[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Meaningful measures of human society in the twenty-first century

Abstract

Science rarely proceeds beyond what scientists can observe and measure, and sometimes what can be observed proceeds far ahead of scientific understanding. The twenty-first century offers such a moment in the study of human societies. A vastly larger share of behaviours is observed today than would have been imaginable at the close of the twentieth century. Our interpersonal communication, our movements and many of our everyday actions, are all potentially accessible for scientific research; sometimes through purposive instrumentation for scientific objectives (for example, satellite imagery), but far more often these objectives are, literally, an afterthought (for example, Twitter data streams). Here we evaluate the potential of this massive instrumentation—the creation of techniques for the structured representation and quantification—of human behaviour through the lens of scientific measurement and its principles. In particular, we focus on the question of how we extract scientific meaning from data that often were not created for such purposes. These data present conceptual, computational and ethical challenges that require a rejuvenation of our scientific theories to keep up with the rapidly changing social realities and our capacities to capture them. We require, in other words, new approaches to manage, use and analyse data.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Measurement in social science.

Similar content being viewed by others

References

  1. Pechenick, E. A., Danforth, C. M. & Dodds, P. S. Characterizing the Google Books Corpus: strong limits to inferences of socio-cultural and linguistic evolution. PLoS ONE 10, e0137041 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Dietrich, B. J., Hayes, M. & O’Brien, D. Z. Pitch perfect: vocal pitch and the emotional intensity of congressional speech. Am. Polit. Sci. Rev. 113, 941–962 (2019).

    Article  Google Scholar 

  3. Dietrich, B. J. Using motion detection to measure social polarization in the U.S. House of Representatives. Polit. Anal. 29, 250–259 (2021).

    Article  Google Scholar 

  4. Michel, J.-B. et al. Quantitative analysis of culture using millions of digitized books. Science 331, 176–182 (2011). In this study, 4% of all books that have been published were digitized and used to examine changes in phonology, word use and the adoption of new technologies over long periods of time.

    Article  CAS  PubMed  ADS  Google Scholar 

  5. Merton, R. K. in Social Theory and Social Structure 39–72 (Free Press, 1968).

  6. Watts, D. J. Everything Is Obvious: Once You Know the Answer (Crown Business, 2011).

  7. Simon, H. A. Bandwagon and underdog effects and the possibility of election predictions. Public Opin. Q. 18, 245–253 (1954).

    Article  Google Scholar 

  8. Mutz, D. C. Impersonal Influence in American Politics (Cambridge Univ. Press, 1998).

  9. Westwood, S. J., Messing, S. & Lelkes, Y. Projecting confidence: how the probabilistic horse race confuses and demobilizes the public. J. Polit. 82, 1530–1544 (2020).

    Article  Google Scholar 

  10. O’Neil, C. Weapons of Math Destruction: How Big Data Increases Inequality and Threatens Democracy (Crown, 2016).

  11. Obermeyer, Z., Powers, B., Vogeli, C. & Mullainathan, S. Dissecting racial bias in an algorithm used to manage the health of populations. Science 366, 447–453 (2019).

    Article  CAS  PubMed  ADS  Google Scholar 

  12. Landsberger, H. A. Hawthorne Revisited (The New York State School of Industrial and Labor Relations, 1958).

  13. Mayo, E. The Human Problems of an Industrial Civilization (Routledge, 2004).

  14. Lazer, D., Kennedy, R., King, G. & Vespignani, A. The parable of Google Flu: traps in big data analysis. Science 343, 1203–1205 (2014). This paper shows that the increasing over-prediction of flu prevalence of Google Flu Trends was largely the result of changes to Google’s search algorithm, which altered the terms that people used to find flu-related information.

    Article  CAS  PubMed  ADS  Google Scholar 

  15. Brunton, F. & Nissenbaum, H. Obfuscation: A User’s Guide for Privacy and Protest (MIT Press, 2015).

  16. Davis, D. W. The direction of race of interviewer effects among African-Americans: donning the Black mask. Am. J. Pol. Sci. 41, 309–322 (1997).

    Article  Google Scholar 

  17. American National Election Studies. 1978 Time Series Study https://electionstudies.org/wp-content/uploads/2018/03/anes_timeseries_1978_qnaire_post.pdf (1978).

  18. Salganik, M. J. Bit by Bit: Social Research in the Digital Age (Princeton Univ. Press, 2017).

  19. Patty, J. W. & Penn, E. M. Analyzing big data: social choice and measurement. PS Polit. Sci. Polit. 48, 95–101 (2015).

    Article  Google Scholar 

  20. Kraemer, M. U. G. et al. The effect of human mobility and control measures on the COVID-19 epidemic in China. Science 368, 493–497 (2020).

    Article  CAS  PubMed  ADS  Google Scholar 

  21. Jia, J. S. et al. Population flow drives spatio-temporal distribution of COVID-19 in China. Nature 582, 389–394 (2020).

    Article  CAS  PubMed  ADS  Google Scholar 

  22. Badr, H. S. et al. Association between mobility patterns and COVID-19 transmission in the USA: a mathematical modelling study. Lancet Infect. Dis. 20, 1247–1254 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Munger, K. The limited value of non-replicable field experiments in contexts with low temporal validity. Soc. Media Soc. 5, 1–4 (2019).

    Google Scholar 

  24. Deaton, A. & Cartwright, N. Understanding and misunderstanding randomized controlled trials. Soc. Sci. Med. 210, 2–21 (2018).

    Article  PubMed  Google Scholar 

  25. Vraga, E. K., Bode, L., Smithson, A.-B. & Troller-Renfree, S. Accidentally attentive: comparing visual, close-ended, and open-ended measures of attention on social media. Comput. Human Behav. 99, 235–244 (2019).

    Article  Google Scholar 

  26. Guess, A., Munger, K., Nagler, J. & Tucker, J. How accurate are survey responses on social media and politics? Polit. Commun. 36, 241–258 (2019).

    Article  Google Scholar 

  27. Aleta, A. et al. Modelling the impact of testing, contact tracing and household quarantine on second waves of COVID-19. Nat. Hum. Behav. 4, 964–971 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Echeverría, J. et al. LOBO: evaluation of generalization deficiencies in Twitter bot classifiers. In Proc. 34th Annual Computer Security Applications Conference 137–146 (ACM, 2018).

  29. Ferrara, E., Varol, O., Davis, C., Menczer, F. & Flammini, A. The rise of social bots. Commun. ACM 59, 96–104 (2016).

    Article  Google Scholar 

  30. Hughes, A. G. et al. Using administrative records and survey data to construct samples of Tweeters and Tweets. Public Opin. Q. https://doi.org/10.1093/poq/nfab020 (2021).

  31. Napoli, P. M. Audience Evolution: New Technologies and the Transformation of Media Audiences (Columbia Univ. Press, 2011).

  32. Yang, T., Majó-Vázquez, S., Nielsen, R. K. & González-Bailón, S. Exposure to news grows less fragmented with an increase in mobile access. Proc. Natl Acad. Sci. USA 117, 28678–28683 (2020). This study tracked the news consumption of users across mobile and desktop devices and found that most individuals do not self-sort their news consumption by partisanship but, instead, consume news from a diversity of sources including partisan and nonpartisan ones.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Haythornthwaite, C. Exploring multiplexity: social network structures in a computer-supported distance learning class. Inf. Soc. 17, 211–226 (2001).

    Article  Google Scholar 

  34. Campbell, K. E. & Lee, B. A. Name generators in surveys of personal networks. Soc. Netw. 13, 203–221 (1991).

    Article  Google Scholar 

  35. Wagner, C. Measuring algorithmically infused societies. Nature https://doi.org/10.1038/s41586-021-03666-1 (2021).

  36. Healy, K. The performativity of networks. Eur. J. Sociol. 56, 175–205 (2015).

    Article  Google Scholar 

  37. Rahwan, I. et al. Machine behaviour. Nature 568, 477–486 (2019).

    Article  CAS  PubMed  ADS  Google Scholar 

  38. Neuendorf, K. A. The Content Analysis Guidebook (Sage, 2017).

  39. Davidov, D., Tsur, O. & Rappoport, A. Semi-supervised recognition of sarcasm in Twitter and Amazon. In Proc. 14th Conference on Computational Natural Language Learning 107–116 (Association for Computational Linguistics, 2010).

  40. Groves, R. M. Nonresponse rates and nonresponse bias in household surveys. Public Opin. Q. 70, 646–675 (2006).

    Article  Google Scholar 

  41. Hargittai, E. Potential biases in big data: omitted voices on social media. Soc. Sci. Comput. Rev. 38, 10–24 (2020). Using survey data, this study finds that younger, wealthier and more technically skilled people tend to use social media and that there were substantial gender and education differences in which platforms people used.

    Article  Google Scholar 

  42. Lazer, D. & Radford, J. Data ex machina: introduction to big data. Annu. Rev. Sociol. 43, 19–39 (2017).

    Article  Google Scholar 

  43. Correa, T. & Valenzuela, S. A trend study in the stratification of social media use among urban youth: Chile 2009–2019. J. Quant. Descr. Digit. Media 1, https://doi.org/10.51685/jqd.2021.009 (2021).

  44. Mellon, J. & Prosser, C. Twitter and Facebook are not representative of the general population: political attitudes and demographics of British social media users. Res. Polit. 4, 1–9 (2017).

    Google Scholar 

  45. Beisch, N. & Schäfer, C. Internetnutzung mit großer Dynamik: Medien, Kommunikation, Social Media. AS&S https://www.ard-werbung.de/media-perspektiven/fachzeitschrift/2020/detailseite-2020/internetnutzung-mit-grosser-dynamik-medien-kommunikation-social-media/ (2020).

  46. Hargittai, E. & Litt, E. The Tweet smell of celebrity success: explaining variation in Twitter adoption among a diverse group of young adults. New Media Soc. 13, 824–842 (2011).

    Article  Google Scholar 

  47. Henrich, J., Heine, S. J. & Norenzayan, A. Most people are not WEIRD. Nature 466, 29 (2010).

    Article  CAS  PubMed  ADS  Google Scholar 

  48. Wang, W., Rothschild, D., Goel, S. & Gelman, A. Forecasting elections with non-representative polls. Int. J. Forecast. 31, 980–991 (2015).

    Article  Google Scholar 

  49. Grinberg, N., Joseph, K., Friedland, L., Swire-Thompson, B. & Lazer, D. Fake news on Twitter during the 2016 U.S. presidential election. Science 363, 374–378 (2019).

    Article  CAS  PubMed  ADS  Google Scholar 

  50. Bakshy, E., Messing, S. & Adamic, L. A. Exposure to ideologically diverse news and opinion on Facebook. Science 348, 1130–1132 (2015).

    Article  MathSciNet  CAS  PubMed  MATH  ADS  Google Scholar 

  51. Meng, X.-L. Statistical paradises and paradoxes in big data (I): law of large populations, big data paradox, and the 2016 US presidential election. Ann. Appl. Stat. 12, 685–726 (2018).

    Article  MathSciNet  MATH  Google Scholar 

  52. Hargittai, E., Füchslin, T. & Schäfer, M. S. How do young adults engage with science and research on social media? Some preliminary findings and an agenda for future research. Soc. Media Soc. 4, 1–10 (2018).

    Google Scholar 

  53. Blumenstock, J. Don’t forget people in the use of big data for development. Nature 561, 170–172 (2018).

    Article  CAS  PubMed  ADS  Google Scholar 

  54. Battle-Baptiste, W. & Rusert, B. (eds) W. E. B. Du Bois’s Data Portraits: Visualizing Black America (Princeton Architectural Press, 2018).

  55. Siegel, A. A. et al. Trumping hate on Twitter? Online hate speech in the 2016 US election campaign and its aftermath. Quart. J. Polit. Sci. 16, 71–104 (2021).

    Article  Google Scholar 

  56. Allen, J., Howland, B., Mobius, M., Rothschild, D. & Watts, D. J. Evaluating the fake news problem at the scale of the information ecosystem. Sci. Adv. 6, eaay3539 (2020).

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  57. Foucault Welles, B. On minorities and outliers: the case for making big data small. Big Data Soc. 1, 1–2 (2014).

    Google Scholar 

  58. Newman, M. E. J. Power laws, Pareto distributions and Zipf’s law. Contemp. Phys. 46, 323–351 (2005).

    Article  ADS  Google Scholar 

  59. González-Bailón, S. Decoding the Social World: Data Science and the Unintended Consequences of Communication (MIT Press, 2017).

  60. Stopczynski, A. et al. Measuring large-scale social networks with high resolution. PLoS ONE 9, e95978 (2014).

    Article  PubMed  PubMed Central  ADS  CAS  Google Scholar 

  61. Lazer, D. Studying human attention on the Internet. Proc. Natl Acad. Sci. USA 117, 21–22 (2020).

    Article  CAS  PubMed  Google Scholar 

  62. Aral, S. & Eckles, D. Protecting elections from social media manipulation. Science 365, 858–861 (2019).

    Article  CAS  PubMed  ADS  Google Scholar 

  63. Puschmann, C. & Burgess, J. The politics of Twitter data. HIIG Discussion Paper Series No. 2013-01 http://www.ssrn.com/abstract=2206225 (2013).

  64. Chen, W. & Quan-Haase, A. Big data ethics and politics: toward new understandings. Soc. Sci. Comput. Rev. 38, 3–9 (2020).

    Article  Google Scholar 

  65. Breuer, J., Bishop, L. & Kinder-Kurlanda, K. The practical and ethical challenges in acquiring and sharing digital trace data: negotiating public–private partnerships. New Media Soc. 22, 2058–2080 (2020).

    Article  Google Scholar 

  66. Zook, M. et al. Ten simple rules for responsible big data research. PLOS Comput. Biol. 13, e1005399 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Greenberg, A. An absurdly basic bug let anyone grab all of parler’s data. Wired (12 January 2021).

  68. Valentino-DeVries, J., Singer, N., Keller, M. H. & Krolik, A. your apps know where you were last night, and they’re not keeping it secret. The New York Times https://www.nytimes.com/interactive/2018/12/10/business/location-data-privacy-apps.html (10 December 2021).

  69. Sweeney, L. Simple demographics often identify people uniquely. Privacy Working Paper 3 https://dataprivacylab.org/projects/identifiability/paper1.pdf (Carnegie Mellon University, 2000). Using census data, this paper shows that 87% of the US population could be uniquely identified by date of birth, postal code and gender; demonstrating the ease with which study respondents can be re-identified from ostensibly anonymous data.

  70. Wood, A. et al. Differential privacy: a primer for a non-technical audience. Vanderbilt J. Entertain. Technol. Law 21, 209–276 (2019).

    Google Scholar 

  71. Dwork, C. & Roth, A. The algorithmic foundations of differential privacy. Found. Trends Theor. Comput. Sci. 9, 211–407 (2013).

    Article  MathSciNet  MATH  Google Scholar 

  72. King, G. & Persily, N. A new model for industry–academic partnerships. PS Polit. Sci. Polit. 53, 703–709 (2020).

    Article  Google Scholar 

  73. Bruckman, A., Luther, K. & Fiesler, C. in Digital Research Confidential: The Secrets of Studying Behavior Online (eds Hargittai, E. & Sandvig, C.) 243–258 (MIT Press, 2015).

  74. Marwick, A. E. & boyd, d. Networked privacy: how teenagers negotiate context in social media. New Media Soc. 16, 1051–1067 (2014).

    Article  Google Scholar 

  75. Bieber, F. R., Brenner, C. H. & Lazer, D. Finding criminals through DNA of their relatives. Science 312, 1315–1316 (2006).

    Article  CAS  PubMed  Google Scholar 

  76. Zheleva, E. & Getoor, L. To join or not to join: the illusion of privacy in social networks with mixed public and private user profiles. In Proc. 18th International Conference on World Wide Web 531–540 (2009).

  77. Miller, G. As U.S. election nears, researchers are following the trail of fake news. Science (26 October 2020).

  78. Merton, R. K. The self-fulfilling prophecy. Antioch Rev. 8,193–210 (1948).

Download references

Acknowledgements

D.L. acknowledges support from the William & Flora Hewlett Foundation. E.H. acknowledges support from the Alfred P. Sloan Foundation.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the concepts, writing and/or revisions of the manuscript.

Corresponding author

Correspondence to David Lazer.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature thanks Paramveer Dhillon and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lazer, D., Hargittai, E., Freelon, D. et al. Meaningful measures of human society in the twenty-first century. Nature 595, 189–196 (2021). https://doi.org/10.1038/s41586-021-03660-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41586-021-03660-7

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing