[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Rethinking drug design in the artificial intelligence era

Abstract

Artificial intelligence (AI) tools are increasingly being applied in drug discovery. While some protagonists point to vast opportunities potentially offered by such tools, others remain sceptical, waiting for a clear impact to be shown in drug discovery projects. The reality is probably somewhere in-between these extremes, yet it is clear that AI is providing new challenges not only for the scientists involved but also for the biopharma industry and its established processes for discovering and developing new medicines. This article presents the views of a diverse group of international experts on the ‘grand challenges’ in small-molecule drug discovery with AI and the approaches to address them.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Integrating mind and machine in drug discovery.

Similar content being viewed by others

References

  1. Smietana, K., Siatkowski, M. & Møller, M. Trends in clinical success rates. Nat. Rev. Drug Discov. 15, 379–380 (2016).

    Article  CAS  PubMed  Google Scholar 

  2. Mullard, A. 2018 FDA drug approvals. Nat. Rev. Drug Discov. 18, 85–89 (2019).

    Article  PubMed  Google Scholar 

  3. Hopfinger, A. J. Computer-assisted drug design. J. Med. Chem. 28, 1133–1139 (1985).

    Article  CAS  PubMed  Google Scholar 

  4. Martin, Y. C. Computer-assisted rational drug design. Methods Enzymol. 203, 587–613 (1991).

    Article  CAS  PubMed  Google Scholar 

  5. Yu, W. & MacKerell, A. D. Jr. Computer-aided drug design methods. Methods Mol. Biol. 1520, 85–106 (2017).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Baig, M. H. et al. Computer aided drug design: success and limitations. Curr. Pharm. Des. 22, 572–581 (2016).

    Article  CAS  PubMed  Google Scholar 

  7. Yang, X., Wang, Y., Byrne, R., Schneider, G. & Yang, S. Concepts of artificial intelligence for computer-assisted drug discovery. Chem. Rev. 119, 10520–10594 (2019).

    Article  CAS  PubMed  Google Scholar 

  8. Ching, T. et al. Opportunities and obstacles for deep learning in biology and medicine. J. R. Soc. Interface 15, 20170387 (2018).

    Article  PubMed Central  PubMed  Google Scholar 

  9. Mignani, S., Huber, S., Tomás, H., Rodrigues, J. & Majoral, J. P. Why and how have drug discovery strategies in pharma changed? What are the new mindsets? Drug Discov. Today 21, 239–249 (2016).

    Article  PubMed  Google Scholar 

  10. Jordan, A. M. Artificial intelligence in drug design – the storm before the calm? ACS Med. Chem. Lett. 9, 1150–1152 (2018).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Bender, A. et al. Which aspects of HTS are empirically correlated with downstream success? Curr. Opin. Drug Discov. Devel. 11, 327–337 (2008).

    CAS  PubMed  Google Scholar 

  12. Gilad, Y., Nadassy, K. & Senderowitz, H. A reliable computational workflow for the selection of optimal screening libraries. J. Cheminform. 7, 61 (2015).

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  13. Bajorath, J. Extending accessible chemical space for the identification of novel leads. Expert Opin. Drug Discov. 11, 825–829 (2016).

    Article  PubMed  Google Scholar 

  14. Holenz, J. & Stoy, P. Advances in lead generation. Bioorg. Med. Chem. Lett. 29, 517–524 (2019).

    Article  CAS  PubMed  Google Scholar 

  15. Oliveira, A. L. Biotechnology, big data and artificial intelligence. Biotechnol. J. 14, e1800613 (2019).

    Article  PubMed  CAS  Google Scholar 

  16. Brown, N. et al. Big data in drug discovery. Prog. Med. Chem. 57, 277–356 (2018).

    Article  PubMed  Google Scholar 

  17. Esaki, T. et al. Data curation can improve the prediction accuracy of metabolic intrinsic clearance. Mol. Inf. 38, 1800086 (2019).

    Article  CAS  Google Scholar 

  18. Fourches, D., Muratov, E. & Tropsha, A. Trust, but verify II: a practical guide to chemogenomics data curation. J. Chem. Inf. Model. 56, 1243–1252 (2016).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Cases, M. et al. The eTOX data-sharing project to advance in silico drug induced toxicity prediction. Int. J. Mol. Sci. 15, 21136–21154 (2014).

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  20. Huang, R. et al. Modelling the Tox21 10K chemical profiles for in vivo toxicity prediction and mechanism characterization. Nat. Commun. 7, 10425 (2016).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Kirchmair, J. et al. Predicting drug metabolism: experiment and/or computation? Nat. Rev. Drug Discov. 14, 387–404 (2015).

    Article  CAS  PubMed  Google Scholar 

  22. Knudsen, T. B. et al. FutureTox II: in vitro data and in silico models for predictive toxicology. Toxicol. Sci. 143, 256–267 (2015).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Wetmore, B. A. Quantitative in vitro-to-in vivo extrapolation in a high-throughput environment. Toxicology 332, 94–101 (2015).

    Article  CAS  PubMed  Google Scholar 

  24. Gorelick, F. S. & Lerch, M. M. Do animal models of acute pancreatitis reproduce human disease?. Cell Mol. Gastroenterol. Hepatol. 4, 251–262 (2017).

    Article  PubMed Central  PubMed  Google Scholar 

  25. Haeussler, M. et al. Evaluation of off-target and on-target scoring algorithms and integration into the guide RNA selection tool CRISPOR. Genome Biol. 17, 148 (2016).

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  26. Rao, M. et al. Novel computational approach to predict off-target interactions for small molecules. Front. Big Data 2, 25 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Bittker, J. A. & Ross, N. T. (Eds) High Throughput Screening Methods: Evolution and Refinement (Royal Society of Chemistry, 2017).

  28. Papadatos, G., Gaulton, A., Hersey, A. & Overington, J. P. Activity, assay and target data curation and quality in the ChEMBL database. J. Comp. Aided Mol. Des. 29, 885–896 (2015).

    Article  CAS  Google Scholar 

  29. Tang, J. et al. Drug target commons: a community effort to build a consensus knowledge base for drug-target interactions. Cell Chem. Biol. 25, 224–229 (2018).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Mazzolari, A. et al. Prediction of UGT-mediated metabolism using the manually curated MetaQSAR database. ACS Med. Chem. Lett. 10, 633–638 (2019).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Santos, R. et al. A comprehensive map of molecular drug targets. Nat. Rev. Drug Discov. 16, 19–34 (2017).

    Article  CAS  PubMed  Google Scholar 

  32. Lin, Y. et al. Drug target ontology to classify and integrate drug discovery data. J. Biomed. Sem. 8, 50 (2017).

    Article  Google Scholar 

  33. Halpern, Y., Choi, Y., Horng, S. & Sontag, D. Using anchors to estimate clinical state without labeled data. AMIA Annu. Symp. Proc. 2014, 606–615 (2014).

    PubMed Central  PubMed  Google Scholar 

  34. Wilkinson, M. D. et al. The FAIR guiding principles for scientific data management and stewardship. Sci. Data 3, 160018 (2016).

    Article  PubMed Central  PubMed  Google Scholar 

  35. Food and Drug Administration. Computerized systems used in clinical investigations (FDA, 2007).

  36. Rattan, A. K. Data integrity: history, issues, and remediation of issues. PDA J. Pharm. Sci. Technol. 72, 105–116 (2018).

    Article  PubMed  Google Scholar 

  37. Shockley, K. R. Quantitative high-throughput screening data analysis: challenges and recent advances. Drug Discov. Today 20, 296–300 (2015).

    Article  CAS  PubMed  Google Scholar 

  38. Mpindi, J. P. et al. Impact of normalization methods on high-throughput screening data with high hit rates and drug testing with dose–response data. Bioinformatics 31, 3815–3821 (2015).

    CAS  PubMed Central  PubMed  Google Scholar 

  39. Kalliokoski, T., Kramer, C., Vulpetti, A. & Gedeck, P. Comparability of mixed IC50 data – a statistical analysis. PLOS ONE 8, e61007 (2013).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Polit, D. F. & Beck, C. T. Nursing Research: Generating and Assessing Evidence for Nursing Practice (Wolters Kluwer, 2012).

  41. Casale, F. P., Dalca, A. V., Saglietti, L., Listgarten, L. & Fusi, M. Gaussian process prior variational autoencoders. in Adv. Neural Inf. Process Syst. (NIPS, 2018).

  42. Goldberg, Y. A primer on neural network models for natural language processing. J. Artif. Intell. Res. 57, 345–420 (2016).

    Article  Google Scholar 

  43. Peck, M., Moffat, A., Latham, B. & Badrick, T. Review of diagnostic error in anatomical pathology and the role and value of second opinions in error prevention. J. Clin. Pathol. 71, 995–1000 (2018).

    Article  PubMed  Google Scholar 

  44. Lindsey, R. et al. Deep neural network improves fracture detection by clinicians. Proc. Natl Acad. Sci. USA 115, 11591–11596 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Miller, D. D. & Brown, E. W. Artificial intelligence in medical practice: the question to the answer? Am. J. Med. 131, 129–133 (2018).

    Article  PubMed  Google Scholar 

  46. LeCun, Y., Bengio, Y. & Hinton, G. Deep learning. Nature 521, 436–444 (2015).

    Article  CAS  PubMed  Google Scholar 

  47. Gao, Z., Wang, L., Zhou, L. & Zhang, J. HEp-2 cell image classification with deep convolutional neural networks. IEEE J. Biomed. Health Inf. 21, 416–428 (2017).

    Article  Google Scholar 

  48. Liu, D., Cheng, B., Wang, Z., Zhang, H. & Huang, T. S. Enhance visual recognition under adverse conditions via deep networks. IEEE Trans. Image Process. 28, 4401–4412 (2019).

    Article  Google Scholar 

  49. Reker, D. & Brown, J. B. Selection of informative examples in chemogenomic datasets. Methods Mol. Biol. 1825, 369–410 (2018).

    Article  CAS  PubMed  Google Scholar 

  50. Korotcov, A., Tkachenko, V., Russo, D. P. & Ekins, S. Comparison of deep learning with multiple machine learning methods and metrics using diverse drug discovery data sets. Mol. Pharm. 14, 4462–4475 (2017).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  51. Moffat, J. G., Vincent, F., Lee, J. A., Eder, J. & Prunotto, M. Opportunities and challenges in phenotypic drug discovery: an industry perspective. Nat. Rev. Drug Discov. 16, 531–543 (2017).

    Article  CAS  PubMed  Google Scholar 

  52. Aliper, A. et al. Deep learning applications for predicting pharmacological properties of drugs and drug repurposing using transcriptomic data. Mol. Pharm. 13, 2524–2530 (2016).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  53. Schneider, G. & Schneider, P. Macromolecular target prediction by self-organizing feature maps. Expert Opin. Drug Discov. 12, 271–277 (2017).

    Article  CAS  PubMed  Google Scholar 

  54. Gaulton, A. et al. The ChEMBL database in 2017. Nucleic Acids Res. 45, D945–D954 (2017).

    Article  CAS  PubMed  Google Scholar 

  55. Kim, S. et al. PubChem 2019 update: improved access to chemical data. Nucleic Acids Res. 47, D1102–D1109 (2019).

    Article  PubMed  Google Scholar 

  56. Jagadeesh, K. A., Wu, D. J., Birgmeier, J. A., Boneh, D. & Bejerano, G. Deriving genomic diagnoses without revealing patient genomes. Science 357, 692–695 (2017).

    Article  CAS  PubMed  Google Scholar 

  57. Mayr, L. M. & Bojanic, D. Novel trends in high-throughput screening. Curr. Opin. Pharmacol. 9, 580–588 (2009).

    Article  CAS  PubMed  Google Scholar 

  58. Gong, Z. et al. Compound libraries: recent advances and their applications in drug discovery. Curr. Drug Discov. Technol. 14, 216–228 (2017).

    Article  CAS  PubMed  Google Scholar 

  59. Franzini, R. M. & Randolph, C. Chemical space of DNA-encoded libraries. J. Med. Chem. 59, 6629–6644 (2016).

    Article  CAS  PubMed  Google Scholar 

  60. Favalli, N., Bassi, G., Scheuermann, J. & Neri, D. DNA-encoded chemical libraries - achievements and remaining challenges. FEBS Lett. 592, 2168–2180 (2018).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  61. Lucas, X., Grüning, B. A., Bleher, S. & Günther, S. The purchasable chemical space: a detailed picture. J. Chem. Inf. Model. 55, 915–924 (2015).

    Article  CAS  PubMed  Google Scholar 

  62. Lyu, J. et al. Ultra-large library docking for discovering new chemotypes. Nature 566, 224–229 (2019).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  63. Reymond, J. L. et al. Chemical space as a source for new drugs. Med. Chem. Commun. 1, 30–38 (2010).

    Article  CAS  Google Scholar 

  64. Drew, K. L., Baiman, H., Khwaounjoo, P., Yu, B. & Reynisson, J. Size estimation of chemical space: how big is it? J. Pharm. Pharmacol. 64, 490–495 (2012).

    Article  CAS  PubMed  Google Scholar 

  65. Follmann, M. et al. An approach towards enhancement of a screening library: the Next Generation Library Initiative (NGLI) at Bayer – against all odds? Drug Discov. Today 24, 668–672 (2019).

    Article  CAS  PubMed  Google Scholar 

  66. Richter, L. Topliss batchwise schemes reviewed in the era of open data reveal significant differences between enzymes and membrane receptors. J. Chem. Inf. Model. 57, 2575–2583 (2017).

    Article  CAS  PubMed  Google Scholar 

  67. Paul, S. M. et al. How to improve R&D productivity: the pharmaceutical industry’s grand challenge. Nat. Rev. Drug Discov. 9, 203–214 (2010).

    Article  CAS  PubMed  Google Scholar 

  68. Satyanarayanajois, S. D. & Hill, R. A. Medicinal chemistry for 2020. Future Med. Chem. 3, 1765–1786 (2011).

    Article  CAS  PubMed  Google Scholar 

  69. Lusher, S. J., McGuire, R., van Schaik, R. C., Nicholson, C. D. & de Vlieg, J. Data-driven medicinal chemistry in the era of big data. Drug Discov. Today 19, 859–868 (2014).

    Article  CAS  PubMed  Google Scholar 

  70. Shatsky, M., Shulman-Peleg, A., Nussinov, R. & Wolfson, H. J. The multiple common point set problem and its application to molecule binding pattern detection. J. Comput. Biol. 13, 407–428 (2006).

    Article  CAS  PubMed  Google Scholar 

  71. Wolber, G., Seidel, T., Bendix, F. & Langer, T. Molecule-pharmacophore superpositioning and pattern matching in computational drug design. Drug Discov. Today 13, 23–29 (2008).

    Article  CAS  PubMed  Google Scholar 

  72. Schneider, G. & Fechner, U. Computer-based de novo design of drug-like molecules. Nat. Rev. Drug Discov. 4, 649–663 (2005).

    Article  CAS  PubMed  Google Scholar 

  73. Schneider, G. & Clark, D. E. Automated de novo drug design – “are we nearly there yet?”. Angew. Chem. Int. Ed. 58, 10792–10803 (2019).

    Article  CAS  Google Scholar 

  74. Schneider, G. Generative models for artificially-intelligent molecular design. Mol. Inf. 37, 1880131 (2018).

    Article  CAS  Google Scholar 

  75. Merk, D., Friedrich, L., Grisoni, F. & Schneider, G. De novo design of bioactive small molecules by artificial intelligence. Mol. Inf. 37, 1700153 (2018).

    Article  CAS  Google Scholar 

  76. Merk, D., Grisoni, F., Friedrich, L. & Schneider, G. Tuning artificial intelligence on the de novo design of natural-product-inspired retinoid X receptor modulators. Commun. Chem. 1, 68 (2018).

    Article  Google Scholar 

  77. Yang, Y., Adelstein, S. J. & Kassis, A. I. Target discovery from data mining approaches. Drug Discov. Today 14, 147–154 (2009).

    Article  PubMed  Google Scholar 

  78. Frigault, M. M. & Barrett, J. C. Is target validation all we need? Curr. Opin. Pharmacol. 17, 81–86 (2014).

    Article  CAS  PubMed  Google Scholar 

  79. Fisher, J. & Henzinger, T. A. Executable cell biology. Nat. Biotechnol. 25, 1239–1249 (2007).

    Article  CAS  PubMed  Google Scholar 

  80. Moignard, V. et al. Decoding the regulatory network of early blood development from single-cell gene expression measurements. Nat. Biotechnol. 33, 269–276 (2015).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  81. Silverbush, D. et al. Cell-specific computational modeling of the PIM pathway in acute myeloid leukemia. Cancer Res. 77, 827–838 (2017).

    Article  CAS  PubMed  Google Scholar 

  82. Miettinen K. Nonlinear Multiobjective Optimization (Springer, 1999).

  83. Lambrinidis, G. & Tsantili-Kakoulidou, A. Challenges with multi-objective QSAR in drug discovery. Expert Opin. Drug Discov. 13, 851–859 (2018).

    Article  PubMed  Google Scholar 

  84. Nicolaou, C. A. & Brown, N. Multi-objective optimization methods in drug design. Drug Discov. Today Technol. 10, e427–e435 (2013).

    Article  PubMed  Google Scholar 

  85. Nicolotti, O. et al. Strategies of multi-objective optimization in drug discovery and development. Expert Opin. Drug Discov. 6, 871–884 (2011).

    Article  CAS  PubMed  Google Scholar 

  86. Ekins, S., Honeycutt, J. D. & Metz, J. T. Evolving molecules using multi-objective optimization: applying to ADME/Tox. Drug Discov. Today 15, 451–460 (2010).

    Article  CAS  PubMed  Google Scholar 

  87. Kutchukian, P. S. & Shakhnovich, E. I. De novo design: balancing novelty and confined chemical space. Expert Opin. Drug Discov. 5, 789–812 (2010).

    Article  CAS  PubMed  Google Scholar 

  88. Grisoni, F., Merk, D., Friedrich, L. & Schneider, G. Design of natural-product-inspired multi-target ligands by machine learning. ChemMedChem 14, 1129–1134 (2019).

    Article  CAS  PubMed  Google Scholar 

  89. Wong, W. W. & Burkowski, F. J. A constructive approach for discovering new drug leads: using a kernel methodology for the inverse-QSAR problem. J. Cheminform. 1, 4 (2009).

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  90. Miyao, T., Kaneko, H. & Funatsu, K. Inverse QSPR/QSAR analysis for chemical structure generation (from y to x). J. Chem. Inf. Model. 56, 286–299 (2016).

    Article  CAS  PubMed  Google Scholar 

  91. Blaschke, T., Olivecrona, M., Engkvist, O., Bajorath, J. & Chen, H. Application of generative autoencoder in de novo molecular design. Mol. Inf. 37, 1700123 (2018).

    Article  CAS  Google Scholar 

  92. Snell, J., Swersky, K. & Zemel, R. Prototypical networks for few-shot learning. Neural Inf. Process. Syst. 31 (2017).

  93. Altae-Tran, H., Ramsundar, B., Pappu, A. S. & Pande, V. Low data drug discovery with one-shot learning. ACS Cent. Sci. 3, 283–293 (2017).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  94. Baskin, I. I. Is one-shot learning a viable option in drug discovery? Expert Opin. Drug Discov. 14, 601–603 (2019).

    Article  PubMed  Google Scholar 

  95. Duvenaud, D. K. et al. Convolutional networks on graphs for learning molecular fingerprints. Proc. Adv. Neural Inf. Process. Syst. 28, 2215–2223 (2015).

    Google Scholar 

  96. Gilmer, J., Schoenholz, S. S., Riley, P. F., Vinyals, O. & Dahl, G. E. Neural message passing for quantum chemistry. Proc. Mach. Learn. Res. 70, 1263–1272 (2017).

    Google Scholar 

  97. Jin, W., Barzilay, R. & Jaakkola, T. Junction tree variational autoencoder for molecular graph generation. Proc. Mach. Learn. Res. 80, 2323–2332 (2018).

    Google Scholar 

  98. Yuan, X., He, P., Zhu, Q. & Li, X. Adversarial examples: attacks and defenses for deep learning. IEEE Trans. Neural Netw. Learn. Syst. 30, 2805–2824 (2019).

    Article  PubMed  Google Scholar 

  99. Guo, C., Pleiss, G., Sun, Y. & Weinberger, K. Q. On calibration of modern neural networks. Proc. Mach. Learn. Res. 70, 1321–1330 (2017).

    Google Scholar 

  100. Kuleshov, V., Fenner, N. & Ermon, S. Accurate uncertainties for deep learning using calibrated regression. Proc. Mach. Learn. Res. 80, 2796–2804 (2018).

    Google Scholar 

  101. Lakshminarayanan, B., Pritzel, A. & Blundell, C. Simple and scalable predictive uncertainty estimation using deep ensembles. Adv. Neural Inf. Process. Syst. 30, 6402–6413 (2017).

    Google Scholar 

  102. Brookes, D. H., Park, H. & Listgarten, J. Conditioning by adaptive sampling for robust design. Proc. Int. Conf. Mach. Learn. 97, 773–782 (2019).

    Google Scholar 

  103. Gillet, V. J. Designing combinatorial libraries optimized on multiple objectives. Methods Mol. Biol. 275, 335–354 (2004).

    Article  CAS  PubMed  Google Scholar 

  104. Shim, V. A., Tan, K. C., Chia, J. Y. & Al Mamun, A. Multi-objective optimization with estimation of distribution algorithm in a noisy environment. Evol. Comput. 21, 149–177 (2013).

    Article  PubMed  Google Scholar 

  105. Kramer, O. Self-Adaptive Heuristic for Evolutionary Computation (Springer-Verlag, 2008).

  106. Hansen, N. The CMA evolution strategy: a tutorial. Preprint at arXiv https://arxiv.org/abs/1604.00772 (2016).

  107. Ollivier, Y., Arnold, L., Auger, A. & Hansen, N. Information-geometric optimization algorithms: a unifying picture via invariance principles. J. Mach. Lern. Res. 18, 1–65 (2017).

    Google Scholar 

  108. Brookes, D. H., Busia, A., Fannjiang, C., Murphy K. & Listgarten, J. A view of estimation of distribution algorithms through the lens of expectation-maximization. Preprint at arXiv https://arxiv.org/abs/1905.10474 (2019).

  109. Sutton, R. S. & Barto, A. G. Reinforcement Learning: An Introduction (MIT Press, 1998).

  110. Schmidhuber, J. Deep learning in neural networks: an overview. Neural Netw. 61, 85–117 (2015).

    Article  PubMed  Google Scholar 

  111. Kingma, D. P. & Welling, M. Auto-encoding variational Bayes. Preprint at arXiv https://arxiv.org/abs/1312.6114 (2014).

  112. Mikolov, T., Sutskever, I., Chen, K., Corrado, G. & Dean, J. Distributed representations of words and phrases and their compositionality. Preprint at arXiv https://arxiv.org/abs/1310.4546 (2013).

  113. Schneider, G. & Wrede, P. Artificial neural networks for computer-based molecular design. Prog. Biophys. Mol. Biol. 70, 175–222 (1998).

    Article  CAS  PubMed  Google Scholar 

  114. Schneider, G. Neural networks are useful tools for drug design. Neural Netw. 13, 15–16 (2000).

    Article  CAS  PubMed  Google Scholar 

  115. Zupan, J. & Gasteiger, J. Neural Networks for Chemists (VCH, 1993).

  116. Gómez-Bombarelli, R. et al. Automatic chemical design using a data-driven continuous representation of molecules. ACS Cent. Sci. 4, 268–276 (2018).

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  117. Sattarov, B. et al. De novo molecular design by combining deep autoencoder recurrent neural networks with generative topographic mapping. J. Chem. Inf. Model. 59, 1182–1196 (2019).

    Article  CAS  PubMed  Google Scholar 

  118. Hopkins, A. L., Keserü, G. M., Leeson, P. D., Rees, D. C. & Reynolds, C. H. The role of ligand efficiency metrics in drug discovery. Nat. Rev. Drug Discov. 13, 105–121 (2014).

    Article  CAS  PubMed  Google Scholar 

  119. Cavalluzzi, M. M., Mangiatordi, G. F., Nicolotti, O. & Lentini, G. Ligand efficiency metrics in drug discovery: the pros and cons from a practical perspective. Expert Opin. Drug Discov. 12, 1087–1104 (2017).

    Article  CAS  PubMed  Google Scholar 

  120. Meanwell, N. A. Improving drug design: an update on recent applications of efficiency metrics, strategies for replacing problematic elements, and compounds in nontraditional drug space. Chem. Res. Toxicol. 29, 564–616 (2016).

    Article  CAS  PubMed  Google Scholar 

  121. Kenny, P. W., Leitão., A. & Montanari, C. A. Ligand efficiency metrics considered harmful. J. Comput. Aided Mol. Des. 28, 699–710 (2014).

    Article  CAS  PubMed  Google Scholar 

  122. Plowright, A. T. et al. Hypothesis driven drug design: improving quality and effectiveness of the design-make-test-analyse cycle. Drug Discov. Today 17, 56–62 (2012).

    Article  CAS  PubMed  Google Scholar 

  123. Cumming, J. G., Davis, A. M., Muresan, S., Haeberlein, M. & Chen, H. Chemical predictive modelling to improve compound quality. Nat. Rev. Drug Discov. 12, 948–962 (2013).

    Article  CAS  PubMed  Google Scholar 

  124. Harrison, S. et al. Extending ‘predict first’ to the design-make-test cycle in small-molecule drug discovery. Future Med. Chem. 9, 533–536 (2017).

    Article  CAS  PubMed  Google Scholar 

  125. Andersson, S. et al. Making medicinal chemistry more effective – application of Lean Sigma to improve processes, speed and quality. Drug Discov. Today 14, 598–604 (2009).

    Article  CAS  PubMed  Google Scholar 

  126. Blakemore, D. C. et al. Organic synthesis provides opportunities to transform drug discovery. Nat. Chem. 10, 383–394 (2018).

    Article  CAS  PubMed  Google Scholar 

  127. Schneider, G. Automating drug discovery. Nat. Rev. Drug Discov. 17, 97–113 (2018).

    Article  CAS  PubMed  Google Scholar 

  128. Reker, D., Schneider, P. & Schneider, G. Multi-objective active machine learning rapidly improves structure-activity models and reveals new protein-protein interaction inhibitors. Chem. Sci. 7, 3919–3927 (2016).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  129. Reker, D., Schneider, P., Schneider, G. & Brown, J. B. Active learning for computational chemogenomics. Future Med. Chem. 9, 381–402 (2017).

    Article  CAS  PubMed  Google Scholar 

  130. Steiner, S. et al. Organic synthesis in a modular robotic system driven by a chemical programming language. Science 363, eaav2211 (2019).

    Article  CAS  PubMed  Google Scholar 

  131. Nettekoven, M. & Thomas, A. W. Accelerating drug discovery by integrative implementation of laboratory automation in the work flow. Curr. Med. Chem. 9, 2179–2190 (2002).

    Article  CAS  PubMed  Google Scholar 

  132. Selekman, J. A. et al. High-throughput automation in chemical process development. Annu. Rev. Chem. Biomol. Eng. 8, 525–547 (2017).

    Article  PubMed  Google Scholar 

  133. King, R. D. et al. Make way for robot scientists. Science 325, 945 (2009).

    Article  CAS  PubMed  Google Scholar 

  134. Dimitrov, T., Kreisbeck, C., Becker, J. S., Aspuru-Guzik, A. & Saikin, S. K. Autonomous molecular design: then and now. ACS Appl. Mater. Interfaces 11, 28 (2019).

    Article  CAS  Google Scholar 

  135. Jordan, A. M. & Roughley, S. D. Drug discovery chemistry: a primer for the non-specialist. Drug Discov. Today 14, 731–744 (2009).

    Article  PubMed  Google Scholar 

  136. Roughley, S. D. & Jordan, A. M. The medicinal chemist’s toolbox: an analysis of reactions used in the pursuit of drug candidates. J. Med. Chem. 54, 3451–3479 (2011).

    Article  CAS  PubMed  Google Scholar 

  137. Boström, J. & Brown, D. G. Stuck in a rut with old chemistry. Drug Discov. Today 21, 701–703 (2016).

    Article  PubMed  Google Scholar 

  138. Boström, J., Brown, D. G., Young, R. J. & Keserü, G. M. Expanding the medicinal chemistry synthetic toolbox. Nat. Rev. Drug Discov. 17, 709–727 (2018).

    Article  PubMed  CAS  Google Scholar 

  139. Segall, M. D. Multi-parameter optimization: identifying high quality compounds with a balance of properties. Curr. Pharm. Des. 18, 1292–1310 (2012).

    Article  CAS  PubMed  Google Scholar 

  140. Scott, J. S. & Waring, M. J. Practical application of ligand efficiency metrics in lead optimization. Bioorg. Med. Chem. 26, 3006–3015 (2018).

    Article  CAS  PubMed  Google Scholar 

  141. Griffen, E., Leach, A. G., Robb, G. R. & Warner, D. J. Matched molecular pairs as a medicinal chemistry tool. J. Med. Chem. 54, 7739–7750 (2011).

    Article  CAS  PubMed  Google Scholar 

  142. King, R. D. et al. The automation of science. Science 324, 85–89 (2009).

    Article  CAS  PubMed  Google Scholar 

  143. Hessler, G. & Baringhaus, K. H. Artificial intelligence in drug design. Molecules 23, 2520 (2018).

    Article  PubMed Central  CAS  Google Scholar 

  144. Szymkuć, S. et al. Computer-assisted synthetic planning: the end of the beginning. Angew. Chem. Int. Ed. 55, 5904–5937 (2016).

    Article  CAS  Google Scholar 

  145. Segler, M. H. S., Preuss, M. & Waller, M. P. Planning chemical syntheses with deep neural networks and symbolic AI. Nature 555, 604–610 (2018).

    Article  CAS  PubMed  Google Scholar 

  146. Coley, C. W., Green, W. H. & Jensen, K. F. Machine learning in computer-aided synthesis planning. Acc. Chem. Res. 51, 1281–1289 (2018).

    Article  CAS  PubMed  Google Scholar 

  147. Bédard, A. C. et al. Reconfigurable system for automated optimization of diverse chemical reactions. Science 361, 1220–1225 (2018).

    Article  PubMed  CAS  Google Scholar 

  148. Rohall, S. L., Pancost-Heidebrecht, M., Shirley, B., Bacon, D. & Tarselli, M. A. Recommendations for chemists: a case study. in Proc. 12th ACM Conf. Recom. Syst. 347–351 (ACM, 2018).

  149. Zhavoronkov, A. et al. Deep learning enables rapid identification of potent DDR1 kinase inhibitors. Nat. Biotechnol. 37, 1038–1040 (2019).

    Article  CAS  PubMed  Google Scholar 

  150. Canning, P. et al. Structural mechanisms determining inhibition of the collagen receptor DDR1 by selective and multi-targeted type II kinase inhibitors. J. Mol. Biol. 426, 2457–2470 (2014).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  151. Thrun, S. & Pratt, L. (eds). Learning to Learn (Springer, 2012).

  152. Gupta, A. et al. Generative recurrent networks for de novo drug design. Mol. Inf. 37, 1700111 (2018).

    Article  CAS  Google Scholar 

  153. Bruns, D., Merk, D., Kumar, K. S., Baumgartner, M. & Schneider, G. Synthetic activators of cell migration designed by constructive machine learning. ChemistryOpen 8, 1303–1308 (2019).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  154. Sieroka, N., Otto, V. I. & Folkers, G. Critical thinking in education and research – why and how? Angew. Chem. Int. Ed. 57, 16574–16575 (2018).

    Article  CAS  Google Scholar 

  155. Kut, E., Sieroka, N., Folkers, G., & Otto, V. I. A new course fosters critical thinking on pharmaceutical sciences at ETH Zurich. ChemMedChem News https://onlinelibrary.wiley.com/page/journal/18607187/homepage/archive (2018).

  156. Azzaoui, K. et al. Scientific competency questions as the basis for semantically enriched open pharmacological space development. Drug Discov. Today 18, 843–852 (2013).

    Article  PubMed  Google Scholar 

  157. Topol, E. J. High-performance medicine: the convergence of human and artificial intelligence. Nat. Med. 25, 44–56 (2019).

    Article  CAS  PubMed  Google Scholar 

  158. Goldberg, K. Robots and the return to collaborative intelligence. Nat. Mach. Intell. 1, 2–4 (2019).

    Article  Google Scholar 

  159. Heuer, L. AI could threaten pharmaceutical patents. Nature 558, 519 (2018).

    Article  CAS  PubMed  Google Scholar 

  160. King, R. D. & Courtney, P. Dilemma over AI and drug patenting already under debate. Nature 560, 307 (2018).

    Article  CAS  PubMed  Google Scholar 

  161. Olley, D. (ed.) Artificial intelligence: how knowledge is created, transferred, and used (Elsevier, 2019).

  162. Brown, S. P., Muchmore, S. W. & Hajduk, P. J. Healthy skepticism: assessing realistic model performance. Drug Discov. Today 14, 420–427 (2009).

    Article  PubMed  Google Scholar 

  163. McDonagh, J. L., Nath, N., De Ferrari, L., van Mourik, T. & Mitchell, J. B. O. Uniting cheminformatics and chemical theory to predict the intrinsic aqueous solubility of crystalline druglike molecules. J. Chem. Inf. Model. 54, 844–856 (2014).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  164. Hartenfeller, M. et al. DOGS: Reaction-driven de novo design of bioactive compounds. PLOS Comput. Biol. 8, e1002380 (2012).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  165. Schwaller, P., Gaudin, T., Lányi, D., Bekas, C. & Laino, T. “Found in Translation”: predicting outcomes of complex organic chemistry reactions using neural sequence-to-sequence models. Chem. Sci. 9, 6091–6098 (2018).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  166. Button, A., Merk, D., Hiss, J. A. & Schneider, G. Automated de novo molecular design by hybrid machine intelligence and rule-driven chemical synthesis. Nat. Mach. Intell. 1, 307–315 (2019).

    Article  Google Scholar 

  167. Yuan, W. et al. Chemical space mimicry for drug discovery. J. Chem. Inf. Model. 57, 875–882 (2017).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  168. Segler, M. H. S., Kogej, T., Tyrchan, C. & Waller, M. P. Generating focused molecule libraries for drug discovery with recurrent neural networks. ACS Cent. Sci. 4, 120–131 (2018).

    Article  CAS  PubMed  Google Scholar 

  169. Popova, M., Isayev, O. & Tropsha, A. Deep reinforcement learning for de novo drug design. Sci. Adv. 4, eaap7885 (2018).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  170. Perron, Q. et al. Deep learning for ligand-based de novo design in lead optimization: a real life case study. Presented at the XXV EFMC International Symposium on Medicinal Chemistry (2018).

  171. Rodriguez, T. et al. Multidimensional de novo design reveals 5-HT2B receptor-selective ligands. Angew. Chem. Int. Ed. 54, 1551–1555 (2015).

    Article  CAS  Google Scholar 

  172. Reutlinger, M., Rodrigues, T., Schneider, P. & Schneider, G. Multi-objective molecular de novo design by adaptive fragment prioritization. Angew. Chem. Int. Ed. 53, 4244–4248 (2014).

    Article  CAS  Google Scholar 

  173. Parry, D. M. Closing the loop: developing an integrated design, make, and test platform for discovery. ACS Med. Chem. Lett. 10, 848–856 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Esch, E. W., Bahinski, A. & Huh, D. Organs–on–chips at the frontiers of drug discovery. Nat. Rev. Drug Discov. 14, 248–260 (2015).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  175. Eglen, R. M. & Randle, D. H. Drug discovery goes three-dimensional: goodbye to flat high-throughput screening? Assay. Drug Dev. Technol. 13, 262–265 (2015).

    Article  CAS  PubMed  Google Scholar 

  176. Jones, L. H. & Bunnage, M. E. Applications of chemogenomic library screening in drug discovery. Nat. Rev. Drug Discov. 16, 285–296 (2017).

    Article  CAS  PubMed  Google Scholar 

  177. Trobe, M. & Burke, M. D. The molecular industrial revolution: automated synthesis of small molecules. Angew. Chem. Int. Ed. 57, 4192–4214 (2018).

    Article  CAS  Google Scholar 

  178. Baranczak, A. et al. Integrated platform for expedited synthesis–purification–testing of small molecule libraries. ACS Med. Chem. Lett. 8, 461–465 (2017).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  179. Vasudevan, A., Bogdan, A. R., Koolman, H. F., Wang, Y. & Djuric, S. W. Enabling chemistry technologies and parallel synthesis–accelerators of drug discovery programmes. Prog. Med. Chem. 56, 1–35 (2017).

    Article  CAS  PubMed  Google Scholar 

  180. Pant, S. M. et al. Design, synthesis, and testing of potent, selective hepsin inhibitors via application of an automated closed-loop opptimization platform. J. Med. Chem. 61, 4335–4347 (2018).

    Article  CAS  PubMed  Google Scholar 

  181. Gesmundo, N. J. et al. Nanoscale synthesis and affinity ranking. Nature 557, 228–232 (2018).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This article is based on a meeting involving a group of international experts from diverse scientific backgrounds and institutions convened in San Francisco in December 2018 for a workshop organized by the RETHINK think-and-do tank of ETH Zurich to rethink drug design with artificial intelligence. Figure 1 was created and contributed by Jack Burgess, who also acted as a visual scribe during the workshop. Jürg Brunnschweiler and the ETH Global team are thanked for excellent organizational support. This research was financially supported by the RETHINK initiative of ETH Zurich.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to the content and approved the final version of the manuscript.

Corresponding author

Correspondence to Gisbert Schneider.

Ethics declarations

Competing interests

G.S. and P.S. declare a potential financial conflict of interest in their role as life science industry consultants and cofounders of inSili.com GmbH, Zurich. The remaining authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Click2Drug: https://www.click2drug.org/

The ATOM Consortium: https://www.atomscience.org

The Innovative Medicines Initiative: https://www.imi.europa.eu/

The SALT Knowledge Share Consortium: https://www.medchemica.com/the-salt-knowledge-share-consortium/

Glossary

Adaptive algorithm

An adaptive algorithm implements a problem-solving heuristic that changes its behaviour at the time it is run, based on information available and a reward mechanism.

Artificial intelligence

(AI). The various definitions and interpretations of this term agree on three essential capabilities of an AI (most often referring to a computer or machine): (i) problem solving, (ii) learning from experience (memory and adaptation) and (iii) coping with new challenges (generalization).

Deep learning

A set of machine learning techniques that utilize multi-layer neural networks to derive relationships from data, specifically the use of neural networks (see below) with many layers. Neural networks with many layers are called ‘deep neural networks’, which corresponds to having many layers of function compositions. Typically, the deeper the layer, the more abstract the semantics of its ‘feature space’ (that is, the implicit representation created by the neural network at that layer).

Hypothesis

A supposition or proposed explanation made on the basis of limited evidence as a starting point for further investigation, without any assumption of its truth. In the context of drug design, a molecular structure can serve as a hypothesis.

Machine learning

The science (and art) of programming computers so that they can learn from data; also a branch of artificial intelligence focused on one of several tasks, typically all function approximators. The most common task is the construction and training of classifier models, followed by regression models — both forms of ‘supervised learning’, wherein pairs of ‘inputs’ and ‘labels’ are used to train the model to then make label predictions for cases where only the inputs are observed. Also common in machine learning is ‘unsupervised learning’, wherein only ‘inputs’ are used (for example, a list of molecules numerically encoded such as by way of SMILES strings) and general properties of these are learned by the model, which can then tell you how likely a new input is to have belonged to this set of objects, or can be used to generate ‘new’ such objects. More nuanced mixing and matching of tasks is also possible, yielding ‘semi-supervised learning’.

Natural language processing

(NLP). NLP is concerned with the interactions between computers and human (natural) languages, in particular how to process and analyse large amounts of natural language data, for example, scientific literature. Deep statistical machine learning models achieve state-of-the-art results in many natural language tasks, for example, in language modelling and parsing. NLP can also be used for chemical language analysis and de novo design.

Neural networks

A particular type of function approximators wherein functions that predict discrete classes (classifiers) or real-values (regression models) do so by composing a series of (typically nonlinear) functions, each one converting the previous layer’s outputs into a new ‘space’. These models have been around for decades but came to prominence in the 1990s when the combination of access to large datasets, along with the ability to train ‘deep’ models (see Deep learning) and more powerful computers, enabled them to break benchmarks in computational audio and vision tasks.

Research culture

A community sharing certain practices or using a common method or exemplar, that is, speaking a common language (including formalisms and algorithms) or sharing typical instances, illustrations or exemplifications (including molecular structures).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schneider, P., Walters, W.P., Plowright, A.T. et al. Rethinking drug design in the artificial intelligence era. Nat Rev Drug Discov 19, 353–364 (2020). https://doi.org/10.1038/s41573-019-0050-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41573-019-0050-3

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research