[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Trends in peptide drug discovery

Abstract

Since the introduction of insulin almost a century ago, more than 80 peptide drugs have reached the market for a wide range of diseases, including diabetes, cancer, osteoporosis, multiple sclerosis, HIV infection and chronic pain. In this Perspective, we summarize key trends in peptide drug discovery and development, covering the early efforts focused on human hormones, elegant medicinal chemistry and rational design strategies, peptide drugs derived from nature, and major breakthroughs in molecular biology and peptide chemistry that continue to advance the field. We emphasize lessons from earlier approaches that are still relevant today as well as emerging strategies such as integrated venomics and peptide-display libraries that create new avenues for peptide drug discovery. We also discuss the pharmaceutical landscape in which peptide drugs could be particularly valuable and analyse the challenges that need to be addressed for them to reach their full potential.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Historical timeline of key milestones, developments and drug approvals in the peptide therapeutics field.
Fig. 2: The peptide drug market.
Fig. 3: Selected examples of therapies based on peptide hormones.
Fig. 4: Selected examples of therapies based on natural product peptides.
Fig. 5: Peptide drug discovery strategies.
Fig. 6: Medicinal chemistry strategies for peptide drugs.

Similar content being viewed by others

References

  1. Merrifield, R. B. Solid phase peptide synthesis. I. The synthesis of a tetrapeptide. J. Am. Chem. Soc. 85, 2149–2154 (1963).

    Article  CAS  Google Scholar 

  2. Reichert, J. Development trends for peptide therapeutics (Peptide Therapeutics Foundation, 2010).

  3. Fosgerau, K. & Hoffmann, T. Peptide therapeutics: current status and future directions. Drug Discov. Today 20, 122–128 (2014).

    Article  PubMed  Google Scholar 

  4. Lau, J. L. & Dunn, M. K. Therapeutic peptides: historical perspectives, current development trends, and future directions. Bioorg. Med. Chem. 26, 2700–2707 (2018).

    Article  CAS  PubMed  Google Scholar 

  5. Matchar, D. B. et al. Systematic review: comparative effectiveness of angiotensin-converting enzyme inhibitors and angiotensin II receptor blockers for treating essential hypertension. Ann. Intern. Med. 148, 16–29 (2008).

    Article  PubMed  Google Scholar 

  6. Izzo, J. L. Jr. & Weir, M. R. Angiotensin-converting enzyme inhibitors. J. Clin. Hypertens. 13, 667–675 (2011).

    Article  CAS  Google Scholar 

  7. Regulska, K., Stanisz, B., Regulski, M. & Murias, M. How to design a potent, specific, and stable angiotensin-converting enzyme inhibitor. Drug Discov. Today 19, 1731–1743 (2014).

    Article  CAS  PubMed  Google Scholar 

  8. Acharya, K. R., Sturrock, E. D., Rirodan, J. F. & Ehlers, M. R. W. ACE revisited: a new target for structure-based drug design. Nat. Rev. Drug Discov. 2, 891–902 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Regulski, M. et al. Chemistry and pharmacology of angiotensin-converting enzyme inhibitors. Curr. Pharm. Des. 21, 1764–1775 (2015).

    Article  CAS  PubMed  Google Scholar 

  10. Luther, A., Bisang, C. & Obrecht, D. Advances in macrocyclic peptide-based antibiotics. Bioorg. Med. Chem. 26, 2850–2858 (2018).

    Article  CAS  PubMed  Google Scholar 

  11. Brown, E. D. & Wright, G. D. Antibacterial drug discovery in the resistance era. Nature 529, 336–343 (2016).

    Article  CAS  PubMed  Google Scholar 

  12. Infoholic Research LLP. Global Human Insulin Market 2018–2024. Research and Markets, ID: 4470733 (2018).

  13. Nestor, J. J. The medicinal chemistry of peptides. Curr. Med. Chem. 16, 4399–4418 (2009).

    Article  CAS  PubMed  Google Scholar 

  14. Adessi, C. & Soto, C. Converting a peptide into a drug: strategies to improve stability and bioavailability. Curr. Med. Chem. 9, 963–978 (2002).

    Article  CAS  PubMed  Google Scholar 

  15. Gentilucci, L., De Marco, R. & Cerisoli, L. Chemical modifications designed to improve peptide stability: incorporation of non-natural amino acids, pseudo-peptide bonds, and cyclization. Curr. Pharm. Des. 16, 3185–3203 (2010).

    Article  CAS  PubMed  Google Scholar 

  16. Jost, K., Lebl, M. & Brtnik, F. CRC Handbook of Neurohypophyseal Hormone Analogs. Volumes I & II (eds Jost, K., Lebl, M. & Brtnik, F.). (CRC Press, 1987).

  17. Zaoral, M., Kolc, J. & Sorm, F. Amino acids and peptides. LXXI. Synthesis of 1-deamino-8-D-gamma-aminobutyrine vasopressin, 1-deamino-8-D-lysine vasopressin, and 1-deamino-8-D-arginine vasopressin. Collect. Czech. Chem. Commun. 32, 1250–1257 (1967).

    Article  CAS  Google Scholar 

  18. Dimson, S. B. Desmopressin as a treatment for enuresis. Lancet 1, 1260 (1977).

    Article  CAS  PubMed  Google Scholar 

  19. Melin, P., Trojnar, J., Johansson, B., Vilhardt, H. & Aakerlund, M. Synthetic antagonists of the myometrial response to vasopressin and oxytocin. J. Endocrinol. 111, 125–131 (1986).

    Article  CAS  PubMed  Google Scholar 

  20. Du Vigneaud, V., Winestock, G., Murti, V. V., Hope, D. B. & Kimbrough, R. D. Jr. Synthesis of 1-beta-mercantopropionic acid oxytocin (desamino-oxytocin), a highly potent analogue of oxytocin. J. Biol. Chem. 235, PC64–PC66 (1960).

    Article  Google Scholar 

  21. Hope, D. B., Murti, V. V. S. & du Vigneaud, V. A highly potent analog of oxytocin, deaminooxytocin. J. Biol. Chem. 237, 1563–1566 (1962).

    Article  CAS  PubMed  Google Scholar 

  22. Manning, M., Balaspiri, L., Acosta, M. & Sawyer, W. H. Solid phase synthesis of [1-deamino,4-valine]-8-D-arginine-vasopressin (DVDAVP), a highly potent and specific antidiuretic agent possessing protracted effects. J. Med. Chem. 16, 975–978 (1973).

    Article  CAS  PubMed  Google Scholar 

  23. Kyncl, J. & Rudinger, J. Excretion of antidiuretic activity in the urine of cats and rats after administration of the synthetic hormonogen, Nα-glycyl-glycyl-glycyl-[8-lysine]-vasopressin (triglycylvasopressin). J. Endocrinol. 48, 157–165 (1970).

    Article  CAS  PubMed  Google Scholar 

  24. Kruszynski, M. et al. [1-(β-mercapto-β,β-cyclopentamethylenepropionic acid),2-(O-methyl)tyrosine]arginine-vasopressin and [1-(β-mercapto-β,β-cyclopentamethylenepropionic acid)]arginine-vasopressin, two highly potent antagonists of the vasopressor response to arginine-vasopressin. J. Med. Chem. 23, 364–368 (1980).

    Article  CAS  PubMed  Google Scholar 

  25. Meraldi, J. P., Hruby, V. J. & Brewster, A. I. R. Relative conformational rigidity in oxytocin and [1-penicillamine]oxytocin: a proposal for the relation of conformational flexibility to peptide hormone agonism and antagonism. Proc. Natl Acad. Sci. USA 74, 1373–1377 (1977).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Walter, R. & du Vigneaud, V. 1-Deamino-1,6-L-selenocystineoxytocin; a highly potent isolog of 1-deaminooxytocin. J. Am. Chem. Soc. 88, 1331–1332 (1966).

    Article  CAS  Google Scholar 

  27. Walter, R. & du Vigneaud, V. 6-Hemi-L-selenocystine-oxytocin and 1-deamino-6-hemi-L-selenocystine-oxytocin, highly potent isologs of oxytocin and 1-deamino-oxytocin. J. Am. Chem. Soc. 87, 4192–4193 (1965).

    Article  CAS  PubMed  Google Scholar 

  28. Yamanaka, T. et al. Crystalline deamino-dicarba-oxytocin. Preparation and some pharmacological properties. Mol. Pharmacol. 6, 474–480 (1970).

    CAS  PubMed  Google Scholar 

  29. Sweeney, G. et al. Pharmacokinetics of carbetocin, a long-acting oxytocin analog, in nonpregnant women. Curr. Ther. Res. 47, 528–540 (1990).

    CAS  Google Scholar 

  30. Manning, M. et al. Oxytocin and vasopressin agonists and antagonists as research tools and potential therapeutics. J. Neuroendocrinol. 24, 609–628 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Manning, M. et al. Peptide and non-peptide agonists and antagonists for the vasopressin and oxytocin V1a, V1b, V2 and OT receptors: research tools and potential therapeutic agents. Prog. Brain Res. 170, 473–512 (2008).

    Article  CAS  PubMed  Google Scholar 

  32. Ling, N., Burgus, R., Rivier, J., Vale, W. & Brazeau, P. Use of mass spectrometry in deducing the sequence of somatostatin, a hypothalamic polypeptide that inhibits the secretion of growth hormone. Biochem. Biophys. Res. Commun. 50, 127–133 (1973).

    Article  CAS  PubMed  Google Scholar 

  33. Theodoropoulou, M. & Stalla, G. K. Somatostatin receptors: from signaling to clinical practice. Front. Neuroendocrinol. 34, 228–252 (2013).

    Article  CAS  PubMed  Google Scholar 

  34. Biron, E. et al. Improving oral bioavailability of peptides by multiple N-methylation: somatostatin analogues. Angew. Chem. Int. Ed. 47, 2595–2599 (2008).

    Article  CAS  Google Scholar 

  35. Janecka, A., Zubrzycka, M. & Janecki, T. Somatostatin analogs. J. Pept. Res. 58, 91–107 (2001).

    Article  CAS  PubMed  Google Scholar 

  36. Vale, W., Brown, M., Rivier, C., Perrin, M. & Rivier, J. Development and applications of analogs of LRF and somatostatin. in Brain Peptides: A New Endocrinology, 71–88 (Elsevier/North-Holland Biomedical Press, 1979).

  37. Susini, C. & Buscail, L. Rationale for the use of somatostatin analogs as antitumor agents. Ann. Oncol. 17, 1733–1742 (2006).

    Article  CAS  PubMed  Google Scholar 

  38. De Jong, M., Breeman, W. A. P., Kwekkeboom, D. J., Valkema, R. & Krenning, E. P. Tumor imaging and therapy using radiolabeled somatostatin analogues. Acc. Chem. Res. 42, 873–880 (2009).

    Article  PubMed  Google Scholar 

  39. Kwekkeboom, D. J. et al. [177Lu-DOTA0Tyr3]octreotate: comparison with [111In-DTPA0]octreotide in patients. Eur. J. Nucl. Med. 28, 1319–1325 (2001).

    Article  CAS  PubMed  Google Scholar 

  40. Brabander, T. et al. Long-term efficacy, survival, and safety of [177Lu-DOTA0,Tyr3]octreotate in patients with gastroenteropancreatic and bronchial neuroendocrine tumors. Clin. Cancer Res. 23, 4617–4624 (2017).

    Article  CAS  PubMed  Google Scholar 

  41. Strosberg, J. et al. Phase 3 trial of 177Lu-Dotatate for midgut neuroendocrine tumors. N. Engl. J. Med. 376, 125–135 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Millar, R. P. & Newton, C. L. Current and future applications of GnRH, kisspeptin and neurokinin B analogues. Nat. Rev. Endocrinol. 9, 451–466 (2013).

    Article  CAS  PubMed  Google Scholar 

  43. Tan, O. & Bukulmez, O. Biochemistry, molecular biology and cell biology of gonadotropin-releasing hormone antagonists. Curr. Opin. Obstet. Gynecol. 23, 238–244 (2011).

    Article  PubMed  Google Scholar 

  44. Mitragotri, S., Burke, P. A. & Langer, R. Overcoming the challenges in administering biopharmaceuticals: formulation and delivery strategies. Nat. Rev. Drug Discov. 13, 655–672 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Zhang, J., Desale, S. S. & Bronich, T. K. Polymer-based vehicles for therapeutic peptide delivery. Ther. Deliv. 6, 1279–1296 (2015).

    Article  CAS  PubMed  Google Scholar 

  46. Wang, Y., Qu, W. & Choi, S. H. FDA’s regulatory science program for generic PLA/PLGA-based drug products. Am. Pharm. Rev. 20, 52–55 (2017).

    CAS  Google Scholar 

  47. Itakura, K. et al. Expression in Escherichia coli of a chemically synthesized gene for the hormone somatostatin. Science 198, 1056–1063 (1977).

    Article  CAS  PubMed  Google Scholar 

  48. Johnson, I. S. Human insulin from recombinant DNA technology. Science 219, 632–637 (1983).

    Article  CAS  PubMed  Google Scholar 

  49. Zaykov, A. N., Mayer, J. P. & DiMarchi, R. D. Pursuit of a perfect insulin. Nat. Rev. Drug Discov. 15, 425–439 (2016).

    Article  CAS  PubMed  Google Scholar 

  50. Goeddel, D. V. et al. Expression in Escherichia coli of chemically synthesized genes for human insulin. Proc. Natl Acad. Sci. USA 76, 106–110 (1979).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Hirsch, I. B. Insulin analogues. N. Engl. J. Med. 352, 174–183 (2005).

    Article  CAS  PubMed  Google Scholar 

  52. Inzerillo, A. M., Zaidi, M. & Huang, C. L. H. Calcitonin: physiological actions and clinical applications. J. Pediatr. Endocrinol. Metab. 17, 931–940 (2004).

    Article  CAS  PubMed  Google Scholar 

  53. Copp, D. H. & Cheney, B. Calcitonin-a hormone from the parathyroid which lowers the calcium level of the blood. Nature 193, 381–382 (1962).

    Article  CAS  PubMed  Google Scholar 

  54. Copp, D. H. & Cameron, E. C. Demonstration of a hypocalcemic factor (calcitonin) in commercial parathyroid extract. Science 134, 2038 (1961).

    Article  CAS  PubMed  Google Scholar 

  55. Collip, J. B. The extraction of a parathyroid hormone which will prevent or control parathyroid tetany and which regulates the level of blood calcium. J. Biol. Chem. 63, 395–438 (1925).

    Article  CAS  Google Scholar 

  56. Kim, E. S. & Keating, G. M. Recombinant human parathyroid hormone (1–84): a review in hypoparathyroidism. Drugs 75, 1293–1303 2015).

    Article  CAS  PubMed  Google Scholar 

  57. Haas, A. V. & LeBoff, M. S. Osteoanabolic agents for osteoporosis. J. Endocr. Soc. 2, 922–932 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Huang, Y. & Liu, T. Therapeutic applications of genetic code expansion. Synth. Syst. Biotechnol. 3, 150–158 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Young, D. D. & Schultz, P. G. Playing with the molecules of life. ACS Chem. Biol. 13, 854–870 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Arranz-Gibert, P., Vanderschuren, K. & Isaacs, F. J. Next-generation genetic code expansion. Curr. Opin. Chem. Biol. 46, 203–211 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Subtelny, A. O., Hartman, M. C. T. & Szostak, J. W. Ribosomal synthesis of N-methyl peptides. J. Am. Chem. Soc. 130, 6131–6136 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Kawakami, T., Murakami, H. & Suga, H. Messenger RNA-programmed incorporation of multiple N-methyl-amino acids into linear and cyclic peptides. Chem. Biol. 15, 32–42 (2008).

    Article  CAS  PubMed  Google Scholar 

  63. Goto, Y., Murakami, H. & Suga, H. Initiating translation with D-amino acids. RNA 14, 1390–1398 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Fujino, T., Goto, Y., Suga, H. & Murakami, H. Reevaluation of the D-amino acid compatibility with the elongation event in translation. J. Am. Chem. Soc. 135, 1830–1837 (2013).

    Article  CAS  PubMed  Google Scholar 

  65. Achenbach, J. et al. Outwitting EF-Tu and the ribosome: translation with D-amino acids. Nucleic Acids Res. 43, 5687–5698 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Fujino, T., Goto, Y., Suga, H. & Murakami, H. Ribosomal synthesis of peptides with multiple β-amino acids. J. Am. Chem. Soc. 138, 1962–1969 (2016).

    Article  CAS  PubMed  Google Scholar 

  67. Katoh, T. & Suga, H. Ribosomal incorporation of consecutive β-amino acids. J. Am. Chem. Soc. 140, 12159–12167 (2018).

    Article  CAS  PubMed  Google Scholar 

  68. Maini, R. et al. Ribosomal formation of thioamide bonds in polypeptide synthesis. J. Am. Chem. Soc. 141, 20004–20008 (2019).

    Article  CAS  PubMed  Google Scholar 

  69. Kawakami, T., Murakami, H. & Suga, H. Ribosomal synthesis of polypeptoids and peptoid-peptide hybrids. J. Am. Chem. Soc. 130, 16861–16863 (2008).

    Article  CAS  PubMed  Google Scholar 

  70. Huang, Y., Wiedmann, M. M. & Suga, H. RNA display methods for the discovery of bioactive macrocycles. Chem. Rev. 119, 10360–10391 (2018).

    Article  PubMed  Google Scholar 

  71. Taylor, R. D., Rey-Carrizo, M., Passioura, T. & Suga, H. Identification of nonstandard macrocyclic peptide ligands through display screening. Drug Discov. Today Technol. 26, 17–23 (2017).

    Article  PubMed  Google Scholar 

  72. Passioura, T. & Suga, H. A RaPID way to discover nonstandard macrocyclic peptide modulators of drug targets. Chem. Commun. 53, 1931–1940 (2017).

    Article  CAS  Google Scholar 

  73. Borel, J. F., Feurer, C., Gubler, H. U. & Staehelin, H. Biological effects of cyclosporin A: a new antilymphocytic agent. Agents Actions 6, 468–475 (1976).

    Article  CAS  PubMed  Google Scholar 

  74. Saehelin, H. F. The history of cyclosporin A (Sandimmune) revisited: another point of view. Experientia 52, 5–13 (1996).

    Article  CAS  Google Scholar 

  75. Lipinski, C. A., Lombardo, F., Dominy, B. W. & Feeney, P. J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev. 46, 3–26 (2001).

    Article  CAS  PubMed  Google Scholar 

  76. Rydel, T. J. et al. The structure of a complex of recombinant hirudin and human α-thrombin. Science 249, 277–280 (1990).

    Article  CAS  PubMed  Google Scholar 

  77. Warkentin, T. E. & Koster, A. Bivalirudin: a review. Expert Opin. Pharmacother. 6, 1349–1371 (2005).

    Article  CAS  PubMed  Google Scholar 

  78. Behrendt, R., White, P. & Offer, J. Advances in Fmoc solid-phase peptide synthesis. J. Pept. Sci. 22, 4–27 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Coin, I., Beyermann, M. & Bienert, M. Solid-phase peptide synthesis: from standard procedures to the synthesis of difficult sequences. Nat. Protoc. 2, 3247–3256 (2007).

    Article  CAS  PubMed  Google Scholar 

  80. Paradis-Bas, M., Tulla-Puche, J. & Albericio, F. The road to the synthesis of “difficult peptides”. Chem. Soc. Rev. 45, 631–654 (2016).

    Article  CAS  PubMed  Google Scholar 

  81. Schnölzer, M., Alewood, P. F., Jones, A., Alewood, D. & Kent, S. B. H. In situ neutralization in Boc-chemistry solid phase peptide synthesis. Rapid, high yield assembly of difficult sequences. Int. J. Pept. Protein Res. 40, 180–193 (1992).

    Article  PubMed  Google Scholar 

  82. Dawson, P. E., Muir, T. W., Clark-Lewis, I. & Kent, S. B. Synthesis of proteins by native chemical ligation. Science 266, 776–779 (1994).

    Article  CAS  PubMed  Google Scholar 

  83. Miranda, L. P. & Alewood, P. F. Accelerated chemical synthesis of peptides and small proteins. Proc. Natl Acad. Sci. USA 96, 1181–1186 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Kent, S. B. H. Total chemical synthesis of proteins. Chem. Soc. Rev. 38, 338–351 (2009).

    Article  CAS  PubMed  Google Scholar 

  85. Kent, S. Chemical protein synthesis: inventing synthetic methods to decipher how proteins work. Bioorg. Med. Chem. 25, 4926–4937 (2017).

    Article  CAS  PubMed  Google Scholar 

  86. King, G. F. Venoms as a platform for human drugs: translating toxins into therapeutics. Expert Opin. Biol. Ther. 11, 1469–1484 (2011).

    Article  CAS  PubMed  Google Scholar 

  87. Robinson, S. D., Undheim, E. A. B., Ueberheide, B. & King, G. F. Venom peptides as therapeutics: advances, challenges and the future of venom-peptide discovery. Expert Rev. Proteom. 14, 931–939 (2017).

    Article  CAS  Google Scholar 

  88. Holford, M., Daly, M., King, G. F. & Norton, R. S. Venoms to the rescue: insights into the evolutionary biology of venoms are leading to therapeutic advances. Science 361, 842–844 (2018).

    Article  CAS  PubMed  Google Scholar 

  89. Jin, A.-H. et al. Conotoxins: chemistry and biology. Chem. Rev. 119, 11510–11549 (2019).

    Article  CAS  PubMed  Google Scholar 

  90. Akondi, K. B. et al. Discovery, synthesis, and structure-activity relationships of conotoxins. Chem. Rev. 114, 5815–5847 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Drucker, D. J. & Nauck, M. A. The incretin system: glucagon-like peptide-1 receptor agonists and dipeptidyl peptidase-4 inhibitors in type 2 diabetes. Lancet 368, 1696–1705 (2006).

    Article  CAS  PubMed  Google Scholar 

  92. Elahi, D. et al. The insulinotropic actions of glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1 (7–37) in normal and diabetic subjects. Regul. Pept. 51, 63–75 (1994).

    Article  CAS  PubMed  Google Scholar 

  93. Nielsen, L. L., Young, A. A. & Parkes, D. G. Pharmacology of exenatide (synthetic exendin-4): a potential therapeutic for improved glycemic control of type 2 diabetes. Regul. Pept. 117, 77–88 (2004).

    Article  CAS  PubMed  Google Scholar 

  94. Eng, J., Kleinman, W. A., Singh, L., Singh, G. & Raufman, J. P. Isolation and characterization of exendin-4, an exendin-3 analogue, from Heloderma suspectum venom. Further evidence for an exendin receptor on dispersed acini from guinea pig pancreas. J. Biol. Chem. 267, 7402–7405 (1992).

    Article  CAS  PubMed  Google Scholar 

  95. Ruiz-Gomez, G., Tyndall, J. D., Pfeiffer, B., Abbenante, G. & Fairlie, D. P. Update 1 of: over one hundred peptide-activated G protein-coupled receptors recognize ligands with turn structure. Chem. Rev. 110, PR1–PR41 (2010).

    Article  PubMed  Google Scholar 

  96. DeYoung, M. B., MacConell, L., Sarin, V., Trautmann, M. & Herbert, P. Encapsulation of exenatide in poly-(D,L-lactide-Co-glycolide) microspheres produced an investigational long-acting once-weekly formulation for type 2 diabetes. Diabetes Technol. Ther. 13, 1145–1154 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Miljanich, G. P. Ziconotide: neuronal calcium channel blocker for treating severe chronic pain. Curr. Med. Chem. 11, 3029–3040 (2004).

    Article  CAS  PubMed  Google Scholar 

  98. Vetter, I. et al. Venomics: a new paradigm for natural products-based drug discovery. Amino Acids 40, 15–28 (2011).

    Article  CAS  PubMed  Google Scholar 

  99. Dutertre, S. et al. in Venoms to Drugs: Venom as a Source for the Development of Human Therapeutics (ed. King, G. F.) 80–96 (Royal Society of Chemistry, 2015).

  100. Klint, J. K. et al. Production of recombinant disulfide-rich venom peptides for structural and functional analysis via expression in the periplasm of E. coli. PLoS ONE 8, e63865 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Muttenthaler, M. et al. Solving the α-conotoxin folding problem: efficient selenium-directed on-resin generation of more potent and stable nicotinic acetylcholine receptor antagonists. J. Am. Chem. Soc. 132, 3514–3522 (2010).

    Article  CAS  PubMed  Google Scholar 

  102. Muttenthaler, M. & Alewood, P. F. Selenopeptide chemistry. J. Pept. Sci. 14, 1223–1239 (2008).

    Article  CAS  PubMed  Google Scholar 

  103. Vetter, I., Hodgson, W. C., Adams, D. J. & McIntyre, P. in Venoms to drugs: venom as a source for the development of human therapeutics (ed. King, G. F.) 97–128 (Royal Society of Chemistry, 2015).

  104. Ziemert, N., Alanjary, M. & Weber, T. The evolution of genome mining in microbes - a review. Nat. Prod. Rep. 33, 988–1005 (2016).

    Article  CAS  PubMed  Google Scholar 

  105. Makarewich, C. A. & Olson, E. N. Mining for micropeptides. Trends Cell Biol. 27, 685–696 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Hetrick, K. J. & van der Donk, W. A. Ribosomally synthesized and post-translationally modified peptide natural product discovery in the genomic era. Curr. Opin. Chem. Biol. 38, 36–44 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Tietz, J. I. et al. A new genome-mining tool redefines the lasso peptide biosynthetic landscape. Nat. Chem. Biol. 13, 470–478 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Mendel, H. C., Kaas, Q. & Muttenthaler, M. Neuropeptide signalling systems - an underexplored target for venom drug discovery. Biochem. Pharmacol. 181, 114129 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Gruber, C. W. & Muttenthaler, M. Discovery of defense- and neuropeptides in social ants by genome-mining. PLoS ONE 7, e32559 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Ling, L. L. et al. A new antibiotic kills pathogens without detectable resistance. Nature 517, 455–459 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Karas, J. A. et al. Synthesis and structure-activity relationships of teixobactin. Ann. N. Y. Acad. Sci. 1459, 86–105 (2020).

    Article  CAS  PubMed  Google Scholar 

  112. Gunjal, V. B., Thakare, R., Chopra, S. & Reddy, D. S. Teixobactin: a paving stone toward a new class of antibiotics? J. Med. Chem. 63, 12171–12195 (2020).

    Article  CAS  PubMed  Google Scholar 

  113. Mookherjee, N., Anderson, M. A., Haagsman, H. P. & Davidson, D. J. Antimicrobial host defence peptides: functions and clinical potential. Nat. Rev. Drug Discov. 19, 311–332 (2020).

    Article  CAS  PubMed  Google Scholar 

  114. Johnson, V. & Maack, T. Renal extraction, filtration, absorption, and catabolism of growth hormone. Am. J. Physiol. 233, F185–F196 (1977).

    CAS  PubMed  Google Scholar 

  115. Maack, T., Johnson, V., Kau, S. T., Figueiredo, J. & Sigulem, D. Renal filtration, transport, and metabolism of low-molecular-weight proteins: a review. Kidney Int. 16, 251–270 (1979).

    Article  CAS  PubMed  Google Scholar 

  116. Katz, A. I. & Emmanouel, D. S. Metabolism of polypeptide hormones by the normal kidney and in uremia. Nephron 22, 61–72 (1978).

    Article  CAS  Google Scholar 

  117. Pollaro, L. & Heinis, C. Strategies to prolong the plasma residence time of peptide drugs. Med. Chem. Commun. 1, 319–324 (2010).

    Article  CAS  Google Scholar 

  118. Kolate, A. et al. PEG - a versatile conjugating ligand for drugs and drug delivery systems. J. Control. Release 192, 67–81 (2014).

    Article  CAS  PubMed  Google Scholar 

  119. Kurtzhals, P. et al. Albumin binding of insulins acylated with fatty acids: characterization of the ligand-protein interaction and correlation between binding affinity and timing of the insulin effect in vivo. Biochem. J. 312, 725–731 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Elbrond, B. et al. Pharmacokinetics, pharmacodynamics, safety, and tolerability of a single-dose of NN2211, a long-acting glucagon-like peptide 1 derivative, in healthy male subjects. Diabetes Care 25, 1398–1404 (2002).

    Article  CAS  PubMed  Google Scholar 

  121. Falutz, J. et al. Metabolic effects of a growth hormone-releasing factor in patients with HIV. N. Engl. J. Med. 357, 2359–2370 (2007).

    Article  CAS  PubMed  Google Scholar 

  122. Ferdinandi, E. S. et al. Non-clinical pharmacology and safety evaluation of TH9507, a human growth hormone-releasing factor analogue. Basic Clin. Pharmacol. Toxicol. 100, 49–58 (2007).

    Article  CAS  PubMed  Google Scholar 

  123. Baggio, L. L., Huang, Q., Brown, T. J. & Drucker, D. J. A recombinant human glucagon-like peptide (GLP)-1-albumin protein (Albugon) mimics peptidergic activation of GLP-1 receptor-dependent pathways coupled with satiety, gastrointestinal motility, and glucose homeostasis. Diabetes 53, 2492–2500 (2004).

    Article  CAS  PubMed  Google Scholar 

  124. Matthews, J. E. et al. Pharmacodynamics, pharmacokinetics, safety, and tolerability of albiglutide, a long-acting glucagon-like peptide-1 mimetic, in patients with type 2 diabetes. J. Clin. Endocrinol. Metab. 93, 4810–4817 (2008).

    Article  CAS  PubMed  Google Scholar 

  125. Glaesner, W. et al. Engineering and characterization of the long-acting glucagon-like peptide-1 analogue LY2189265, an Fc fusion protein. Diabetes Metab. Res. Rev. 26, 287–296 (2010).

    Article  CAS  PubMed  Google Scholar 

  126. D’Souza, A. A. & Shegokar, R. Polyethylene glycol (PEG): a versatile polymer for pharmaceutical applications. Expert Opin. Drug Deliv. 13, 1257–1275 (2016).

    Article  PubMed  Google Scholar 

  127. Park, E. J., Choi, J., Lee, K. C. & Na, D. H. Emerging PEGylated non-biologic drugs. Expert Opin. Emerg. Drugs 24, 107–119 (2019).

    Article  CAS  PubMed  Google Scholar 

  128. Sahu, A., Kay, B. K. & Lambris, J. D. Inhibition of human complement by a C3-binding peptide isolated from a phage-displayed random peptide library. J. Immunol. 157, 884–891 (1996).

    Article  CAS  PubMed  Google Scholar 

  129. Liao, D. S. et al. Complement C3 inhibitor pegcetacoplan for geographic atrophy secondary to age-related macular degeneration: a randomized phase 2 trial. Ophthalmology 127, 186–195 (2020).

    Article  PubMed  Google Scholar 

  130. Bianchi, E. et al. A PEGylated analog of the gut hormone oxyntomodulin with long-lasting antihyperglycemic, insulinotropic and anorexigenic activity. Bioorg. Med. Chem. 21, 7064–7073 (2013).

    Article  CAS  PubMed  Google Scholar 

  131. Smith, G. P. Filamentous fusion phage: novel expression vectors that display cloned antigens on the virion surface. Science 228, 1315–1317 (1985).

    Article  CAS  PubMed  Google Scholar 

  132. Davis, A. M., Plowright, A. T. & Valeur, E. Directing evolution: the next revolution in drug discovery? Nat. Rev. Drug Discov. 16, 681–698 (2017).

    Article  CAS  PubMed  Google Scholar 

  133. Schmid, H. Peginesatide for the treatment of renal disease-induced anemia. Expert Opin. Pharmacother. 14, 937–948 (2013).

    Article  CAS  PubMed  Google Scholar 

  134. MacDougall, I. C. et al. Peginesatide for anemia in patients with chronic kidney disease not receiving dialysis. N. Engl. J. Med. 368, 320–332 (2013).

    Article  CAS  PubMed  Google Scholar 

  135. Hermanson, T., Bennett, C. L. & MacDougall, I. C. Peginesatide for the treatment of anemia due to chronic kidney disease – an unfulfilled promise. Expert Opin. Drug Saf. 15, 1421–1426 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Wrighton, N. C. et al. Small peptides as potent mimetics of the protein hormone erythropoietin. Science 273, 458–463 (1996).

    Article  CAS  PubMed  Google Scholar 

  137. Wrighton, N. et al. Increased potency of an erythropoietin peptide mimetic through covalent dimerization. Nat. Biotechnol. 15, 1261–1265 (1997).

    Article  CAS  PubMed  Google Scholar 

  138. Fan, Q. et al. Preclinical evaluation of Hematide, a novel erythropoiesis stimulating agent, for the treatment of anemia. Exp. Hematol. 34, 1303–1311 (2006).

    Article  CAS  PubMed  Google Scholar 

  139. Molineux, G. & Newland, A. Development of romiplostim for the treatment of patients with chronic immune thrombocytopenia: from bench to bedside. Br. J. Haematol. 150, 9–20 (2010).

    CAS  PubMed  Google Scholar 

  140. Lehmann, A. Ecallantide (DX-88), a plasma kallikrein inhibitor for the treatment of hereditary angioedema and the prevention of blood loss in on-pump cardiothoracic surgery. Expert Opin. Biol. Ther. 8, 1187–1199 (2008).

    Article  CAS  PubMed  Google Scholar 

  141. Nixon, A. E., Sexton, D. J. & Ladner, R. C. Drugs derived from phage display: from candidate identification to clinical practice. MAbs 6, 73–85 (2014).

    Article  PubMed  Google Scholar 

  142. Tavassoli, A. SICLOPPS cyclic peptide libraries in drug discovery. Curr. Opin. Chem. Biol. 38, 30–35 (2017).

    Article  CAS  PubMed  Google Scholar 

  143. Rentero Rebollo, I. & Heinis, C. Phage selection of bicyclic peptides. Methods 60, 46–54 (2013).

    Article  CAS  PubMed  Google Scholar 

  144. Deyle, K., Kong, X.-D. & Heinis, C. Phage selection of cyclic peptides for application in research and drug development. Acc. Chem. Res. 50, 1866–1874 (2017).

    Article  CAS  PubMed  Google Scholar 

  145. Kong, X.-D. et al. De novo development of proteolytically resistant therapeutic peptides for oral administration. Nat. Biomed. Eng. 4, 560–571 (2020).

    Article  CAS  PubMed  Google Scholar 

  146. Baeriswyl, V. et al. A synthetic factor XIIa inhibitor blocks selectively intrinsic coagulation initiation. ACS Chem. Biol. 10, 1861–1870 (2015).

    Article  CAS  PubMed  Google Scholar 

  147. Middendorp, S. J. et al. Peptide macrocycle inhibitor of coagulation factor XII with subnanomolar affinity and high target selectivity. J. Med. Chem. 60, 1151–1158 (2017).

    Article  CAS  PubMed  Google Scholar 

  148. Zhao, L. & Lu, W. Mirror image proteins. Curr. Opin. Chem. Biol. 22, 56–61 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Zhou, X. et al. A novel D-peptide identified by mirror-image phage display blocks TIGIT/PVR for cancer immunotherapy. Angew. Chem. Int. Ed. 59, 15114–15118 (2020).

    Article  CAS  Google Scholar 

  150. Diaz-Perlas, C. et al. Protein chemical synthesis combined with mirror-image phage display yields D-peptide EGF ligands that block the EGF-EGFR interaction. ChemBioChem 20, 2079–2084 (2019).

    Article  CAS  PubMed  Google Scholar 

  151. Rudolph, S. et al. Competitive mirror image phage display derived peptide modulates amyloid beta aggregation and toxicity. PLoS ONE 11, e0147470 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  152. Tsiamantas, C., Otero-Ramirez Manuel, E. & Suga, H. Discovery of functional macrocyclic peptides by means of the RaPID system. Methods Mol. Biol. 2001, 299–315 (2019).

    Article  CAS  PubMed  Google Scholar 

  153. Guillen Schlippe, Y. V., Hartman, M. C. T., Josephson, K. & Szostak, J. W. In vitro selection of highly modified cyclic peptides that act as tight binding inhibitors. J. Am. Chem. Soc. 134, 10469–10477 (2012).

    Article  CAS  PubMed Central  Google Scholar 

  154. Howard, J. F. et al. Clinical effects of the self-administered subcutaneous complement inhibitor zilucoplan in patients with moderate to severe generalized myasthenia gravis: results of a phase 2 randomized, double-blind, placebo-controlled, multicenter clinical trial. JAMA Neurol. 77, 582–592 (2020).

    Article  PubMed  Google Scholar 

  155. Craik, D. J., Fairlie, D. P., Liras, S. & Price, D. The future of peptide-based drugs. Chem. Biol. Drug Des. 81, 136–147 (2013).

    Article  CAS  PubMed  Google Scholar 

  156. Nielsen, D. S. et al. Orally absorbed cyclic peptides. Chem. Rev. 117, 8094–8128 (2017).

    Article  CAS  PubMed  Google Scholar 

  157. Muttenthaler, M. et al. Modulating oxytocin activity and plasma stability by disulfide bond engineering. J. Med. Chem. 53, 8585–8596 (2010).

    Article  CAS  PubMed  Google Scholar 

  158. Erak, M., Bellmann-Sickert, K., Els-Heindl, S. & Beck-Sickinger, A. G. Peptide chemistry toolbox - Transforming natural peptides into peptide therapeutics. Bioorg. Med. Chem. 26, 2759–2765 (2018).

    Article  CAS  PubMed  Google Scholar 

  159. Northfield, S. E. et al. Disulfide-rich macrocyclic peptides as templates in drug design. Eur. J. Med. Chem. 77, 248–257 (2014).

    Article  CAS  PubMed  Google Scholar 

  160. Liu, R., Li, X. & Lam, K. S. Combinatorial chemistry in drug discovery. Curr. Opin. Chem. Biol. 38, 117–126 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Huo, L. et al. Heterologous expression of bacterial natural product biosynthetic pathways. Nat. Prod. Rep. 36, 1412–1436 (2019).

    Article  CAS  PubMed  Google Scholar 

  162. Walensky, L. D. & Bird, G. H. Hydrocarbon-stapled peptides: principles, practice, and progress. J. Med. Chem. 57, 6275–6288 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Verdine, G. L. & Hilinski, G. J. Stapled peptides for intracellular drug targets. Methods Enzymol. 503, 3–33 (2012).

    Article  CAS  PubMed  Google Scholar 

  164. Cromm, P. M., Spiegel, J. & Grossmann, T. N. Hydrocarbon stapled peptides as modulators of biological function. ACS Chem. Biol. 10, 1362–1375 (2015).

    Article  CAS  PubMed  Google Scholar 

  165. Chang, Y. S. et al. Stapled α-helical peptide drug development: A potent dual inhibitor of MDM2 and MDMX for p53-dependent cancer therapy. Proc. Natl Acad. Sci. USA 1-10, 10 (2013).

    Google Scholar 

  166. Carvajal, L. A. et al. Dual inhibition of MDMX and MDM2 as a therapeutic strategy in leukemia. Sci. Transl. Med. 10, eaao3003 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  167. Schmidt, M., Toplak, A., Quaedflieg, P. J. L. M. & Nuijens, T. Enzyme-mediated ligation technologies for peptides and proteins. Curr. Opin. Chem. Biol. 38, 1–7 (2017).

    Article  CAS  PubMed  Google Scholar 

  168. Nuijens, T. et al. Engineering a diverse ligase toolbox for peptide segment condensation. Adv. Synth. Catal. 358, 4041–4048 (2016).

    Article  CAS  Google Scholar 

  169. Mijalis, A. J. et al. A fully automated flow-based approach for accelerated peptide synthesis. Nat. Chem. Biol. 13, 464–466 (2017).

    Article  CAS  PubMed  Google Scholar 

  170. Farra, R. et al. First-in-human testing of a wirelessly controlled drug delivery microchip. Sci. Transl. Med. 4, 122ra21 (2012).

    Article  PubMed  Google Scholar 

  171. Hogan, N. C., Taberner, A. J., Jones, L. A. & Hunter, I. W. Needle-free delivery of macromolecules through the skin using controllable jet injectors. Expert Opin. Drug Deliv. 12, 1637–1648 (2015).

    Article  PubMed  Google Scholar 

  172. Kumar, S. et al. Peptides as skin penetration enhancers: mechanisms of action. J. Control. Release 199, 168–178 (2015).

    Article  CAS  PubMed  Google Scholar 

  173. Zhang, Y. et al. Advances in transdermal insulin delivery. Adv. Drug Deliv. Rev. 139, 51–70 (2019).

    Article  CAS  PubMed  Google Scholar 

  174. Kochba, E., Levin, Y., Raz, I. & Cahn, A. Improved insulin pharmacokinetics using a novel microneedle device for intradermal delivery in patients with type 2 diabetes. Diabetes Technol. Ther. 18, 525–531 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Daddona, P. E., Matriano, J. A., Mandema, J. & Maa, Y.-F. Parathyroid hormone (1-34)-coated microneedle patch system: clinical pharmacokinetics and pharmacodynamics for treatment of osteoporosis. Pharm. Res. 28, 159–165 (2011).

    Article  CAS  PubMed  Google Scholar 

  176. Kim, E. S. & Plosker, G. L. AFREZZA® (insulin human) inhalation powder: a review in diabetes mellitus. Drugs 75, 1679–1686 (2015).

    Article  CAS  PubMed  Google Scholar 

  177. Sherr, J. L. et al. Glucagon nasal powder: a promising alternative to intramuscular glucagon in youth with type 1 diabetes. Diabetes Care 39, 555–562 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  178. Drucker, D. J. Advances in oral peptide therapeutics. Nat. Rev. Drug Discov. 19, 277–289 (2020).

    Article  CAS  PubMed  Google Scholar 

  179. Brayden, D. J., Hill, T. A., Fairlie, D. P., Maher, S. & Mrsny, R. J. Systemic delivery of peptides by the oral route: formulation and medicinal chemistry approaches. Adv. Drug Deliv. Rev. 157, 2–36 (2020).

    Article  CAS  PubMed  Google Scholar 

  180. Granhall, C., Soendergaard, F. L., Thomsen, M. & Anderson, T. W. Pharmacokinetics, safety and tolerability of oral semaglutide in subjects with renal impairment. Clin. Pharmacokinet. 57, 1571–1580 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Ahnfelt-Roenne, J. et al. Transcellular stomach absorption of a derivatized glucagon-like peptide-1 receptor agonist. Sci. Transl. Med. 10, eaar7047 (2018).

    Article  Google Scholar 

  182. Biermasz, N. R. New medical therapies on the horizon: oral octreotide. Pituitary 20, 149–153 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Eldor, R., Arbit, E., Corcos, A. & Kidron, M. Glucose-reducing effect of the ORMD-0801 oral insulin preparation in patients with uncontrolled type 1 diabetes: a pilot study. PLoS ONE 8, e59524 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Abramson, A. et al. A luminal unfolding microneedle injector for oral delivery of macromolecules. Nat. Med. 25, 1512–1518 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Abramson, A. et al. An ingestible self-orienting system for oral delivery of macromolecules. Science 363, 611–615 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Moroz, E., Matoori, S. & Leroux, J.-C. Oral delivery of macromolecular drugs: where we are after almost 100 years of attempts. Adv. Drug Deliv. Rev. 101, 108–121 (2016).

    Article  CAS  PubMed  Google Scholar 

  187. Copolovici, D. M., Langel, K., Eriste, E. & Langel, U. Cell-penetrating peptides: design, synthesis, and applications. ACS Nano 8, 1972–1994 (2014).

    Article  CAS  PubMed  Google Scholar 

  188. Shi, N.-Q., Qi, X.-R., Xiang, B. & Zhang, Y. A survey on “Trojan Horse” peptides: opportunities, issues and controlled entry to “Troy”. J. Control. Rel. 194, 53–70 (2014).

    Article  CAS  Google Scholar 

  189. Staecker, H. et al. Efficacy and safety of AM-111 in the treatment of acute unilateral sudden deafness - a double-blind, randomized, placebo-controlled phase 3 study. Otol. Neurotol. 40, 584–594 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  190. Hill, M. D. et al. Efficacy and safety of nerinetide for the treatment of acute ischaemic stroke (ESCAPE-NA1): a multicentre, double-blind, randomised controlled trial. Lancet 395, 878–887 (2020).

    Article  CAS  PubMed  Google Scholar 

  191. Guidotti, G., Brambilla, L. & Rossi, D. Cell-penetrating peptides: from basic research to clinics. Trends Pharmacol. Sci. 38, 406–424 (2017).

    Article  CAS  PubMed  Google Scholar 

  192. Cohen-Inbar, O. & Zaaroor, M. Glioblastoma multiforme targeted therapy: the chlorotoxin story. J. Clin. Neurosci. 33, 52–58 (2016).

    Article  CAS  PubMed  Google Scholar 

  193. Williams, J. A., Day, M. & Heavner, J. E. Ziconotide: an update and review. Expert. Opin. Pharmacother. 9, 1575–1583 (2008).

    Article  CAS  PubMed  Google Scholar 

  194. Bray, B. L. Large-scale manufacture of peptide therapeutics by chemical synthesis. Nat. Rev. Drug Discov. 2, 587–593 (2003).

    Article  CAS  PubMed  Google Scholar 

  195. Zompra, A. A., Galanis, A. S., Werbitzky, O. & Albericio, F. Manufacturing peptides as active pharmaceutical ingredients. Future Med. Chem. 1, 361–377 (2009).

    Article  CAS  PubMed  Google Scholar 

  196. Mayer, J. P., Zhang, F. & DiMarchi, R. D. Insulin structure and function. Biopolymers 88, 687–713 (2007).

    Article  CAS  PubMed  Google Scholar 

  197. Lien, S. & Lowman, H. B. Therapeutic peptides. Trends Biotechnol. 21, 556–562 (2003).

    Article  CAS  PubMed  Google Scholar 

  198. Pangalos, M. N., Schechter, L. E. & Hurko, O. Drug development for CNS disorders: strategies for balancing risk and reducing attrition. Nat. Rev. Drug Discov. 6, 521–532 (2007).

    Article  CAS  PubMed  Google Scholar 

  199. Gruber, C. W., Muttenthaler, M. & Freissmuth, M. Ligand-based peptide design and combinatorial peptide libraries to target G protein-coupled receptors. Curr. Pharm. Des. 16, 3071–3088 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Cragg, G. M. & Newman, D. J. Natural products: a continuing source of novel drug leads. Biochim. Biophys. Acta Gen. Subj. 1830, 3670–3695 (2013).

    Article  CAS  Google Scholar 

  201. Davenport, A. P., Scully, C. C. G., de Graaf, C., Brown, A. J. H. & Maguire, J. J. Advances in therapeutic peptides targeting G protein-coupled receptors. Nat. Rev. Drug Discov. 19, 389–413 (2020).

    Article  CAS  PubMed  Google Scholar 

  202. Tsomaia, N. Peptide therapeutics: targeting the undruggable space. Eur. J. Med. Chem. 94, 459–470 (2015).

    Article  CAS  PubMed  Google Scholar 

  203. Milroy, L.-G., Grossmann, T. N., Hennig, S., Brunsveld, L. & Ottmann, C. Modulators of protein-protein interactions. Chem. Rev. 114, 4695–4748 (2014).

    Article  CAS  PubMed  Google Scholar 

  204. Lochhead, J. J. & Thorne, R. G. Intranasal delivery of biologics to the central nervous system. Adv. Drug Deliv. Rev. 64, 614–628 (2012).

    Article  CAS  PubMed  Google Scholar 

  205. Kosfeld, M., Heinrichs, M., Zak, P. J., Fischbacher, U. & Fehr, E. Oxytocin increases trust in humans. Nature 435, 673–676 (2005).

    Article  CAS  PubMed  Google Scholar 

  206. Veening, J. G. & Olivier, B. Intranasal administration of oxytocin: behavioral and clinical effects, a review. Neurosci. Biobehav. Rev. 37, 1445–1465 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Leng, G. & Ludwig, M. Intranasal oxytocin: myths and delusions. Biol. Psychiatry 79, 243–250 (2016).

    Article  CAS  PubMed  Google Scholar 

  208. Walum, H., Waldman, I. D. & Young, L. J. Statistical and methodological considerations for the interpretation of intranasal oxytocin studies. Biol. Psychiatry 79, 251–257 (2016).

    Article  CAS  PubMed  Google Scholar 

  209. Oller-Salvia, B., Sanchez-Navarro, M., Giralt, E. & Teixido, M. Blood-brain barrier shuttle peptides: an emerging paradigm for brain delivery. Chem. Soc. Rev. 45, 4690–4707 (2016).

    Article  CAS  PubMed  Google Scholar 

  210. Chen, Y. & Liu, L. Modern methods for delivery of drugs across the blood-brain barrier. Adv. Drug Deliv. Rev. 64, 640–665 (2012).

    Article  CAS  PubMed  Google Scholar 

  211. Dockray, G. J. Gastrointestinal hormones and the dialogue between gut and brain. J. Physiol. 592, 2927–2941 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Lalatsa, A., Schatzlein, A. G. & Uchegbu, I. F. Strategies to deliver peptide drugs to the brain. Mol. Pharm. 11, 1081–1093 (2014).

    Article  CAS  PubMed  Google Scholar 

  213. Lajoie, J. M. & Shusta, E. V. Targeting receptor-mediated transport for delivery of biologics across the blood-brain barrier. Annu. Rev. Pharmacol. Toxicol. 55, 613–631 (2015).

    Article  CAS  PubMed  Google Scholar 

  214. Acar, H., Ting, J. M., Srivastava, S., La Belle, J. L. & Tirrell, M. V. Molecular engineering solutions for therapeutic peptide delivery. Chem. Soc. Rev. 46, 6553–6569 (2017).

    Article  CAS  PubMed  Google Scholar 

  215. Fani, M., Maecke, H. R. & Okarvi, S. M. Radiolabeled peptides: valuable tools for the detection and treatment of cancer. Theranostics 2, 481–501 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. Hirayama, M. & Nishimura, Y. The present status and future prospects of peptide-based cancer vaccines. Int. Immunol. 28, 319–328 (2016).

    Article  CAS  PubMed  Google Scholar 

  217. Chen, X., Yang, J., Wang, L. & Liu, B. Personalized neoantigen vaccination with synthetic long peptides: recent advances and future perspectives. Theranostics 10, 6011–6023 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  218. Skwarczynski, M. & Toth, I. Peptide-based synthetic vaccines. Chem. Sci. 7, 842–854 (2016).

    Article  CAS  PubMed  Google Scholar 

  219. Malonis, R. J., Lai, J. R. & Vergnolle, O. Peptide-based vaccines: current progress and future challenges. Chem. Rev. 120, 3210–3229 (2020).

    Article  CAS  PubMed  Google Scholar 

  220. Busby, R. W. et al. Pharmacologic properties, metabolism, and disposition of linaclotide, a novel therapeutic peptide approved for the treatment of irritable bowel syndrome with constipation and chronic idiopathic constipation. J. Pharmacol. Exp. Ther. 344, 196–206 (2013).

    Article  CAS  PubMed  Google Scholar 

  221. Hancock, R. E. W. & Sahl, H.-G. Antimicrobial and host-defense peptides as new anti-infective therapeutic strategies. Nat. Biotechnol. 24, 1551–1557 (2006).

    Article  CAS  PubMed  Google Scholar 

  222. Kang, H.-K., Kim, C., Seo, C. H. & Park, Y. The therapeutic applications of antimicrobial peptides (AMPs): a patent review. J. Microbiol. 55, 1–12 (2017).

    Article  CAS  PubMed  Google Scholar 

  223. Blanes-Mira, C. et al. A synthetic hexapeptide (Argireline) with antiwrinkle activity. Int. J. Cosmet. Sci. 24, 303–310 (2002).

    Article  CAS  PubMed  Google Scholar 

  224. Robinson, L. R. et al. Topical palmitoyl pentapeptide provides improvement in photoaged human facial skin. Int. J. Cosmet. Sci. 27, 155–160 (2005).

    Article  CAS  PubMed  Google Scholar 

  225. Pickart, L. The human tri-peptide glycine-histidine-lysine and tissue remodeling. J. Biomater. Sci. Polym. Ed. 19, 969–988 (2008).

    Article  CAS  PubMed  Google Scholar 

  226. Du Vigneaud, V., Ressler, C., Swan, J. M., Roberts, C. W. & Katsoyannis, P. G. The synthesis of oxytocin. J. Am. Chem. Soc. 76, 3115–3121 (1954).

    Article  Google Scholar 

  227. Du Vigneaud, V., Ressler, C. & Trippett, S. The sequence of amino acids in oxytocin, with a proposal for the structure of oxytocin. J. Biol. Chem. 205, 949–957 (1953).

    Article  CAS  Google Scholar 

  228. Global Information Inc. Global Peptide Therapeutics Sales Market Report 2018. QYResearch, 387893 (2018).

  229. Weinstock-Guttman, B., Nair, K. V., Glajch, J. L., Ganguly, T. C. & Kantor, D. Two decades of glatiramer acetate: from initial discovery to the current development of generics. J. Neurol. Sci. 376, 255–259 (2017).

    Article  CAS  PubMed  Google Scholar 

  230. Teitelbaum, D., Meshorer, A., Hirshfeld, T., Arnon, R. & Sela, M. Suppression of experimental allergic encephalomyelitis by a synthetic polypeptide. Eur. J. Immunol. 1, 242–248 (1971).

    Article  CAS  PubMed  Google Scholar 

  231. Johnson, K. P. et al. Copolymer 1 reduces relapse rate and improves disability in relapsing-remitting multiple sclerosis: results of a phase III multicenter, double-blind placebo-controlled trial. Neurology 45, 1268–1276 (1995).

    Article  CAS  PubMed  Google Scholar 

  232. Aharoni, R. The mechanism of action of glatiramer acetate in multiple sclerosis and beyond. Autoimmun. Rev. 12, 543–553 (2013).

    Article  CAS  PubMed  Google Scholar 

  233. Lalive, P. H. et al. Glatiramer acetate in the treatment of multiple sclerosis: emerging concepts regarding its mechanism of action. CNS Drugs 25, 401–414 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  234. Matthews, T. et al. Enfuvirtide: the first therapy to inhibit the entry of HIV-1 into host CD4 lymphocytes. Nat. Rev. Drug Discov. 3, 215–225 (2004).

    Article  CAS  PubMed  Google Scholar 

  235. Wild, C., Greenwell, T. & Matthews, T. A synthetic peptide from HIV-1 gp41 is a potent inhibitor of virus-mediated cell-cell fusion. AIDS Res. Hum. Retroviruses 9, 1051–1053 (1993).

    Article  CAS  PubMed  Google Scholar 

  236. Bruckdorfer, T., Marder, O. & Albericio, F. From production of peptides in milligram amounts for research to multi-tons quantities for drugs of the future. Curr. Pharm. Biotechnol. 5, 29–43 (2004).

    Article  CAS  PubMed  Google Scholar 

  237. Kintzing, J. R. & Cochran, J. R. Engineered knottin peptides as diagnostics, therapeutics, and drug delivery vehicles. Curr. Opin. Chem. Biol. 34, 143–150 (2016).

    Article  CAS  PubMed  Google Scholar 

  238. Pallaghy, P. K., Nielsen, K. J., Craik, D. J. & Norton, R. A common structural motif incorporating a cystine knot and a triple-stranded β-sheet in toxic and inhibitory polypeptides. Protein Sci. 3, 1833–1836 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  239. Undheim, E. A. B., Mobli, M. & King, G. F. Toxin structures as evolutionary tools: using conserved 3D folds to study the evolution of rapidly evolving peptides. Bioessays 38, 539–548 (2016).

    Article  CAS  PubMed  Google Scholar 

  240. Murray, J. K. et al. Engineering potent and selective analogues of GpTx-1, a tarantula venom peptide antagonist of the Nav1.7 sodium channel. J. Med. Chem. 58, 2299–2314 (2015).

    Article  CAS  PubMed  Google Scholar 

  241. Flinspach, M. et al. Insensitivity to pain induced by a potent selective closed-state Nav1.7 inhibitor. Sci. Rep. 7, 39662 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  242. Revell, J. D. et al. Potency optimization of Huwentoxin-IV on hNav1.7: a neurotoxin TTX-S sodium-channel antagonist from the venom of the Chinese bird-eating spider Selenocosmia huwena. Peptides 44, 40–46 (2013).

    Article  CAS  PubMed  Google Scholar 

  243. Schmalhofer, W. A. et al. ProTx-II, a selective inhibitor of Nav1.7 sodium channels, blocks action potential propagation in nociceptors. Mol. Pharmacol. 74, 1476–1484 (2008).

    Article  CAS  PubMed  Google Scholar 

  244. Santos, R. et al. A comprehensive map of molecular drug targets. Nat. Rev. Drug Discov. 16, 19–34 (2017).

    Article  CAS  PubMed  Google Scholar 

  245. Yu, F. H., Yarov-Yarovoy, V., Gutman, G. A. & Catterall, W. A. Overview of molecular relationships in the voltage-gated ion channel superfamily. Pharmacol. Rev. 57, 387–395 (2005).

    Article  CAS  PubMed  Google Scholar 

  246. Catterall, W. A. Voltage-gated sodium channels at 60: structure, function and pathophysiology. J. Physiol. 590, 2577–2589 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  247. Ahern, C. A., Payandeh, J., Bosmans, F. & Chanda, B. The hitchhiker’s guide to the voltage-gated sodium channel galaxy. J. Gen. Physiol. 147, 1–24 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  248. Pan, X. et al. Molecular basis for pore blockade of human Na+ channel Nav1.2 by the μ-conotoxin KIIIA. Science 363, 1309–1313 (2019).

    Article  CAS  PubMed  Google Scholar 

  249. Shen, H. et al. Structural basis for the modulation of voltage-gated sodium channels by animal toxins. Science 362, eaau2596 (2018).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank K. Woolcock for help with editing the manuscript. M.M. is supported by the European Research Council under the European Union’s Horizon 2020 research and innovation programme (714366), by the Australian Research Council (DE150100784 and DP190101667) and by the Vienna Science and Technology Fund (WWTF; LS18-053). P.F.A., G.F.K. and D.J.A. were supported by Program Grant APP1072113 from the Australian National Health & Medical Research Council (NHMRC) and NHMRC Principal Research Fellowships to G.F.K. (APP1136889) and P.F.A. (APP1080593).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Markus Muttenthaler or Paul F. Alewood.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Drug Discovery thanks J. Mayer and the other, anonymous, reviewers for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Muttenthaler, M., King, G.F., Adams, D.J. et al. Trends in peptide drug discovery. Nat Rev Drug Discov 20, 309–325 (2021). https://doi.org/10.1038/s41573-020-00135-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41573-020-00135-8

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research