughes, A. L., Hughes, C. E., Henderson, K. A., Yazvenko, N. & Gottschling, D. E. Selective sorting and destruction of mitochondrial membrane proteins in aged yeast. eLife 5, e13943 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  267. Schuler, M. H. et al. Mitochondrial-derived compartments facilitate cellular adaptation to amino acid stress. Mol. Cell 81, 3786–3802.e13 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  268. English, A. M. et al. ER–mitochondria contacts promote mitochondrial-derived compartment biogenesis. J. Cell Biol. 219, e202002144 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  269. Xiao, T. et al. The phospholipids cardiolipin and phosphatidylethanolamine differentially regulate MDC biogenesis. J. Cell Biol. 223, e202302069 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  270. Li, X. et al. Mitochondria shed their outer membrane in response to infection-induced stress. Science 375, eabi4343 (2022).

    Article  CAS  PubMed  Google Scholar 

  271. Pernas, L., Bean, C., Boothroyd, J. C. & Scorrano, L. Mitochondria restrict growth of the intracellular parasite Toxoplasma gondii by limiting its uptake of fatty acids. Cell Metab. 27, 886–897.e4 (2018).

    Article  CAS  PubMed  Google Scholar 

  272. Vincent, A. E., Turnbull, D. M., Eisner, V., Hajnóczky, G. & Picard, M. Mitochondrial nanotunnels. Trends Cell Biol. 27, 787–799 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  273. Huang, X. et al. Kissing and nanotunneling mediate intermitochondrial communication in the heart. Proc. Natl Acad. Sci. USA 110, 2846–2851 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  274. Lavorato, M. et al. Increased mitochondrial nanotunneling activity, induced by calcium imbalance, affects intermitochondrial matrix exchanges. Proc. Natl Acad. Sci. USA 114, E849–E858 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  275. Eisner, V. et al. Mitochondrial fusion dynamics is robust in the heart and depends on calcium oscillations and contractile activity. Proc. Natl Acad. Sci. USA 114, E859–E868 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  276. Vincent, A. E. et al. The spectrum of mitochondrial ultrastructural defects in mitochondrial myopathy. Sci. Rep. 6, 30610 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  277. Cao, Y. et al. Miro2 regulates inter-mitochondrial communication in the heart and protects against TAC-induced cardiac dysfunction. Circ. Res. 125, 728–743 (2019).

    Article  CAS  PubMed  Google Scholar 

  278. Qin, J. et al. ER-mitochondria contacts promote mtDNA nucleoids active transportation via mitochondrial dynamic tubulation. Nat. Commun. 11, 4471 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  279. Wang, C. et al. Dynamic tubulation of mitochondria drives mitochondrial network formation. Cell Res. 25, 1108–1120 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  280. Yamashita, S. et al. Mitochondrial division occurs concurrently with autophagosome formation but independently of Drp1 during mitophagy. J. Cell Biol. 215, 649–665 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  281. Fukuda, T. et al. The mitochondrial intermembrane space protein mitofissin drives mitochondrial fission required for mitophagy. Mol. Cell 83, 2045–2058.e9 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  282. Stavru, F., Bouillaud, F., Sartori, A., Ricquier, D. & Cossart, P. Listeria monocytogenes transiently alters mitochondrial dynamics during infection. Proc. Natl Acad. Sci. USA 108, 3612–3617 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  283. Staèru, F., Palmer, A. E., Wang, C., Youle, R. J. & Cossart, P. Atypical mitochondrial fission upon bacterial infection. Proc. Natl Acad. Sci. USA 110, 16003–16008 (2013).

    Article  Google Scholar 

  284. Liu, X., Weaver, D., Shirihai, O. & Hajnóczky, G. Mitochondrial kiss-and-run: interplay between mitochondrial motility and fusion-fission dynamics. EMBO J. 28, 3074–3089 (2009). This study characterizes transient mitochondrial fusion among multiple types of fusion.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  285. Tam, Z. Y., Gruber, J., Halliwell, B. & Gunawan, R. Context-dependent role of mitochondrial fusion-fission in clonal expansion of mtDNA mutations. PLoS Comput. Biol. 11, e1004183 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  286. Karbowski, M. et al. Spatial and temporal association of Bax with mitochondrial fission sites, Drp1, and Mfn2 during apoptosis. J. Cell Biol. 159, 931–938 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  287. Nguyen, T. T. & Voeltz, G. K. An ER phospholipid hydrolase drives ER-associated mitochondrial constriction for fission and fusion. eLife 11, e844279 (2022).

    Article  Google Scholar 

  288. Janer, A. et al. SLC25A46 is required for mitochondrial lipid homeostasis and cristae maintenance and is responsible for Leigh syndrome. EMBO Mol. Med. 8, 1019–1038 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  289. Schuettpelz, J., Janer, A., Antonicka, H. & Shoubridge, E. A. The role of the mitochondrial outer membrane protein SLC25A46 in mitochondrial fission and fusion. Life Sci. Alliance 6, e202301914 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  290. Yu, R., Jin, S. B., Lendahl, U., Nistér, M. & Zhao, J. Human Fis1 regulates mitochondrial dynamics through inhibition of the fusion machinery. EMBO J. 38, e99748 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  291. Murata, D. et al. Mitochondrial safeguard: a stress response that offsets extreme fusion and protects respiratory function via flickering‐induced Oma1 activation. EMBO J. 39, e105074 (2020).

    Article  CAS  PubMed  Google Scholar 

  292. Roy, M., Itoh, K., Iijima, M. & Sesaki, H. Parkin suppresses Drp1-independent mitochondrial division. Biochem. Biophys. Res. Commun. 475, 283–288 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  293. Wu, H., Carvalho, P. & Voeltz, G. K. Here, there, and everywhere: the importance of ER membrane contact sites. Science 361, eaan5835 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  294. Krebs, J. J., Hauser, H. & Carafoli, E. Asymmetric distribution of phospholipids in the inner membrane of beef heart mitochondria. J. Biol. Chem. 254, 5308–5316 (1979).

    Article  CAS  PubMed  Google Scholar 

  295. Tatsuta, T., Scharwey, M. & Langer, T. Mitochondrial lipid trafficking. Trends Cell Biol. 24, 44–52 (2014).

    Article  CAS  PubMed  Google Scholar 

  296. Acoba, M. G., Senoo, N. & Claypool, S. M. Phospholipid ebb and flow makes mitochondria go. J. Cell Biol. 219, e202003131 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  297. Frohman, M. A. Role of mitochondrial lipids in guiding fission and fusion. J. Mol. Med. 93, 263–269 (2015).

    Article  CAS  PubMed  Google Scholar 

  298. Kameoka, S., Adachi, Y., Okamoto, K., Iijima, M. & Sesaki, H. Phosphatidic acid and cardiolipin coordinate mitochondrial dynamics. Trends Cell Biol. 28, 67–76 (2018).

    Article  CAS  PubMed  Google Scholar 

  299. Schlame, M. Cardiolipin synthesis for the assembly of bacterial and mitochondrial membranes. J. Lipid Res. 49, 1607–1620 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  300. Sathappa, M. & Alder, N. N. The ionization properties of cardiolipin and its variants in model bilayers. Biochim. Biophys. Acta Biomembr. 1858, 1362–1372 (2016).

    Article  CAS  Google Scholar 

  301. Schlame, M. & Greenberg, M. L. Biosynthesis, remodeling and turnover of mitochondrial cardiolipin. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 1862, 3–7 (2017).

    Article  CAS  PubMed  Google Scholar 

  302. Elías-Wolff, F., Lindén, M., Lyubartsev, A. P. & Brandt, E. G. Curvature sensing by cardiolipin in simulated buckled membranes. Soft Matter 15, 792–802 (2019).

    Article  PubMed  Google Scholar 

  303. Ikon, N. & Ryan, R. O. Cardiolipin and mitochondrial cristae organization. Biochim. Biophys. Acta Biomembr. 1859, 1156–1163 (2017).

    Article  CAS  PubMed  Google Scholar 

  304. Cretin, E. et al. High‐throughput screening identifies suppressors of mitochondrial fragmentation in OPA1 fibroblasts. EMBO Mol. Med. 13, e13579 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  305. Zhukovsky, M. A., Filograna, A., Luini, A., Corda, D. & Valente, C. Phosphatidic acid in membrane rearrangements. FEBS Lett. 593, 2428–2451 (2019).

    Article  CAS  PubMed  Google Scholar 

  306. Kooijman, E. E., Chupin, V., de Kruijff, B. & Burger, K. N. J. Modulation of membrane curvature by phosphatidic acid and lysophosphatidic acid. Traffic 4, 162–174 (2003).

    Article  CAS  PubMed  Google Scholar 

  307. Choi, S. Y. et al. A common lipid links Mfn-mediated mitochondrial fusion and SNARE-regulated exocytosis. Nat. Cell Biol. 8, 1255–1262 (2006).

    Article  CAS  PubMed  Google Scholar 

  308. Huang, H. et al. PiRNA-associated germline nuage formation and spermatogenesis require MitoPLD profusogenic mitochondrial-surface lipid signaling. Dev. Cell 20, 376–387 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  309. Baba, T. et al. Phosphatidic acid (PA)-preferring phospholipase A1 regulates mitochondrial dynamics. J. Biol. Chem. 289, 11497–11511 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  310. Zhang, Y. et al. Mitoguardin regulates mitochondrial fusion through MitoPLD and is required for neuronal homeostasis. Mol. Cell 61, 111–124 (2016).

    Article  CAS  PubMed  Google Scholar 

  311. Bossard, C., Bresson, D., Polishchuk, R. S. & Malhotra, V. Dimeric PKD regulates membrane fission to form transport carriers at the TGN. J. Cell Biol. 179, 1123–1131 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  312. Guo, T. et al. A signal from inside the peroxisome initiates its division by promoting the remodeling of the peroxisomal membrane. J. Cell Biol. 177, 289–303 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  313. Adachi, Y. et al. Coincident phosphatidic acid interaction restrains Drp1 in mitochondrial division. Mol. Cell 63, 1034–1043 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  314. Coleman, R. Enzymes of triacylglycerol synthesis and their regulation. Prog. Lipid Res. 43, 134–176 (2004).

    Article  CAS  PubMed  Google Scholar 

  315. Lewin, T. M., Schwerbrock, N. M. J., Lee, D. P. & Coleman, R. A. Identification of a new glycerol-3-phosphate acyltransferase isoenzyme, mtGPAT2, in mitochondria. J. Biol. Chem. 279, 13488–13495 (2004).

    Article  CAS  PubMed  Google Scholar 

  316. Pellon-Maison, M., Montanaro, M. A., Coleman, R. A. & Gonzalez-Baró, M. R. Mitochondrial glycerol-3-P acyltransferase 1 is most active in outer mitochondrial membrane but not in mitochondrial associated vesicles (MAV). Biochim. Biophys. Acta Mol. Cell Biol. Lipids 1771, 830–838 (2007).

    Article  CAS  Google Scholar 

  317. Cao, J., Li, J. L., Li, D., Tobin, J. F. & Gimeno, R. E. Molecular identification of microsomal acyl-CoA:glycerol-3-phosphate acyltransferase, a key enzyme in de novo triacylglycerol synthesis. Proc. Natl Acad. Sci. USA 103, 19695–19700 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  318. Ohba, Y. et al. Mitochondria-type GPAT is required for mitochondrial fusion. EMBO J. 32, 1265–1279 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  319. Labbé, K. et al. The modified mitochondrial outer membrane carrier MTCH2 links mitochondrial fusion to lipogenesis. J. Cell Biol. 220, e202103122 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  320. Sesaki, H. & Jensen, R. E. UGO1 encodes an outer membrane protein required for mitochondrial fusion. J. Cell Biol. 152, 1123–1134 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  321. Goldman, A. et al. MTCH2 cooperates with MFN2 and lysophosphatidic acid synthesis to sustain mitochondrial fusion. EMBO Rep. 25, 45–67 (2024).

    Article  PubMed  Google Scholar 

  322. Bahat, A. et al. MTCH2-mediated mitochondrial fusion drives exit from naïve pluripotency in embryonic stem cells. Nat. Commun. 9, 5132 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  323. Vance, J. E. Phosphatidylserine and phosphatidylethanolamine in mammalian cells: two metabolically related aminophospholipids. J. Lipid Res. 49, 1377–1387 (2008).

    Article  CAS  PubMed  Google Scholar 

  324. Chan, E. Y. L. & McQuibban, G. A. Phosphatidylserine decarboxylase 1 (Psd1) promotes mitochondrial fusion by regulating the biophysical properties of the mitochondrial membrane and alternative topogenesis of mitochondrial genome maintenance protein 1 (Mgm1). J. Biol. Chem. 287, 40131–40139 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  325. Tasseva, G. et al. Phosphatidylethanolamine deficiency in mammalian mitochondria impairs oxidative phosphorylation and alters mitochondrial morphology. J. Biol. Chem. 288, 4158–4173 (2013).

    Article  CAS  PubMed  Google Scholar 

  326. Pemberton, J. G. et al. Defining the subcellular distribution and metabolic channeling of phosphatidylinositol. J. Cell Biol. 219, e201906130 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  327. Rosivatz, E. & Woscholski, R. Removal or masking of phosphatidylinositol(4,5)bisphosphate from the outer mitochondrial membrane causes mitochondrial fragmentation. Cell. Signal. 23, 478–486 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  328. Nemoto, Y. Recruitment of an alternatively spliced form of synaptojanin 2 to mitochondria by the interaction with the PDZ domain of a mitochondrial outer membrane protein. EMBO J. 18, 2991–3006 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the Medical Research Council (MC_UU_00028/5) and Biotechnology and Biological Sciences Research Council (BBSRC) (BB/W008467/1). The original, author-provided figures were prepared with the paid version of BioRender and re-drawn by the journal.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Julien Prudent.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Molecular Cell Biology thanks Junjie Hu, Jason Mears and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Glossary

Actin nucleation

The process by which actin monomers are transformed into actin filaments. The process requires the action of different protein scaffold complexes, including the actin-related protein 2 (ARP2)–ARP3 complex and its activator, the Wiskott–Aldrich syndrome protein and Scar homologue (WASH) complex, which drive actin branching.

Apoptosis

A programmed cell death process essential for the removal of damaged cells during development and disease. It can be activated by the cytosolic leakage of mitochondrial damage-associated molecular patterns (DAMPs), ultimately leading to caspase activation and the degradation of cellular components.

Autophagy

A highly conserved intracellular process in eukaryotes that mediates the bulk degradation and recycling of cytoplasmatic materials by delivering them into lysosomes.

Chromobodies

Engineered small functional antibodies fused to a fluorescent protein, designed to recognize specific intracellular targets and allow for the analysis of target dynamics by microscopy.

Endoplasmic reticulum

(ER). The largest organelle in the cell, which serves multiple functions including protein and lipid synthesis. The ER can be classified as rough ER, characterized by the presence of ribosomes, and smooth ER, devoid of ribosomes. ER is formed by three major subdomains: nuclear envelope (NE), the juxtanuclear area (characterized by the presence of expanded ER sheets) and the peripheral area, enriched in tubular structures.

FtsZ

A highly conserved GTPase found in most of bacterial groups and considered the major cytoskeletal prokaryotic protein. FtsZ assembles in ring-like structures at the division site to drive bacterial cytokinesis.

Glycolytic conditions

A metabolic state wherein glycolysis is the main pathway for energy production, which involves a series of enzymatic reactions that break down glucose into pyruvate, resulting in the generation of ATP and the production of NADH.

Helical bundle

Protein folded structure formed by the packaging of multiple α-helices, which create a hydrophobic core in the centre.

Hydrogenosomes

Membrane-bound organelles present in some anaerobic microorganisms thought to have evolved from protomitochondria to generate molecular hydrogen and ATP.

Krebs cycle

Also known as citric acid cycle, it is an amphibolic pathway taking place in the mitochondrial matrix wherein one acetyl-coA molecule gives rise to two molecules of CO2, resulting in the generation of one molecule of GTP, three molecules of reduced form of NADH and one molecule of reduced FADH2.

Large GTPases

Like other GTPases, large GTPases hydrolyse GTP into GDP (guanosine diphosphate) and inorganic phosphate. Compared to small GTPases, large GTPases have higher intrinsic GTPase activity, which is stimulated by the nucleotide-dependent dimerization of the G domain.

Membrane contact sites

Regions wherein the membranes of two or more organelles are closely apposed (10–30-nm distance) but do not fuse with each other, creating a signalling platform that allows exchange and communication between organelles.

Membrane hemifusion

A partial fusion state wherein the two outer, but not inner, membrane leaflets undergo a reversible fusion event.

Mitochondrial DNA

(mtDNA). The human mitochondrial genome is a 16.6-kb circle of double-stranded DNA that harbours 37 genes encoding two ribosomal RNAs (rRNAs), 22 tRNAs and 13 polypeptides, essential for oxidative phosphorylation (OXPHOS).

Mitophagy

The selective degradation of small mitochondria within autophagosomal structures. This process is primarily mediated by the ubiquitination of damaged mitochondria or by the recruitment of the autophagic machinery through different receptors on the mitochondrial membranes.

Nucleoid

DNA–protein complex in the mitochondrial matrix that package mtDNA into compacted structures. Every nucleoid contains 1.4 mtDNA molecules and the degree of compaction regulates mtDNA accessibility and expression.

Power strokes

Mechanical processes fuelled by GTP hydrolysis, which involves conformational re-arrangements of the helical rings formed by dynamin superfamily proteins, ultimately leading to membrane constriction.

Stalk domain

In structural biology, an aminoacidic region that connects two distant regions of the protein.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tábara, LC., Segawa, M. & Prudent, J. Molecular mechanisms of mitochondrial dynamics. Nat Rev Mol Cell Biol (2024). https://doi.org/10.1038/s41580-024-00785-1

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41580-024-00785-1

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing