[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Exploring the next generation of antibody–drug conjugates

Abstract

Antibody–drug conjugates (ADCs) are a promising cancer treatment modality that enables the selective delivery of highly cytotoxic payloads to tumours. However, realizing the full potential of this platform necessitates innovative molecular designs to tackle several clinical challenges such as drug resistance, tumour heterogeneity and treatment-related adverse effects. Several emerging ADC formats exist, including bispecific ADCs, conditionally active ADCs (also known as probody–drug conjugates), immune-stimulating ADCs, protein-degrader ADCs and dual-drug ADCs, and each offers unique capabilities for tackling these various challenges. For example, probody–drug conjugates can enhance tumour specificity, whereas bispecific ADCs and dual-drug ADCs can address resistance and heterogeneity with enhanced activity. The incorporation of immune-stimulating and protein-degrader ADCs, which have distinct mechanisms of action, into existing treatment strategies could enable multimodal cancer treatment. Despite the promising outlook, the importance of patient stratification and biomarker identification cannot be overstated for these emerging ADCs, as these factors are crucial to identify patients who are most likely to derive benefit. As we continue to deepen our understanding of tumour biology and refine ADC design, we will edge closer to developing truly effective and safe ADCs for patients with treatment-refractory cancers. In this Review, we highlight advances in each ADC component (the monoclonal antibody, payload, linker and conjugation chemistry) and provide more-detailed discussions on selected examples of emerging novel ADCs of each format, enabled by engineering of one or more of these components.

Key points

  • Antibody–drug conjugates (ADCs) are an effective cancer therapy, although responses to these agents are often limited by acquired resistance and treatment-related adverse effects.

  • Advances in the various ADC components (namely the antibody, linker, payload and conjugation chemistry) will be key to improving both the efficacy and safety of these agents.

  • To address these challenges, several novel ADC formats have been developed, including bispecific ADCs, probody–drug conjugates, immune-stimulating ADCs, protein-degrader ADCs and dual-drug ADCs.

  • Probody–drug conjugates are expected to have improved tumour specificity, whereas bispecific ADCs and dual-drug ADCs have the potential to combat drug resistance and tumour heterogeneity.

  • Integrating immune-stimulating ADCs and protein-degrader ADCs with current treatment regimens might enable multimodal treatment, potentially through several distinct mechanisms of action.

  • Patient stratification and biomarker identification will be crucial to maximize the clinical benefits of these emerging ADCs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Components, molecular properties and novel designs of antibody–drug conjugates.
Fig. 2: Bispecific antibody–drug conjugates currently under clinical investigation.
Fig. 3: Probody–drug conjugates.
Fig. 4: Immune-stimulating antibody conjugates.
Fig. 5: Degrader–antibody conjugates.
Fig. 6: Dual-drug ADCs.

Similar content being viewed by others

References

  1. Drago, J. Z., Modi, S. & Chandarlapaty, S. Unlocking the potential of antibody–drug conjugates for cancer therapy. Nat. Rev. Clin. Oncol. 18, 327–344 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Dumontet, C., Reichert, J. M., Senter, P. D., Lambert, J. M. & Beck, A. Antibody–drug conjugates come of age in oncology. Nat. Rev. Drug. Discov. 22, 641–661 (2023).

    Article  CAS  PubMed  Google Scholar 

  3. Tarantino, P., Ricciuti, B., Pradhan, S. M. & Tolaney, S. M. Optimizing the safety of antibody–drug conjugates for patients with solid tumours. Nat. Rev. Clin. Oncol. 20, 558–576 (2023).

    Article  CAS  PubMed  Google Scholar 

  4. Beck, A., Goetsch, L., Dumontet, C. & Corvaïa, N. Strategies and challenges for the next generation of antibody–drug conjugates. Nat. Rev. Drug. Discov. 16, 315–337 (2017).

    Article  CAS  PubMed  Google Scholar 

  5. Maecker, H., Jonnalagadda, V., Bhakta, S., Jammalamadaka, V. & Junutula, J. R. Exploration of the antibody–drug conjugate clinical landscape. MAbs 15, 2229101 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Grand View Research. Antibody Drug Conjugates Market Size, Share & Trends Analysis Report by Application (Blood Cancer, Breast Cancer), by Technology ({Type-Cleavable, Non-Cleavable}), by Region, and Segment Forecasts, 2023–2030, https://www.grandviewresearch.com/industry-analysis/antibody-drug-conjugates-market (2024).

  7. Dagogo-Jack, I. & Shaw, A. T. Tumour heterogeneity and resistance to cancer therapies. Nat. Rev. Clin. Oncol. 15, 81–94 (2018).

    Article  CAS  PubMed  Google Scholar 

  8. Loganzo, F., Sung, M. & Gerber, H.-P. Mechanisms of resistance to antibody–drug conjugates. Mol. Cancer Ther. 15, 2825–2834 (2016).

    Article  CAS  PubMed  Google Scholar 

  9. García-Alonso, S., Ocaña, A. & Pandiella, A. Resistance to antibody–drug conjugates. Cancer Res. 78, 2159–2165 (2018).

    Article  PubMed  Google Scholar 

  10. Norsworthy, K. J. et al. FDA approval summary: mylotarg for treatment of patients with relapsed or refractory CD33-positive acute myeloid leukemia. Oncologist 23, 1103–1108 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Ricart, A. D. Antibody–drug conjugates of calicheamicin derivative: gemtuzumab ozogamicin and inotuzumab ozogamicin. Clin. Cancer Res. 17, 6417–6427 (2011).

    Article  CAS  PubMed  Google Scholar 

  12. Yu, J., Song, Y. & Tian, W. How to select IgG subclasses in developing anti-tumor therapeutic antibodies. J. Hematol. Oncol. 13, 45 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Hock, M. B., Thudium, K. E., Carrasco-Triguero, M. & Schwabe, N. F. Immunogenicity of antibody drug conjugates: bioanalytical methods and monitoring strategy for a novel therapeutic modality. AAPS J. 17, 35–43 (2015).

    Article  CAS  PubMed  Google Scholar 

  14. Gorovits, B. & Krinos-Fiorotti, C. Proposed mechanism of off-target toxicity for antibody–drug conjugates driven by mannose receptor uptake. Cancer Immunol. Immunother. 62, 217–223 (2013).

    Article  CAS  PubMed  Google Scholar 

  15. Yamazoe, S. et al. Impact of drug conjugation on thermal and metabolic stabilities of aglycosylated and N-glycosylated antibodies. Bioconjug. Chem. 33, 576–585 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Gutierrez, C. & Schiff, R. HER2: biology, detection, and clinical implications. Arch. Pathol. Lab. Med. 135, 55–62 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Stepan, L. P. et al. Expression of Trop2 cell surface glycoprotein in normal and tumor tissues: potential implications as a cancer therapeutic target. J. Histochem. Cytochem. 59, 701–710 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Pegram, M. D. et al. First-in-human, phase 1 dose-escalation study of biparatopic anti-HER2 antibody–drug conjugate MEDI4276 in patients with HER2-positive advanced breast or gastric cancer. Mol. Cancer Ther. 20, 1442–1453 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Le Joncour, V. et al. A novel anti-HER2 antibody-drug conjugate XMT-1522 for HER2-positive breast and gastric cancers resistant to trastuzumab emtansine. Mol. Cancer Ther. 18, 1721–1730 (2019).

    Article  PubMed  Google Scholar 

  20. Mersana Therapeutics. Mersana Therapeutics announces partial clinical hold for XMT-1522 clinical trial. https://ir.mersana.com/news-releases/news-release-details/mersana-therapeutics-announces-partial-clinical-hold-xmt-1522 (2018).

  21. Duvall, J. R. et al. XMT-2056, a HER2-targeted immunosynthen STING-agonist antibody-drug conjugate, binds a novel epitope of HER2 and shows increased anti-tumor activity in combination with trastuzumab and pertuzumab. Cancer Res. 82 (Suppl. 12), Abstr. 3503 (2022).

    Article  Google Scholar 

  22. Mersana Therapeutics. Mersana Therapeutics announces clinical hold on XMT-2056 phase 1 clinical trial. https://ir.mersana.com/news-releases/news-release-details/mersana-therapeutics-announces-clinical-hold-xmt-2056-phase-1 (2023).

  23. King, G. T. et al. A phase 1, dose-escalation study of PF-06664178, an anti-Trop-2/Aur0101 antibody-drug conjugate in patients with advanced or metastatic solid tumors. Invest. New Drugs 36, 836–847 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Gan, H. K., Cvrljevic, A. N. & Johns, T. G. The epidermal growth factor receptor variant III (EGFRvIII): where wild things are altered. FEBS J. 280, 5350–5370 (2013).

    Article  CAS  PubMed  Google Scholar 

  25. Phillips, A. C. et al. ABT-414, an antibody–drug conjugate targeting a tumor-selective EGFR epitope. Mol. Cancer Ther. 15, 661–669 (2016).

    Article  CAS  PubMed  Google Scholar 

  26. Trerotola, M. et al. Trop-2 cleavage by ADAM10 is an activator switch for cancer growth and metastasis. Neoplasia 23, 415–428 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Alberti, S., Trerotola, M. & Guerra, E. The Hu2G10 tumor-selective anti-Trop-2 monoclonal antibody targets the cleaved-activated Trop-2 and shows therapeutic efficacy against multiple human cancers. Cancer Res. 82 (Suppl. 12), Abstr. 340 (2022).

    Article  Google Scholar 

  28. Kim, H. et al. LCB84, a TROP2-targeted ADC, for treatment of solid tumors that express TROP-2 using the hu2G10 tumor-selective anti-TROP2 monoclonal antibody, a proprietary site-directed conjugation technology and plasma-stable tumor-selective linker chemistry. Cancer Res. 82 (Suppl. 12), Abstr. 328 (2022).

    Article  Google Scholar 

  29. Li, C.-W. et al. Eradication of triple-negative breast cancer cells by targeting glycosylated PD-L1. Cancer Cell 33, 187–201.e10 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. de Goeij, B. E. C. G. et al. High turnover of tissue factor enables efficient intracellular delivery of antibody–drug conjugates. Mol. Cancer Ther. 14, 1130–1140 (2015).

    Article  PubMed  Google Scholar 

  31. Thurber, G. M., Schmidt, M. M. & Wittrup, K. D. Antibody tumor penetration: transport opposed by systemic and antigen-mediated clearance. Adv. Drug. Deliv. Rev. 60, 1421–1434 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Adams, G. P. et al. High affinity restricts the localization and tumor penetration of single-chain Fv antibody molecules. Cancer Res. 61, 4750–4755 (2001).

    CAS  PubMed  Google Scholar 

  33. Samantasinghar, A. et al. A comprehensive review of key factors affecting the efficacy of antibody drug conjugate. Biomed. Pharmacother. 161, 114408 (2023).

    Article  CAS  PubMed  Google Scholar 

  34. Yadav, A., Mandal, M. K. & Dubey, K. K. In vitro cytotoxicity study of cyclophosphamide, etoposide and paclitaxel on monocyte macrophage cell line raw 264.7. Indian J. Microbiol. 60, 511–517 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Tumey, L. N. et al. Optimization of tubulysin antibody–drug conjugates: a case study in addressing ADC metabolism. ACS Med. Chem. Lett. 7, 977–982 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Staben, L. R. et al. Stabilizing a tubulysin antibody–drug conjugate to enable activity against multidrug-resistant tumors. ACS Med. Chem. Lett. 8, 1037–1041 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Burke, P. J. et al. Glucuronide-linked antibody–tubulysin conjugates display activity in MDR+ and heterogeneous tumor models. Mol. Cancer Ther. 17, 1752–1760 (2018).

    Article  CAS  PubMed  Google Scholar 

  38. Hamilton, J. Z. et al. Improving antibody–tubulysin conjugates through linker chemistry and site-specific conjugation. ChemMedChem 16, 1077–1081 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Rottey, S. et al. Phase I/IIa trial of BMS-986148, an anti-mesothelin antibody–drug conjugate, alone or in combination with nivolumab in patients with advanced solid tumors. Clin. Cancer Res. 28, 95–105 (2022).

    Article  CAS  PubMed  Google Scholar 

  40. Yao, H.-P., Zhao, H., Hudson, R., Tong, X.-M. & Wang, M.-H. Duocarmycin-based antibody–drug conjugates as an emerging biotherapeutic entity for targeted cancer therapy: pharmaceutical strategy and clinical progress. Drug Discov. Today 26, 1857–1874 (2021).

    Article  CAS  PubMed  Google Scholar 

  41. Yu, S.-F. et al. A novel anti-CD22 anthracycline-based antibody-drug conjugate (ADC) that overcomes resistance to auristatin-based ADCs. Clin. Cancer Res. 21, 3298–3306 (2015).

    Article  CAS  PubMed  Google Scholar 

  42. Stefan, N. et al. Highly potent, anthracycline-based antibody-drug conjugates generated by enzymatic, site-specific conjugation. Mol. Cancer Ther. 16, 879–892 (2017).

    Article  MathSciNet  CAS  PubMed  Google Scholar 

  43. Holte, D. et al. Evaluation of PNU-159682 antibody drug conjugates (ADCs). Bioorg. Med. Chem. Lett. 30, 127640 (2020).

    Article  CAS  PubMed  Google Scholar 

  44. Pahl, A., Lutz, C. & Hechler, T. Amanitins and their development as a payload for antibody-drug conjugates. Drug Discov. Today Technol. 30, 85–89 (2018).

    Article  PubMed  Google Scholar 

  45. Liu, Y. et al. TP53 loss creates therapeutic vulnerability in colorectal cancer. Nature 520, 697–701 (2015).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  46. Vaisitti, T. et al. Anti-CD37 α-amanitin-conjugated antibodies as potential therapeutic weapons for Richter syndrome. Blood 140, 1565–1569 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Ackerman, S. E. et al. Immune-stimulating antibody conjugates elicit robust myeloid activation and durable antitumor immunity. Nat. Cancer 2, 18–33 (2021).

    Article  CAS  PubMed  Google Scholar 

  48. Hong, K. B. & An, H. Degrader–antibody conjugates: emerging new modality. J. Med. Chem. 66, 140–148 (2023).

    Article  CAS  PubMed  Google Scholar 

  49. Khera, E. et al. Cellular-resolution imaging of bystander payload tissue penetration from antibody–drug conjugates. Mol. Cancer Ther. 21, 310–321 (2022).

    Article  CAS  PubMed  Google Scholar 

  50. Staudacher, A. H. & Brown, M. P. Antibody drug conjugates and bystander killing: is antigen-dependent internalisation required? Br. J. Cancer 117, 1736–1742 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Dei, S., Braconi, L., Romanelli, M. N. & Teodori, E. Recent advances in the search of BCRP- and dual P-gp/BCRP-based multidrug resistance modulators. Cancer Drug Resist. 2, 710–743 (2019).

    PubMed  PubMed Central  Google Scholar 

  52. Buecheler, J. W., Winzer, M., Tonillo, J., Weber, C. & Gieseler, H. Impact of payload hydrophobicity on the stability of antibody–drug conjugates. Mol. Pharm. 15, 2656–2664 (2018).

    Article  CAS  PubMed  Google Scholar 

  53. Lyon, R. P. et al. Reducing hydrophobicity of homogeneous antibody–drug conjugates improves pharmacokinetics and therapeutic index. Nat. Biotechnol. 33, 733–735 (2015).

    Article  CAS  PubMed  Google Scholar 

  54. Lundahl, M. L. E., Fogli, S., Colavita, P. E. & Scanlan, E. M. Aggregation of protein therapeutics enhances their immunogenicity: causes and mitigation strategies. RSC Chem. Biol. 2, 1004–1020 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Lyski, R. D. et al. Development of novel antibody–camptothecin conjugates. Mol. Cancer Ther. 20, 329–339 (2021).

    Article  CAS  PubMed  Google Scholar 

  56. Simmons, J. K., Burke, P. J., Cochran, J. H., Pittman, P. G. & Lyon, R. P. Reducing the antigen-independent toxicity of antibody–drug conjugates by minimizing their non-specific clearance through PEGylation. Toxicol. Appl. Pharmacol. 392, 114932 (2020).

    Article  CAS  PubMed  Google Scholar 

  57. Meyer, D. W. et al. An in vitro assay using cultured Kupffer cells can predict the impact of drug conjugation on in vivo antibody pharmacokinetics. Mol. Pharm. 17, 802–809 (2020).

    Article  CAS  PubMed  Google Scholar 

  58. Zhao, H. et al. Modulation of macropinocytosis-mediated internalization decreases ocular toxicity of antibody–drug conjugates. Cancer Res. 78, 2115–2126 (2018).

    Article  CAS  PubMed  Google Scholar 

  59. Zhao, H. et al. Inhibition of megakaryocyte differentiation by antibody–drug conjugates (ADCs) is mediated by macropinocytosis: implications for ADC-induced thrombocytopenia. Mol. Cancer Ther. 16, 1877–1886 (2017).

    Article  CAS  PubMed  Google Scholar 

  60. Guffroy, M. et al. Liver microvascular injury and thrombocytopenia of antibody–calicheamicin conjugates in cynomolgus monkeys—mechanism and monitoring. Clin. Cancer Res. 23, 1760–1770 (2017).

    Article  CAS  PubMed  Google Scholar 

  61. Burke, P. J. et al. Optimization of a PEGylated glucuronide-monomethylauristatin E linker for antibody-drug conjugates. Mol. Cancer Ther. 16, 116–123 (2017).

    Article  CAS  PubMed  Google Scholar 

  62. Ochtrop, P. et al. Compact hydrophilic electrophiles enable highly efficacious high DAR ADCs with excellent in vivo PK profile. Chem. Sci. 14, 2259–2266 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Viricel, W. et al. Monodisperse polysarcosine-based highly-loaded antibody–drug conjugates. Chem. Sci. 10, 4048–4053 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Hu, Y., Hou, Y., Wang, H. & Lu, H. Polysarcosine as an alternative to PEG for therapeutic protein conjugation. Bioconjug. Chem. 29, 2232–2238 (2018).

    Article  CAS  PubMed  Google Scholar 

  65. Conilh, L. et al. Exatecan antibody drug conjugates based on a hydrophilic polysarcosine drug-linker platform. Pharmaceuticals 14, 247 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Weng, W. et al. Antibody–exatecan conjugates with a novel self-immolative moiety overcome resistance in colon and lung cancer. Cancer Discov. 13, 950–973 (2023).

    Article  PubMed  Google Scholar 

  67. Tsuchikama, K. & An, Z. Antibody–drug conjugates: recent advances in conjugation and linker chemistries. Protein Cell 9, 33–46 (2018).

    Article  CAS  PubMed  Google Scholar 

  68. Su, D. & Zhang, D. Linker design impacts antibody–drug conjugate pharmacokinetics and efficacy via modulating the stability and payload release efficiency. Front. Pharmacol. 12, 687926 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Baah, S., Laws, M. & Rahman, K. M. Antibody–drug conjugates—a tutorial review. Molecules 26, 2943 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Ogitani, Y. et al. DS-8201a, a novel HER2-targeting ADC with a novel DNA topoisomerase I inhibitor, demonstrates a promising antitumor efficacy with differentiation from T-DM1. Clin. Cancer Res. 22, 5097–5108 (2016).

    Article  CAS  PubMed  Google Scholar 

  71. Anami, Y. et al. Glutamic acid-valine-citrulline linkers ensure stability and efficacy of antibody–drug conjugates in mice. Nat. Commun. 9, 2512 (2018).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  72. Yamazaki, C. M. et al. Antibody–drug conjugates with dual payloads for combating breast tumor heterogeneity and drug resistance. Nat. Commun. 12, 3528 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  73. Ha, S. Y. Y. et al. An enzymatically cleavable tripeptide linker for maximizing the therapeutic index of antibody–drug conjugates. Mol. Cancer Ther. 21, 1449–1461 (2022).

    Article  MathSciNet  CAS  PubMed  PubMed Central  Google Scholar 

  74. Jeffrey, S. C. et al. Development and properties of beta-glucuronide linkers for monoclonal antibody–drug conjugates. Bioconjug. Chem. 17, 831–840 (2006).

    Article  CAS  PubMed  Google Scholar 

  75. Chuprakov, S. et al. Tandem-cleavage linkers improve the in vivo stability and tolerability of antibody–drug conjugates. Bioconjug. Chem. 32, 746–754 (2021).

    Article  CAS  PubMed  Google Scholar 

  76. Bargh, J. D. et al. Sulfatase-cleavable linkers for antibody–drug conjugates. Chem. Sci. 11, 2375–2380 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Kern, J. C. et al. Discovery of pyrophosphate diesters as tunable, soluble, and bioorthogonal linkers for site-specific antibody–drug conjugates. J. Am. Chem. Soc. 138, 1430–1445 (2016).

    Article  CAS  PubMed  Google Scholar 

  78. Lerchen, H.-G. et al. Tailored linker chemistries for the efficient and selective activation of ADCs with KSPi payloads. Bioconjug. Chem. 31, 1893–1898 (2020).

    Article  CAS  PubMed  Google Scholar 

  79. Miller, J. T., Vitro, C. N., Fang, S., Benjamin, S. R. & Tumey, L. N. Enzyme-agnostic lysosomal screen identifies new legumain-cleavable ADC linkers. Bioconjug. Chem. 32, 842–858 (2021).

    Article  CAS  PubMed  Google Scholar 

  80. Junutula, J. R. et al. Site-specific conjugation of a cytotoxic drug to an antibody improves the therapeutic index. Nat. Biotechnol. 26, 925–932 (2008).

    Article  CAS  PubMed  Google Scholar 

  81. Axup, J. Y. et al. Synthesis of site-specific antibody–drug conjugates using unnatural amino acids. Proc. Natl Acad. Sci. USA 109, 16101–16106 (2012).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  82. Zimmerman, E. S. et al. Production of site-specific antibody–drug conjugates using optimized non-natural amino acids in a cell-free expression system. Bioconjug. Chem. 25, 351–361 (2014).

    Article  CAS  PubMed  Google Scholar 

  83. VanBrunt, M. P. et al. Genetically encoded azide containing amino acid in mammalian cells enables site-specific antibody–drug conjugates using click cycloaddition chemistry. Bioconjug. Chem. 26, 2249–2260 (2015).

    Article  CAS  PubMed  Google Scholar 

  84. Bryden, F. et al. Regioselective and stoichiometrically controlled conjugation of photodynamic sensitizers to a HER2 targeting antibody fragment. Bioconjug. Chem. 25, 611–617 (2014).

    Article  CAS  PubMed  Google Scholar 

  85. Schumacher, F. F. et al. Next generation maleimides enable the controlled assembly of antibody–drug conjugates via native disulfide bond bridging. Org. Biomol. Chem. 12, 7261–7269 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Behrens, C. R. et al. Antibody–drug conjugates (ADCs) derived from interchain cysteine cross-linking demonstrate improved homogeneity and other pharmacological properties over conventional heterogeneous ADCs. Mol. Pharm. 12, 3986–3998 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Maruani, A. et al. A plug-and-play approach to antibody-based therapeutics via a chemoselective dual click strategy. Nat. Commun. 6, 6645 (2015).

    Article  ADS  CAS  PubMed  Google Scholar 

  88. Bahou, C. et al. Highly homogeneous antibody modification through optimisation of the synthesis and conjugation of functionalised dibromopyridazinediones. Org. Biomol. Chem. 16, 1359–1366 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Forte, N., Chudasama, V. & Baker, J. R. Homogeneous antibody–drug conjugates via site-selective disulfide bridging. Drug Discov. Today Technol. 30, 11–20 (2018).

    Article  PubMed  Google Scholar 

  90. Fujii, T. et al. AJICAP second generation: improved chemical site-specific conjugation technology for antibody–drug conjugate production. Bioconjug. Chem. 34, 728–738 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Zhou, Q. et al. Site-specific antibody–drug conjugation through glycoengineering. Bioconjug. Chem. 25, 510–520 (2014).

    Article  CAS  PubMed  Google Scholar 

  92. van Geel, R. et al. Chemoenzymatic conjugation of toxic payloads to the globally conserved N-glycan of native mAbs provides homogeneous and highly efficacious antibody-drug conjugates. Bioconjug. Chem. 26, 2233–2242 (2015).

    Article  PubMed  Google Scholar 

  93. Manabe, S. et al. Characterization of antibody products obtained through enzymatic and nonenzymatic glycosylation reactions with a glycan oxazoline and preparation of a homogeneous antibody-drug conjugate via Fc N-glycan. Bioconjug. Chem. 30, 1343–1355 (2019).

    Article  CAS  PubMed  Google Scholar 

  94. de Bever, L. et al. Generation of DAR1 antibody–drug conjugates for ultrapotent payloads using tailored GlycoConnect technology. Bioconjug. Chem. 34, 538–548 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  95. Jeger, S. et al. Site-specific and stoichiometric modification of antibodies by bacterial transglutaminase. Angew. Chem. Int. Ed. Engl. 49, 9995–9997 (2010).

    Article  CAS  PubMed  Google Scholar 

  96. Strop, P. et al. Location matters: site of conjugation modulates stability and pharmacokinetics of antibody drug conjugates. Chem. Biol. 20, 161–167 (2013).

    Article  CAS  PubMed  Google Scholar 

  97. Dennler, P. et al. Transglutaminase-based chemo-enzymatic conjugation approach yields homogeneous antibody–drug conjugates. Bioconjug. Chem. 25, 569–578 (2014).

    Article  CAS  PubMed  Google Scholar 

  98. Anami, Y. et al. Enzymatic conjugation using branched linkers for constructing homogeneous antibody–drug conjugates with high potency. Org. Biomol. Chem. 15, 5635–5642 (2017).

    Article  CAS  PubMed  Google Scholar 

  99. Rabuka, D., Rush, J. S., deHart, G. W., Wu, P. & Bertozzi, C. R. Site-specific chemical protein conjugation using genetically encoded aldehyde tags. Nat. Protoc. 7, 1052–1067 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Drake, P. M. et al. Aldehyde tag coupled with HIPS chemistry enables the production of ADCs conjugated site-specifically to different antibody regions with distinct in vivo efficacy and PK outcomes. Bioconjug. Chem. 25, 1331–1341 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Beerli, R. R., Hell, T., Merkel, A. S. & Grawunder, U. Sortase enzyme-mediated generation of site-specifically conjugated antibody drug conjugates with high in vitro and in vivo potency. PLoS ONE 10, e0131177 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  102. Pan, L. et al. Sortase A-generated highly potent anti-CD20–MMAE conjugates for efficient elimination of B-lineage lymphomas. Small 13, 1602267 (2017).

    Article  Google Scholar 

  103. Antos, J. M. et al. Site-specific protein labeling via sortase-mediated transpeptidation. Curr. Protoc. Protein Sci. 89, 15.3.1–15.3.19 (2017).

    Article  PubMed  Google Scholar 

  104. Kontermann, R. E. & Brinkmann, U. Bispecific antibodies. Drug Discov. Today 20, 838–847 (2015).

    Article  CAS  PubMed  Google Scholar 

  105. Beishenaliev, A. et al. Bispecific antibodies for targeted delivery of anti-cancer therapeutic agents: a review. J. Control. Release 359, 268–286 (2023).

    Article  CAS  PubMed  Google Scholar 

  106. Kantarjian, H. et al. Blinatumomab versus chemotherapy for advanced acute lymphoblastic leukemia. N. Engl. J. Med. 376, 836–847 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Linke, R., Klein, A. & Seimetz, D. Catumaxomab: clinical development and future directions. MAbs 2, 129–136 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  108. Maruani, A. Bispecifics and antibody–drug conjugates: a positive synergy. Drug Discov. Today Technol. 30, 55–61 (2018).

    Article  PubMed  Google Scholar 

  109. Friedman, L. M. et al. Synergistic down-regulation of receptor tyrosine kinases by combinations of mAbs: implications for cancer immunotherapy. Proc. Natl Acad. Sci. USA 102, 1915–1920 (2005).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  110. Ben-Kasus, T., Schechter, B., Lavi, S., Yarden, Y. & Sela, M. Persistent elimination of ErbB-2/HER2-overexpressing tumors using combinations of monoclonal antibodies: relevance of receptor endocytosis. Proc. Natl Acad. Sci. USA 106, 3294–3299 (2009).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  111. Li, J. Y. et al. A biparatopic HER2-targeting antibody–drug conjugate induces tumor regression in primary models refractory to or ineligible for HER2-targeted therapy. Cancer Cell 29, 117–129 (2016).

    Article  CAS  PubMed  Google Scholar 

  112. Toader, D. et al. Structure–cytotoxicity relationships of analogues of N14-desacetoxytubulysin H. J. Med. Chem. 59, 10781–10787 (2016).

    Article  CAS  PubMed  Google Scholar 

  113. Oganesyan, V. et al. Structural insights into the mechanism of action of a biparatopic anti-HER2 antibody. J. Biol. Chem. 293, 8439–8448 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Modi, S. et al. Antitumor activity and safety of trastuzumab deruxtecan in patients with HER2-low-expressing advanced breast cancer: results from a phase Ib study. J. Clin. Oncol. 38, 1887–1896 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Hamblett, K. J. et al. ZW49, a HER2 targeted biparatopic antibody drug conjugate for the treatment of HER2 expressing cancers. Cancer Res. 79 (Suppl. 4), Abstr. P6-17-13 (2019).

    Article  Google Scholar 

  116. Barnscher, S. D., Rojas, A. H., Hamblett, K. J. & Escalante, N. Zanidatamab zovodotin (ZW49) induces hallmarks of immunogenic cell death and is active in patient-derived xenograft models of gastric cancer. Cancer Res. 83 (Suppl. 7), Abstr. 2633 (2023).

    Article  Google Scholar 

  117. Hamblett, K. et al. Anti-her2 biparatopic antibody–drug conjugates and methods of use. US Patent US20210346508A1 (2021).

  118. Weisser, N. E. et al. An anti-HER2 biparatopic antibody that induces unique HER2 clustering and complement-dependent cytotoxicity. Nat. Commun. 14, 1394 (2023).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  119. Jhaveri, K. et al. 460MO preliminary results from a phase I study using the bispecific, human epidermal growth factor 2 (HER2)-targeting antibody-drug conjugate (ADC) zanidatamab zovodotin (ZW49) in solid cancers. Ann. Oncol. 33, S749–S750 (2022).

    Article  Google Scholar 

  120. Katz, J., Janik, J. E. & Younes, A. Brentuximab vedotin (SGN-35). Clin. Cancer Res. 17, 6428–6436 (2011).

    Article  CAS  PubMed  Google Scholar 

  121. Palanca-Wessels, M. C. A. et al. Safety and activity of the anti-CD79B antibody-drug conjugate polatuzumab vedotin in relapsed or refractory B-cell non-Hodgkin lymphoma and chronic lymphocytic leukaemia: a phase 1 study. Lancet Oncol. 16, 704–715 (2015).

    Article  CAS  PubMed  Google Scholar 

  122. Alt, M., Stecca, C., Tobin, S., Jiang, D. M. & Sridhar, S. S. Enfortumab vedotin in urothelial cancer. Ther. Adv. Urol. 12, 1756287220980192 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. DaSilva, J. O. et al. A biparatopic antibody–drug conjugate to treat MET-expressing cancers, including those that are unresponsive to MET pathway blockade. Mol. Cancer Ther. 20, 1966–1976 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Perez Bay, A. E. et al. A bispecific METxMET antibody-drug conjugate with cleavable linker is processed in recycling and late endosomes. Mol. Cancer Ther. 22, 357–370 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  125. DaSilva, J. O. et al. A biparatopic antibody that modulates MET trafficking exhibits enhanced efficacy compared with parental antibodies in MET-driven tumor models. Clin. Cancer Res. 26, 1408–1419 (2020).

    Article  CAS  PubMed  Google Scholar 

  126. Drilon, A. E. et al. A phase 1/2 study of REGN5093-M114, a METxMET antibody–drug conjugate, in patients with mesenchymal epithelial transition factor (MET)-overexpressing NSCLC. J. Clin. Oncol. 40, TPS8593 (2022).

    Article  Google Scholar 

  127. Gomatou, G., Syrigos, N. & Kotteas, E. Osimertinib resistance: molecular mechanisms and emerging treatment options. Cancers 15, 841 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Cho, B. C. Dr Cho on first-line amivantamab plus lazertinib in EGFR-mutant NSCLC. OncLive https://www.onclive.com/view/dr-cho-on-the-mariposa-trial-of-first-line-amivantamab-plus-lazertinib-in-egfr-mutant-nsclc (2023).

  129. Sellmann, C. et al. Balancing selectivity and efficacy of bispecific epidermal growth factor receptor (EGFR) × c-MET antibodies and antibody–drug conjugates. J. Biol. Chem. 291, 25106–25119 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Comer, F. et al. AZD9592: an EGFR-cMET bispecific antibody-drug conjugate (ADC) targeting key oncogenic drivers in non-small-cell lung cancer (NSCLC) and beyond. Cancer Res. 83 (Suppl. 7), Abstr. 5736 (2023).

    Article  Google Scholar 

  131. McGrath, L. et al. Evaluation of the relationship between target expression and in vivo anti-tumor efficacy of AZD9592, an EGFR/c-MET targeted bispecific antibody drug conjugate. Cancer Res. 83 (Suppl. 7), Abstr. 5737 (2023).

    Article  Google Scholar 

  132. Knuehl, C. et al. M1231 is a bispecific anti-MUC1xEGFR antibody-drug conjugate designed to treat solid tumors with MUC1 and EGFR co-expression. Cancer Res. 82 (Suppl. 12), Abstr. 5284 (2022).

    Article  Google Scholar 

  133. Wan, W. et al. BL-B01D1, a novel EGFR×HER3-targeting ADC, demonstrates robust anti-tumor efficacy in preclinical evaluation. Cancer Res. 83 (Suppl. 7), Abstr. 2642 (2023).

    Article  ADS  Google Scholar 

  134. Sorkin, A. & Goh, L. K. Endocytosis and intracellular trafficking of ErbBs. Exp. Cell Res. 315, 683–696 (2009).

    Article  CAS  PubMed  Google Scholar 

  135. Austin, C. D. et al. Endocytosis and sorting of ErbB2 and the site of action of cancer therapeutics trastuzumab and geldanamycin. Mol. Biol. Cell 15, 5268–5282 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. DeVay, R. M., Shelton, D. L. & Liang, H. Characterization of proprotein convertase subtilisin/kexin type 9 (PCSK9) trafficking reveals a novel lysosomal targeting mechanism via amyloid precursor-like protein 2 (APLP2). J. Biol. Chem. 288, 10805–10818 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. DeVay, R. M., Yamamoto, L., Shelton, D. L. & Liang, H. Common proprotein convertase subtilisin/kexin type 9 (PCSK9) epitopes mediate multiple routes for internalization and function. PLoS ONE 10, e0125127 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  138. Tuli, A. et al. Amyloid precursor-like protein 2 increases the endocytosis, instability, and turnover of the H2-K(d) MHC class I molecule. J. Immunol. 181, 1978–1987 (2008).

    Article  CAS  PubMed  Google Scholar 

  139. Tuli, A. et al. Mechanism for amyloid precursor-like protein 2 enhancement of major histocompatibility complex class I molecule degradation. J. Biol. Chem. 284, 34296–34307 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Andreev, J. et al. Bispecific antibodies and antibody-drug conjugates (ADCs) bridging HER2 and prolactin receptor improve efficacy of HER2 ADCs. Mol. Cancer Ther. 16, 681–693 (2017).

    Article  CAS  PubMed  Google Scholar 

  141. DeVay, R. M. et al. Improved lysosomal trafficking can modulate the potency of antibody drug conjugates. Bioconjug. Chem. 28, 1102–1114 (2017).

    Article  CAS  PubMed  Google Scholar 

  142. Merchant, M. et al. Monovalent antibody design and mechanism of action of onartuzumab, a MET antagonist with anti-tumor activity as a therapeutic agent. Proc. Natl Acad. Sci. USA 110, E2987–E2996 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Liu, L. et al. LY2875358, a neutralizing and internalizing anti-MET bivalent antibody, inhibits HGF-dependent and HGF-independent MET activation and tumor growth. Clin. Cancer Res. 20, 6059–6070 (2014).

    Article  CAS  PubMed  Google Scholar 

  144. Oh, Y. M. et al. A new anti-c-Met antibody selected by a mechanism-based dual-screening method: therapeutic potential in cancer. Mol. Cell 34, 523–529 (2012).

    Article  CAS  Google Scholar 

  145. Neijssen, J. et al. Discovery of amivantamab (JNJ-61186372), a bispecific antibody targeting EGFR and MET. J. Biol. Chem. 296, 100641 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Kim, S.-B. et al. First-in-human phase I study of aprutumab ixadotin, a fibroblast growth factor receptor 2 antibody–drug conjugate (BAY 1187982) in patients with advanced cancer. Target. Oncol. 14, 591–601 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  147. Lemech, C. et al. A first-in-human, phase 1, dose-escalation study of ABBV-176, an antibody–drug conjugate targeting the prolactin receptor, in patients with advanced solid tumors. Invest. New Drugs 38, 1815–1825 (2020).

    Article  CAS  PubMed  Google Scholar 

  148. Zhao, P. et al. Recent advances of antibody drug conjugates for clinical applications. Acta Pharm. Sin. B 10, 1589–1600 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Rautio, J. et al. Prodrugs: design and clinical applications. Nat. Rev. Drug Discov. 7, 255–270 (2008).

    Article  CAS  PubMed  Google Scholar 

  150. Abet, V., Filace, F., Recio, J., Alvarez-Builla, J. & Burgos, C. Prodrug approach: an overview of recent cases. Eur. J. Med. Chem. 127, 810–827 (2017).

    Article  CAS  PubMed  Google Scholar 

  151. Rautio, J., Meanwell, N. A., Di, L. & Hageman, M. J. The expanding role of prodrugs in contemporary drug design and development. Nat. Rev. Drug Discov. 17, 559–587 (2018).

    Article  CAS  PubMed  Google Scholar 

  152. Erster, O. et al. Site-specific targeting of antibody activity in vivo mediated by disease-associated proteases. J. Control. Release 161, 804–812 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Desnoyers, L. R. et al. Tumor-specific activation of an EGFR-targeting probody enhances therapeutic index. Sci. Transl. Med. 5, 207ra144 (2013).

    Article  PubMed  Google Scholar 

  154. Geiger, M. et al. Protease-activation using anti-idiotypic masks enables tumor specificity of a folate receptor 1-T cell bispecific antibody. Nat. Commun. 11, 3196 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  155. Sulea, T. et al. Structure-based engineering of pH-dependent antibody binding for selective targeting of solid-tumor microenvironment. MAbs 12, 1682866 (2020).

    Article  PubMed  Google Scholar 

  156. Lucchi, R., Bentanachs, J. & Oller-Salvia, B. The masking game: design of activatable antibodies and mimetics for selective therapeutics and cell control. ACS Cent. Sci. 7, 724–738 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Liu, Y., Nguyen, A. W. & Maynard, J. A. Engineering antibodies for conditional activity in the solid tumor microenvironment. Curr. Opin. Biotechnol. 78, 102809 (2022).

    Article  CAS  PubMed  Google Scholar 

  158. Bleuez, C., Koch, W. F., Urbach, C., Hollfelder, F. & Jermutus, L. Exploiting protease activation for therapy. Drug Discov. Today 27, 1743–1754 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Liu, X. et al. A cross-reactive pH-dependent EGFR antibody with improved tumor selectivity and penetration obtained by structure-guided engineering. Mol. Ther. Oncolytics 27, 256–269 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Ulisse, S., Baldini, E., Sorrenti, S. & D’Armiento, M. The urokinase plasminogen activator system: a target for anti-cancer therapy. Curr. Cancer Drug Targets 9, 32–71 (2009).

    Article  CAS  PubMed  Google Scholar 

  161. Uhland, K. Matriptase and its putative role in cancer. Cell. Mol. Life Sci. 63, 2968–2978 (2006).

    Article  CAS  PubMed  Google Scholar 

  162. LeBeau, A. M. et al. Imaging a functional tumorigenic biomarker in the transformed epithelium. Proc. Natl Acad. Sci. USA 110, 93–98 (2013).

    Article  ADS  CAS  PubMed  Google Scholar 

  163. Liu, C., Sun, C., Huang, H., Janda, K. & Edgington, T. Overexpression of legumain in tumors is significant for invasion/metastasis and a candidate enzymatic target for prodrug therapy. Cancer Res. 63, 2957–2964 (2003).

    CAS  PubMed  Google Scholar 

  164. Singh, S. et al. Nonclinical efficacy and safety of CX-2029, an anti-CD71 probody–drug conjugate. Mol. Cancer Ther. 21, 1326–1336 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. CytomX Therapeutics Inc. CytomX therapeutics presents overview of conditionally-activated antibody-drug conjugate (ADC) programs including next generation EpCAM-targeting CX-2051. CytomX Press Release Details https://ir.cytomx.com/news-releases/news-release-details/cytomx-therapeutics-presents-overview-conditionally-activated/ (2022).

  166. Chomet, M. et al. The tumor targeting performance of anti-CD166 Probody drug conjugate CX-2009 and its parental derivatives as monitored by 89Zr-immuno-PET in xenograft bearing mice. Theranostics 10, 5815–5828 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Johnson, M. et al. Phase I, first-in-human study of the probody therapeutic CX-2029 in adults with advanced solid tumor malignancies. Clin. Cancer Res. 27, 4521–4530 (2021).

    Article  CAS  PubMed  Google Scholar 

  168. Boni, V. et al. Praluzatamab ravtansine, a CD166-targeting antibody–drug conjugate, in patients with advanced solid tumors: an open-label phase I/II trial. Clin. Cancer Res. 28, 2020–2029 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Swart, G. W. M. Activated leukocyte cell adhesion molecule (CD166/ALCAM): developmental and mechanistic aspects of cell clustering and cell migration. Eur. J. Cell Biol. 81, 313–321 (2002).

    Article  CAS  PubMed  Google Scholar 

  170. Garcia-Corbacho, J. et al. PROCLAIM-CX-2009: a first-in-human trial to evaluate CX-2009 in adults with metastatic or locally advanced unresectable solid tumors. Ann. Oncol. 28, v140 (2017).

    Article  Google Scholar 

  171. Trang, V. H. et al. A coiled-coil masking domain for selective activation of therapeutic antibodies. Nat. Biotechnol. 37, 761–765 (2019).

    Article  CAS  PubMed  Google Scholar 

  172. Huang, L. et al. Preclinical evaluation of a next-generation, EGFR targeting ADC that promotes regression in KRAS or BRAF mutant tumors. Cancer Res. 76 (Suppl. 14), Abstr. 1217 (2016).

    Article  Google Scholar 

  173. Bahn, J. D. et al. HTI-1511, a novel anti-EGFR-ADC, overcomes mutation resistance and demonstrates significant activity against multiple tumor types in preclinical studies. Cancer Res. 77 (Suppl. 13), Abstr. 50 (2017).

    Article  Google Scholar 

  174. Kang, J. C. et al. Engineering a HER2-specific antibody-drug conjugate to increase lysosomal delivery and therapeutic efficacy. Nat. Biotechnol. 37, 523–526 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Sharp, L. L. et al. Anti-tumor efficacy of BA3011, a novel conditionally active biologic (CAB) anti-AXL-ADC. Cancer Res. 78 (Suppl. 13), Abstr. 827 (2018).

    Article  Google Scholar 

  176. Sharp, L. L. et al. Anti-tumor efficacy of BA3021, a novel conditionally active biologic (CAB) anti-ROR2 ADC. Cancer Res. 78 (Suppl. 13), Abstr. 833 (2018).

    Article  Google Scholar 

  177. Khan, M. A. G. Halozyme terminates license agreement with Abzena. https://www.spglobal.com/marketintelligence/en/news-insights/blog/essential-ir-insights-newsletter-fall-2023 (2018).

  178. Chang, H. W. et al. Generating tumor-selective conditionally active biologic anti-CTLA4 antibodies via protein-associated chemical switches. Proc. Natl Acad. Sci. USA 118, e2020606118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. BioAtla. CAB Portfolio. BioAtla https://www.bioatla.com/cab-portfolio/ (2016).

  180. Seidel, J. A., Otsuka, A. & Kabashima, K. Anti-PD-1 and anti-CTLA-4 therapies in cancer: mechanisms of action, efficacy, and limitations. Front. Oncol. 8, 86 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  181. Urban-Wojciuk, Z. et al. The role of TLRs in anti-cancer immunity and tumor rejection. Front. Immunol. 10, 2388 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Kaczanowska, S., Joseph, A. M. & Davila, E. TLR agonists: our best frenemy in cancer immunotherapy. J. Leukoc. Biol. 93, 847–863 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Le Naour, J. & Kroemer, G. Trial watch: toll-like receptor ligands in cancer therapy. Oncoimmunology 12, 2180237 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  184. Amouzegar, A., Chelvanambi, M., Filderman, J. N., Storkus, W. J. & Luke, J. J. STING agonists as cancer therapeutics. Cancers 13, 2695 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Su, T. et al. STING activation in cancer immunotherapy. Theranostics 9, 7759–7771 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Kumar, V. Toll-like receptors in sepsis-associated cytokine storm and their endogenous negative regulators as future immunomodulatory targets. Int. Immunopharmacol. 89, 107087 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Hamid, O., Ismail, R. & Puzanov, I. Intratumoral immunotherapy — update 2019. Oncologist 25, e423–e438 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  188. Rodell, C. B. et al. TLR7/8-agonist-loaded nanoparticles promote the polarization of tumour-associated macrophages to enhance cancer immunotherapy. Nat. Biomed. Eng. 2, 578–588 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Huang, L., Ge, X., Liu, Y., Li, H. & Zhang, Z. The role of toll-like receptor agonists and their nanomedicines for tumor immunotherapy. Pharmaceutics 14, 1228 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Gadd, A. J. R., Greco, F., Cobb, A. J. A. & Edwards, A. D. Targeted activation of toll-like receptors: conjugation of a toll-like receptor 7 agonist to a monoclonal antibody maintains antigen binding and specificity. Bioconjug. Chem. 26, 1743–1752 (2015).

    Article  CAS  PubMed  Google Scholar 

  191. Silverback Therapeutics Updates Strategic Priorities and Reports Fourth Quarter and Full Year 2021 Financial Results. https://www.businesswire.com/news/home/20220331005874/en/Silverback-Therapeutics-Updates-Strategic-Priorities-and-Reports-Fourth-Quarter-and-Full-Year-2021-Financial-Results (2022).

  192. Doctor, V. Silverback Halts Oncology Programs, lays off 27% of staff. BioSpace https://www.biospace.com/article/silverback-halts-oncology-programs-lays-off-27-percent-of-staff/ (2022).

  193. Janku, F. et al. 378 A first in-human, multicenter, open-label, dose-finding phase 1 study of the immune stimulator antibody conjugate NJH395 in patients with nonbreast HER2+ advanced malignancies. J. Immunother. Cancer 8 (Suppl. 3), A230 (2020).

    Google Scholar 

  194. Janku, F. et al. Preclinical characterization and phase I study of an anti-HER2-TLR7 immune-stimulator antibody conjugate in patients with HER2+ malignancies. Cancer Immunol. Res. 10, 1441–1461 (2022).

    Article  CAS  PubMed  Google Scholar 

  195. Ackerman, S. E., Alonso, M. N., Jackson, D. Y., Lee, A. & Engleman, E. G. Immunoconjugates targeting HER2. World Patent WO2020190725A1 (2020).

  196. Bolt Biotherapeutics. Bolt biotherapeutics initiates phase 2 clinical studies of BDC-1001 in patients with HER2-positive cancer. https://investors.boltbio.com/news-releases/news-release-details/bolt-biotherapeutics-initiates-phase-2-clinical-studies-bdc-1001 (2023).

  197. Li, B. T. et al. A phase 1/2 study of a first-in-human immune-stimulating antibody conjugate (ISAC) BDC-1001 in patients with advanced HER2-expressing solid tumors. J. Clin. Oncol. 41, 2538–2538 (2023).

    Article  Google Scholar 

  198. Blum, L. K. et al. The CEA-targeted ISAC, BDC-2034, shows preclinical efficacy associated with innate immune activation, phagocytosis, and myeloid reprogramming. Cancer Res. 82 (Suppl. 12), Abstr. 2911 (2022).

    Article  Google Scholar 

  199. Kenkel, J. A. et al. PD-L1-targeted ISAC combines myeloid cell activation, immune-checkpoint inhibition and ADCP to improve anti-tumor efficacy over anti-PD-L1 antibodies in preclinical models. Cancer Res. 82 (Suppl. 12), Abstr. 4252 (2022).

    Article  Google Scholar 

  200. He, L. et al. Immune modulating antibody-drug conjugate (IM-ADC) for cancer immunotherapy. J. Med. Chem. 64, 15716–15726 (2021).

    Article  CAS  PubMed  Google Scholar 

  201. Fang, S. et al. Design and characterization of immune-stimulating imidazo[4,5-c]quinoline antibody-drug conjugates. Mol. Pharm. 19, 3228–3241 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Kuo, T. C. et al. TAC-001, a toll-like receptor 9 (TLR9) agonist antibody conjugate targeting B cells, promotes anti-tumor immunity and favorable safety profile following systemic administration in preclinical models. Cancer Res. 81 (Suppl. 13), Abstr. 1721 (2021).

    Article  Google Scholar 

  203. Pons, J. et al. Transglutaminase-mediated conjugation. US Patent US20230130194A1 (2023).

  204. Perez, C. et al. INCLINE-101, a phase 1/2, open label, dose escalation and expansion study of TAC-001 (a TLR9 agonist conjugated to a CD22 antibody) in patients with select advanced or metastatic solid tumors. J. Immunother. Cancer 10 (Suppl. 2), A788 (2022).

    Google Scholar 

  205. Zhu, Y. et al. STING: a master regulator in the cancer-immunity cycle. Mol. Cancer 18, 152 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  206. Woo, S.-R. et al. STING-dependent cytosolic DNA sensing mediates innate immune recognition of immunogenic tumors. Immunity 41, 830–842 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Woo, S.-R., Corrales, L. & Gajewski, T. F. The STING pathway and the T cell-inflamed tumor microenvironment. Trends Immunol. 36, 250–256 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Ohkuri, T. et al. STING contributes to antiglioma immunity via triggering type I IFN signals in the tumor microenvironment. Cancer Immunol. Res. 2, 1199–1208 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Demaria, O. et al. STING activation of tumor endothelial cells initiates spontaneous and therapeutic antitumor immunity. Proc. Natl Acad. Sci. USA 112, 15408–15413 (2015).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  210. Wu, Y.-T. et al. Tumor-targeted delivery of a STING agonist improvescancer immunotherapy. Proc. Natl Acad. Sci. USA 119, e2214278119 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Bukhalid, R. A. et al. Systemic administration of STING agonist antibody-drug conjugates elicit potent anti-tumor immune responses with minimal induction of circulating cytokines. Cancer Res. 80 (Suppl. 16), Abstr. 6706 (2020).

    Article  Google Scholar 

  212. Duvall, J. R. et al. XMT-2056, a well-tolerated, Immunosynthen-based STING-agonist antibody-drug conjugate which induces anti-tumor immune activity. Cancer Res. 81 (Suppl. 13), Abstr. 1738 (2021).

    Article  Google Scholar 

  213. Ramanjulu, J. M. et al. Design of amidobenzimidazole STING receptor agonists with systemic activity. Nature 564, 439–443 (2018).

    Article  ADS  CAS  PubMed  Google Scholar 

  214. Mersana Therapeutics. Mersana Therapeutics announces FDA has lifted clinical hold on phase 1 clinical trial of XMT-2056. Mersana Therapeutics https://ir.mersana.com/news-releases/news-release-details/mersana-therapeutics-announces-fda-has-lifted-clinical-hold (2023).

  215. Konstantinidou, M. et al. PROTACs – a game-changing technology. Expert Opin. Drug Discov. 14, 1255–1268 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. Kelm, J. M. et al. PROTAC’ing oncoproteins: targeted protein degradation for cancer therapy. Mol. Cancer 22, 62 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  217. An, S. & Fu, L. Small-molecule PROTACs: an emerging and promising approach for the development of targeted therapy drugs. EBioMedicine 36, 553–562 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  218. Liu, Z. et al. An overview of PROTACs: a promising drug discovery paradigm. Mol. Biomed. 3, 46 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. Békés, M., Langley, D. R. & Crews, C. M. PROTAC targeted protein degraders: the past is prologue. Nat. Rev. Drug Discov. 21, 181–200 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  220. Shorstova, T., Foulkes, W. D. & Witcher, M. Achieving clinical success with BET inhibitors as anti-cancer agents. Br. J. Cancer 124, 1478–1490 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  221. Trojer, P. & Targeting, B. E. T. Bromodomains in cancer. Annu. Rev. Cancer Biol. 6, 313–336 (2022).

    Article  Google Scholar 

  222. Liu, Z. et al. Drug discovery targeting bromodomain-containing protein 4. J. Med. Chem. 60, 4533–4558 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  223. Pillow, T. H. et al. Antibody conjugation of a chimeric BET degrader enables in vivo activity. ChemMedChem 15, 17–25 (2020).

    Article  CAS  PubMed  Google Scholar 

  224. Min, J.-H. et al. Structure of an HIF-1alpha–pVHL complex: hydroxyproline recognition in signaling. Science 296, 1886–1889 (2002).

    Article  ADS  CAS  PubMed  Google Scholar 

  225. Hon, W.-C. et al. Structural basis for the recognition of hydroxyproline in HIF-1α by pVHL. Nature 417, 975–978 (2002).

    Article  ADS  CAS  PubMed  Google Scholar 

  226. Maneiro, M. A. et al. Antibody–PROTAC conjugates enable HER2-dependent targeted protein degradation of BRD4. ACS Chem. Biol. 15, 1306–1312 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  227. Cardillo, T. M., Govindan, S. V., Sharkey, R. M., Trisal, P. & Goldenberg, D. M. Humanized anti-Trop-2 IgG-SN-38 conjugate for effective treatment of diverse epithelial cancers: preclinical studies in human cancer xenograft models and monkeys. Clin. Cancer Res. 17, 3157–3169 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  228. Goldenberg, D. M., Cardillo, T. M., Govindan, S. V., Rossi, E. A. & Sharkey, R. M. Trop-2 is a novel target for solid cancer therapy with sacituzumab govitecan (IMMU-132), an antibody-drug conjugate (ADC). Oncotarget 6, 22496–22512 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  229. Cardillo, T. M. et al. Sacituzumab govitecan (IMMU-132), an anti-Trop-2/SN-38 antibody-drug conjugate: characterization and efficacy in pancreatic, gastric, and other cancers. Bioconjug. Chem. 26, 919–931 (2015).

    Article  CAS  PubMed  Google Scholar 

  230. Dragovich, P. S. et al. Antibody-mediated delivery of chimeric BRD4 degraders. Part 1: exploration of antibody linker, payload loading, and payload molecular properties. J. Med. Chem. 64, 2534–2575 (2021).

    Article  CAS  PubMed  Google Scholar 

  231. Dragovich, P. S. et al. Antibody-mediated delivery of chimeric BRD4 degraders. Part 2: improvement of in vitro antiproliferation activity and in vivo antitumor efficacy. J. Med. Chem. 64, 2576–2607 (2021).

    Article  CAS  PubMed  Google Scholar 

  232. Chuang, S.-H. et al. Antibody protac conjugates. US Patent US20210015942A1 (2021).

  233. Dragovich, P. S. et al. Antibody-mediated delivery of chimeric protein degraders which target estrogen receptor alpha (ERα). Bioorg. Med. Chem. Lett. 30, 126907 (2020).

    Article  CAS  PubMed  Google Scholar 

  234. Thompson, P. A., Edris, B., Coburn, C. A. & Baum, P. R. Antibody construct conjugates. World Patent WO2018227023A1 (2018).

  235. Dragovich, P. S., Baker Dockrey, S. A., Pillow, T. H. & Zhang, D. Antibody-conjugated chemical inducers of degradation of brm and methods thereof. World Patent WO2022020288A1 (2022).

  236. Palacino, J. et al. ORM-5029: a first-in-class targeted protein degradation therapy using antibody neodegrader conjugate (AnDC) for HER2-expressing breast cancer. Cancer Res. 82 (Suppl. 12), Abstr. 3933 (2022).

    Article  Google Scholar 

  237. Saini, S. et al. Development of RNAscope multiplex-based assay for exploratory pharmacodynamic biomarkers assessment in breast cancer patients from phase I clinical trial of ORM-5029, a potent GSPT1 degrader. Cancer Res. 83 (Suppl. 7), Abstr. 2118 (2023).

    Article  Google Scholar 

  238. Palacino, J. et al. ORM-6151: a first-in-class, anti-CD33 antibody-enabled GSPT1 degrader for AML. Blood 140, 3061–3062 (2022).

    Article  Google Scholar 

  239. Palacino, J. et al. ORM-6151: a first-in-class CD33-antibody enabled GSPT1 degrader for AML. Cancer Res. 83 (Suppl. 7), Abstr. 2700 (2023).

    Article  Google Scholar 

  240. Fishkin, N. & Park, P. U. Neodegrader conjugates. World Patent WO2021198965A1 (2021).

  241. Matyskiela, M. E. et al. A novel cereblon modulator recruits GSPT1 to the CRL4(CRBN) ubiquitin ligase. Nature 535, 252–257 (2016).

    Article  ADS  CAS  PubMed  Google Scholar 

  242. Hughes, S. J. & Ciulli, A. Molecular recognition of ternary complexes: a new dimension in the structure-guided design of chemical degraders. Essays Biochem. 61, 505–516 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  243. Ju, Y. et al. ORM-5029: discovery of an antibody drug conjugate with first-in-class molecular glue degrader warhead for treatment of HER2-positive breast cancer | Poster Board #3753. https://acs.digitellinc.com/sessions/584447/view (2023).

  244. Cotton, A. D., Nguyen, D. P., Gramespacher, J. A., Seiple, I. B. & Wells, J. A. Development of antibody-based PROTACs for the degradation of the cell-surface immune checkpoint protein PD-L1. J. Am. Chem. Soc. 143, 593–598 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  245. Marei, H. et al. Antibody targeting of E3 ubiquitin ligases for receptor degradation. Nature 610, 182–189 (2022).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  246. Banik, S. M. et al. Lysosome-targeting chimaeras for degradation of extracellular proteins. Nature 584, 291–297 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  247. Ahn, G. et al. LYTACs that engage the asialoglycoprotein receptor for targeted protein degradation. Nat. Chem. Biol. 17, 937–946 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  248. Zebisch, M. et al. Structural and molecular basis of ZNRF3/RNF43 transmembrane ubiquitin ligase inhibition by the Wnt agonist R-spondin. Nat. Commun. 4, 2787 (2013).

    Article  ADS  PubMed  Google Scholar 

  249. Marusyk, A., Janiszewska, M. & Polyak, K. Intratumor heterogeneity: the Rosetta stone of therapy resistance. Cancer Cell 37, 471–484 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  250. Levengood, M. R. et al. Orthogonal cysteine protection enables homogeneous multi-drug antibody-drug conjugates. Angew. Chem. Int. Ed. Engl. 56, 733–737 (2017).

    Article  CAS  PubMed  Google Scholar 

  251. O’Brien, C. et al. Functional genomics identifies ABCC3 as a mediator of taxane resistance in HER2-amplified breast cancer. Cancer Res. 68, 5380–5389 (2008).

    Article  PubMed  Google Scholar 

  252. Chen, R. et al. CD30 downregulation, MMAE resistance, and MDR1 upregulation are all associated with resistance to brentuximab vedotin. Mol. Cancer Ther. 14, 1376–1384 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  253. Okeley, N. M. et al. Intracellular activation of SGN-35, a potent anti-CD30 antibody-drug conjugate. Clin. Cancer Res. 16, 888–897 (2010).

    Article  CAS  PubMed  Google Scholar 

  254. Li, F. et al. Intracellular released payload influences potency and bystander-killing effects of antibody-drug conjugates in preclinical models. Cancer Res. 76, 2710–2719 (2016).

    Article  CAS  PubMed  Google Scholar 

  255. Doronina, S. O. et al. Enhanced activity of monomethylauristatin F through monoclonal antibody delivery: effects of linker technology on efficacy and toxicity. Bioconjug. Chem. 17, 114–124 (2006).

    Article  CAS  PubMed  Google Scholar 

  256. Walker, J. A. et al. Substrate design enables heterobifunctional, dual “click” antibody modification via microbial transglutaminase. Bioconjug. Chem. 30, 2452–2457 (2019).

    Article  CAS  PubMed  Google Scholar 

  257. Sabbaghi, M. et al. Defective cyclin B1 induction in trastuzumab-emtansine (T-DM1) acquired resistance in HER2-positive breast cancer. Clin. Cancer Res. 23, 7006–7019 (2017).

    Article  CAS  PubMed  Google Scholar 

  258. Cilliers, C., Menezes, B., Nessler, I., Linderman, J. & Thurber, G. M. Improved tumor penetration and single-cell targeting of antibody-drug conjugates increases anticancer efficacy and host survival. Cancer Res. 78, 758–768 (2018).

    Article  CAS  PubMed  Google Scholar 

  259. Yuan, R. et al. 2022 – Abstract and Poster Presentation: Th42 – Next-generation immunostimulatory antibody-drug conjugate (iADC) combines direct tumor killing and innate immune stimulation to provide protective anti-tumor immunity (2022).

  260. Kumar, A. et al. Synthesis of a heterotrifunctional linker for the site-specific preparation of antibody-drug conjugates with two distinct warheads. Bioorg. Med. Chem. Lett. 28, 3617–3621 (2018).

    Article  CAS  PubMed  Google Scholar 

  261. Nilchan, N. et al. Dual-mechanistic antibody-drug conjugate via site-specific selenocysteine/cysteine conjugation. Antib. Ther. 2, 71–78 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  262. Tang, C. et al. One-pot assembly of dual-site-specific antibody–drug conjugates via glycan remodeling and affinity-directed traceless conjugation. Bioconjug. Chem. 34, 748–755 (2023).

    CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge support from the US NIH (R35GM138264 and R01CA283876 to K.T.) and the US Department of Defense Breast Cancer Research Program (W81XWH-19-1-0598 to K.T.).

Author information

Authors and Affiliations

Authors

Contributions

All authors made a substantial contribution to all aspects of the preparation of this manuscript.

Corresponding author

Correspondence to Kyoji Tsuchikama.

Ethics declarations

Competing interests

All authors are named inventors on all or some of the patent applications (WO2018218004A1, US11629122B2, EP3630189A4 and WO2023122587A3) relating to the linker technologies described in this article. K.T. is a co-founder of and holds equity in CrossBridge Bio.

Peer review

Peer review information

Nature Reviews Clinical Oncology thanks N. Tumey and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tsuchikama, K., Anami, Y., Ha, S.Y.Y. et al. Exploring the next generation of antibody–drug conjugates. Nat Rev Clin Oncol 21, 203–223 (2024). https://doi.org/10.1038/s41571-023-00850-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41571-023-00850-2

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer