Abstract
Reversible addition–fragmentation chain-transfer (RAFT) polymerization and atom transfer radical polymerization (ATRP) are the two most common controlled radical polymerization methods. Both methods afford functional polymers with a predefined length, composition, dispersity and end group. Further, RAFT and ATRP tame radicals by reversibly converting active polymeric radicals into dormant chains. However, the mechanisms by which the ATRP and RAFT methods control chain growth are distinct, so each method presents unique opportunities and challenges, depending on the desired application. This Perspective compares RAFT and ATRP by identifying their mechanistic strengths and weaknesses, and their latest synthetic applications.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
£14.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 digital issues and online access to articles
£99.00 per year
only £8.25 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Staudinger, H. Über polymerisation. Ber. Dtsch. Chem. Ges. 53, 1073–1085 (1920).
Kato, M., Kamigaito, M., Sawamoto, M. & Higashimura, T. Polymerization of methyl methacrylate with the carbon tetrachloride/dichlorotris-(triphenylphosphine)ruthenium(ii)/methylaluminum bis(2,6-di-tert-butylphenoxide) initiating system: possibility of living radical polymerization. Macromolecules 28, 1721–1723 (1995).
Wang, J.-S. & Matyjaszewski, K. Controlled/“living” radical polymerization. atom transfer radical polymerization in the presence of transition-metal complexes. J. Am. Chem. Soc. 117, 5614–5615 (1995).
Chiefari, J. et al. Living free-radical polymerization by reversible addition–fragmentation chain transfer: the RAFT process. Macromolecules 31, 5559–5562 (1998).
Matyjaszewski, K. & Xia, J. Atom transfer radical polymerization. Chem. Rev. 101, 2921–2990 (2001).
Moad, G., Rizzardo, E. & Thang, S. H. Living radical polymerization by the RAFT process. Aust. J. Chem. 58, 379–410 (2005).
Konkolewicz, D., Krys, P. & Matyjaszewski, K. Explaining unexpected data via competitive equilibria and processes in radical reactions with reversible deactivation. Acc. Chem. Res. 47, 3028–3036 (2014).
Lin, C. Y., Coote, M. L., Gennaro, A. & Matyjaszewski, K. Ab initio evaluation of the thermodynamic and electrochemical properties of alkyl halides and radicals and their mechanistic implications for atom transfer radical polymerization. J. Am. Chem. Soc. 130, 12762–12774 (2008).
Tang, W. et al. Understanding atom transfer radical polymerization: effect of ligand and initiator structures on the equilibrium constants. J. Am. Chem. Soc. 130, 10702–10713 (2008).
Tang, W. & Matyjaszewski, K. Effects of initiator structure on activation rate constants in ATRP. Macromolecules 40, 1858–1863 (2007).
Fang, C. et al. Mechanistically guided predictive models for ligand and initiator effects in copper-catalyzed atom transfer radical polymerization (Cu-ATRP). J. Am. Chem. Soc. 141, 7486–7497 (2019).
Whitfield, R., Parkatzidis, K., Rolland, M., Truong, N. P. & Anastasaki, A. Tuning dispersity by photoinduced atom transfer radical polymerisation: monomodal distributions with ppm copper concentration. Angew. Chem. Int. Ed. 58, 13323–13328 (2019).
Ribelli, T. G. et al. Disproportionation or combination? The termination of acrylate radicals in ATRP. Macromolecules 50, 7920–7929 (2017).
Ribelli, T. G., Wahidur Rahaman, S. M., Krys, P., Matyjaszewski, K. & Poli, R. Effect of ligand structure on the Cuii–R OMRP dormant species and its consequences for catalytic radical termination in ATRP. Macromolecules 49, 7749–7757 (2016).
Xie, G. et al. Benefits of catalyzed radical termination: high-yield synthesis of polyacrylate molecular bottlebrushes without gelation. Macromolecules 51, 6218–6225 (2018).
Matyjaszewski, K. et al. Diminishing catalyst concentration in atom transfer radical polymerization with reducing agents. Proc. Natl Acad. Sci. USA 103, 15309–15314 (2006).
Percec, V. et al. Ultrafast synthesis of ultrahigh molar mass polymers by metal-catalyzed living radical polymerization of acrylates, methacrylates, and vinyl chloride mediated by SET at 25 °C. J. Am. Chem. Soc. 128, 14156–14165 (2006).
Anastasaki, A. et al. Cu(0)-mediated living radical polymerization: a versatile tool for materials synthesis. Chem. Rev. 116, 835–877 (2016).
Anastasaki, A. et al. Copper(ii)/tertiary amine synergy in photoinduced living radical polymerization: accelerated synthesis of ω-functional and α,ω-heterofunctional poly(acrylates). J. Am. Chem. Soc. 136, 1141–1149 (2014).
Ribelli, T. G., Konkolewicz, D., Bernhard, S. & Matyjaszewski, K. How are radicals (re)generated in photochemical ATRP? J. Am. Chem. Soc. 136, 13303–13312 (2014).
Konkolewicz, D., Schröder, K., Buback, J., Bernhard, S. & Matyjaszewski, K. Visible light and sunlight photoinduced ATRP with ppm of Cu catalyst. ACS Macro Lett. 1, 1219–1223 (2012).
Magenau, A. J. D., Strandwitz, N. C., Gennaro, A. & Matyjaszewski, K. Electrochemically mediated atom transfer radical polymerization. Science 332, 81–84 (2011).
Mohapatra, H., Kleiman, M. & Esser-Kahn, A. P. Mechanically controlled radical polymerization initiated by ultrasound. Nat. Chem. 9, 135–139 (2017).
Leibfarth, F. A., Mattson, K. M., Fors, B. P., Collins, H. A. & Hawker, C. J. External regulation of controlled polymerizations. Angew. Chem. Int. Ed. 52, 199–210 (2013).
Poelma, J. E., Fors, B. P., Meyers, G. F., Kramer, J. W. & Hawker, C. J. Fabrication of complex three-dimensional polymer brush nanostructures through light-mediated living radical polymerization. Angew. Chem. Int. Ed. 52, 6844–6848 (2013).
Wang, Y. et al. Improving the “livingness” of ATRP by reducing Cu catalyst concentration. Macromolecules 46, 683–691 (2013).
Treat, N. J. et al. Metal-free atom transfer radical polymerization. J. Am. Chem. Soc. 136, 16096–16101 (2014).
Theriot, J. C. et al. Organocatalyzed atom transfer radical polymerization driven by visible light. Science 352, 1082–1086 (2016).
Moad, C. L., Moad, G., Rizzardo, E. & Thang, S. H. Chain transfer activity of ω-unsaturated methyl methacrylate oligomers. Macromolecules 29, 7717–7726 (1996).
Engelis, N. G. et al. Sequence-controlled methacrylic multiblock copolymers via sulfur-free RAFT emulsion polymerization. Nat. Chem. 9, 171–178 (2017).
Perrier, S. 50th anniversary perspective: RAFT polymerization — a user guide. Macromolecules 50, 7433–7447 (2017).
Whitfield, R., Parkatzidis, K., Truong, N. P., Junkers, T. & Anastasaki, A. Tailoring polymer dispersity by RAFT polymerization: a versatile approach. Chem 6, 1340–1352 (2020).
Zhang, B. et al. Enzyme-initiated reversible addition–fragmentation chain transfer polymerization. Macromolecules 48, 7792–7802 (2015).
Carmean, R. N., Becker, T. E., Sims, M. B. & Sumerlin, B. S. Ultra-high molecular weights via aqueous reversible-deactivation radical polymerization. Chem 2, 93–101 (2017).
Rizzardo, E. & Moad, G. Synthesis of dithioester chain transfer agents and use of bis(thioacyl) disulfides or dithioesters as chain transfer agents. Patent WO/1999/005099 (1999).
Carmean, R. N. et al. Ultrahigh molecular weight hydrophobic acrylic and styrenic polymers through organic-phase photoiniferter-mediated polymerization. ACS Macro Lett. 9, 613–618 (2020).
Xu, J., Jung, K., Atme, A., Shanmugam, S. & Boyer, C. A robust and versatile photoinduced living polymerization of conjugated and unconjugated monomers and its oxygen tolerance. J. Am. Chem. Soc. 136, 5508–5519 (2014).
Allegrezza, M. L. & Konkolewicz, D. PET-RAFT polymerization: mechanistic perspectives for future materials. ACS Macro Lett. 10, 433–446 (2021).
Lorandi, F. et al. Toward electrochemically mediated reversible addition–fragmentation chain-transfer (eRAFT) polymerization: can propagating radicals be efficiently electrogenerated from RAFT agents? Macromolecules 52, 1479–1488 (2019).
McKenzie, T. G., Colombo, E., Fu, Q., Ashokkumar, M. & Qiao, G. G. Sono-RAFT polymerization in aqueous medium. Angew. Chem. Int. Ed. 56, 12302–12306 (2017).
An, Z. 100th anniversary of macromolecular science viewpoint: achieving ultrahigh molecular weights with reversible deactivation radical polymerization. ACS Macro Lett. 9, 350–357 (2020).
Asua, J. M. et al. Critically evaluated rate coefficients for free-radical polymerization, 5. Macromol. Chem. Phys. 205, 2151–2160 (2004).
Jones, G. R. et al. Copper-mediated reversible deactivation radical polymerization in aqueous media. Angew. Chem. Int. Ed. 57, 10468–10482 (2018).
Averick, S. et al. ATRP under biologically relevant conditions: grafting from a protein. ACS Macro Lett. 1, 6–10 (2012).
Simakova, A., Averick, S. E., Konkolewicz, D. & Matyjaszewski, K. Aqueous ARGET ATRP. Macromolecules 45, 6371–6379 (2012).
Appel, E. A., Del Barrio, J., Loh, X. J., Dyson, J. & Scherman, O. A. High molecular weight polyacrylamides by atom transfer radical polymerization: enabling advancements in water-based applications. J. Polym. Sci. A Polym. Chem. 50, 181–186 (2012).
Kwiatkowski, P. et al. High molecular weight polymethacrylates by AGET ATRP under high pressure. Macromolecules 41, 1067–1069 (2008).
Mueller, L. et al. Synthesis of high molecular weight polystyrene using AGET ATRP under high pressure. Eur. Polym. J. 47, 730–734 (2011).
Truong, N. P., Dussert, M. V., Whittaker, M. R., Quinn, J. F. & Davis, T. P. Rapid synthesis of ultrahigh molecular weight and low polydispersity polystyrene diblock copolymers by RAFT-mediated emulsion polymerization. Polym. Chem. 6, 3865–3874 (2015).
Zhang, Q. et al. Aqueous copper-mediated living polymerization: exploiting rapid disproportionation of CuBr with Me6TREN. J. Am. Chem. Soc. 135, 7355–7363 (2013).
Raus, V. & Kostka, L. Optimizing the Cu-RDRP of N-(2-hydroxypropyl) methacrylamide toward biomedical applications. Polym. Chem. 10, 564–568 (2019).
Pan, X. et al. Effect of solvents on the RAFT polymerization of N-(2-hydroxypropyl) methacrylamide. Eur. Polym. J. 115, 166–172 (2019).
Dong, H., Tang, W. & Matyjaszewski, K. Well-defined high-molecular-weight polyacrylonitrile via activators regenerated by electron transfer ATRP. Macromolecules 40, 2974–2977 (2007).
Niu, S. et al. Synthesis of high molecular weight and narrow molecular weight distribution poly(acrylonitrile) via RAFT polymerization. J. Polym. Sci. A Polym. Chem. 51, 1197–1204 (2013).
Mittal, A., Sivaram, S. & Baskaran, D. Unfavorable coordination of copper with methyl vinyl ketone in atom transfer radical polymerization. Macromolecules 39, 5555–5558 (2006).
Lee, I.-H., Discekici, E. H., Anastasaki, A., de Alaniz, J. R. & Hawker, C. J. Controlled radical polymerization of vinyl ketones using visible light. Polym. Chem. 8, 3351–3356 (2017).
Cheng, C., Sun, G., Khoshdel, E. & Wooley, K. L. Well-defined vinyl ketone-based polymers by reversible addition–fragmentation chain transfer polymerization. J. Am. Chem. Soc. 129, 10086–10087 (2007).
Reeves, J. A., Allegrezza, M. L. & Konkolewicz, D. Rise and fall: poly(phenyl vinyl ketone) photopolymerization and photodegradation under visible and UV radiation. Macromol. Rapid Commun. 38, 1600623 (2017).
Enciso, A. E. et al. p-Substituted tris(2-pyridylmethyl)amines as ligands for highly active ATRP catalysts: facile synthesis and characterization. Angew. Chem. Int. Ed. 59, 14910–14920 (2020).
Ribelli, T. G. et al. Synthesis and characterization of the most active copper ATRP catalyst based on tris[(4-dimethylaminopyridyl)methyl]amine. J. Am. Chem. Soc. 140, 1525–1534 (2018).
Lu, X. et al. Controllable synthesis of poly(N-vinylpyrrolidone) and its block copolymers by atom transfer radical polymerization. Polymer 48, 2835–2842 (2007).
Harrisson, S. et al. RAFT polymerization of vinyl esters: synthesis and applications. Polymers 6, 1437–1488 (2014).
Ding, C. et al. Photocatalyst-free and blue light-induced RAFT polymerization of vinyl acetate at ambient temperature. Macromol. Rapid Commun. 36, 2181–2185 (2015).
Stace, S. J., Moad, G., Fellows, C. M. & Keddie, D. J. The effect of Z-group modification on the RAFT polymerization of N-vinylpyrrolidone controlled by “switchable” N-pyridyl-functional dithiocarbamates. Polym. Chem. 6, 7119–7126 (2015).
Guinaudeau, A., Mazières, S., Wilson, D. J. & Destarac, M. Aqueous RAFT/MADIX polymerisation of N-vinyl pyrrolidone at ambient temperature. Polym. Chem. 3, 81–84 (2012).
Dommanget, C., D’Agosto, F. & Monteil, V. Polymerization of ethylene through reversible addition–fragmentation chain transfer (RAFT). Angew. Chem. Int. Ed. 53, 6683–6686 (2014).
Fantin, M., Isse, A. A., Venzo, A., Gennaro, A. & Matyjaszewski, K. Atom transfer radical polymerization of methacrylic acid: a won challenge. J. Am. Chem. Soc. 138, 7216–7219 (2016).
Lorandi, F. et al. Atom transfer radical polymerization of acrylic and methacrylic acids: preparation of acidic polymers with various architectures. ACS Macro Lett. 9, 693–699 (2020).
Willcock, H. & O’Reilly, R. K. End group removal and modification of RAFT polymers. Polym. Chem. 1, 149–157 (2010).
Bates, C. M. & Bates, F. S. 50th anniversary perspective: block polymers — pure potential. Macromolecules 50, 3–22 (2017).
Keddie, D. J. A guide to the synthesis of block copolymers using reversible-addition fragmentation chain transfer (RAFT) polymerization. Chem. Soc. Rev. 43, 496–505 (2014).
Peng, C.-H., Kong, J., Seeliger, F. & Matyjaszewski, K. Mechanism of halogen exchange in ATRP. Macromolecules 44, 7546–7557 (2011).
Easterling, C. P., Xia, Y., Zhao, J., Fanucci, G. E. & Sumerlin, B. S. Block copolymer sequence inversion through photoiniferter polymerization. ACS Macro Lett. 8, 1461–1466 (2019).
Gody, G., Zetterlund, P. B., Perrier, S. & Harrisson, S. The limits of precision monomer placement in chain growth polymerization. Nat. Commun. 7, 10514 (2016).
Anastasaki, A. et al. One-pot synthesis of ABCDE multiblock copolymers with hydrophobic, hydrophilic, and semi-fluorinated segments. Angew. Chem. Int. Ed. 56, 14483–14487 (2017).
Soeriyadi, A. H., Boyer, C., Nyström, F., Zetterlund, P. B. & Whittaker, M. R. High-order multiblock copolymers via iterative Cu(0)-mediated radical polymerizations (SET-LRP): toward biological precision. J. Am. Chem. Soc. 133, 11128–11131 (2011).
Anastasaki, A. et al. Photoinduced sequence-control via one pot living radical polymerization of acrylates. Chem. Sci. 5, 3536–3542 (2014).
Gody, G., Maschmeyer, T., Zetterlund, P. B. & Perrier, S. Rapid and quantitative one-pot synthesis of sequence-controlled polymers by radical polymerization. Nat. Commun. 4, 2505 (2013).
Fischer, H. The persistent radical effect: A principle for selective radical reactions and living radical polymerizations. Chem. Rev. 101, 3581–3610 (2001).
Clothier, G. K. K. et al. Exploitation of the nanoreactor concept for efficient synthesis of multiblock copolymers via macroRAFT-mediated emulsion polymerization. ACS Macro Lett. 8, 989–995 (2019).
Martin, L., Gody, G. & Perrier, S. Preparation of complex multiblock copolymers via aqueous RAFT polymerization at room temperature. Polym. Chem. 6, 4875–4886 (2015).
Gauthier, M. A., Gibson, M. I. & Klok, H.-A. Synthesis of functional polymers by post-polymerization modification. Angew. Chem. Int. Ed. 48, 48–58 (2009).
Tao, L., Mantovani, G., Lecolley, F. & Haddleton, D. M. α-Aldehyde terminally functional methacrylic polymers from living radical polymerization: application in protein conjugation “pegylation”. J. Am. Chem. Soc. 126, 13220–13221 (2004).
Pauloehrl, T. et al. Adding spatial control to click chemistry: phototriggered Diels–Alder surface (bio)functionalization at ambient temperature. Angew. Chem. Int. Ed. 51, 1071–1074 (2012).
Laurent, B. A. & Grayson, S. M. An efficient route to well-defined macrocyclic polymers via “click” cyclization. J. Am. Chem. Soc. 128, 4238–4239 (2006).
Altintas, O. et al. ATRP-based polymers with modular ligation points under thermal and thermomechanical stress. Polym. Chem. 6, 2854–2868 (2015).
Anastasaki, A., Willenbacher, J., Fleischmann, C., Gutekunst, W. R. & Hawker, C. J. End group modification of poly(acrylates) obtained via ATRP: a user guide. Polym. Chem. 8, 689–697 (2017).
Huang, X., Nakagawa, S., Li, X., Shibayama, M. & Yoshie, N. A simple and versatile method for the construction of nearly ideal polymer networks. Angew. Chem. Int. Ed. 59, 9646–9652 (2020).
Lutz, J.-F., Börner, H. G. & Weichenhan, K. Combining ATRP and “click” chemistry: a promising platform toward functional biocompatible polymers and polymer bioconjugates. Macromolecules 39, 6376–6383 (2006).
Adzima, B. J. et al. Spatial and temporal control of the alkyne–azide cycloaddition by photoinitiated Cu(ii) reduction. Nat. Chem. 3, 256–259 (2011).
Kolb, H. C., Finn, M. G. & Sharpless, K. B. Click chemistry: diverse chemical function from a few good reactions. Angew. Chem. Int. Ed. 40, 2004–2021 (2001).
Renterghem, L. M. V. et al. Design and use of organic nanoparticles prepared from star-shaped polymers with reactive end groups. J. Am. Chem. Soc. 130, 10802–10811 (2008).
Wager, C. M., Haddleton, D. M. & Bon, S. A. A simple method to convert atom transfer radical polymerization (ATRP) initiators into reversible addition fragmentation chain-transfer (RAFT) mediators. Eur. Polym. J. 40, 641–645 (2004).
Kulis, J., Bell, C. A., Micallef, A. S., Jia, Z. & Monteiro, M. J. Rapid, selective, and reversible nitroxide radical coupling (NRC) reactions at ambient temperature. Macromolecules 42, 8218–8227 (2009).
Harvison, M. A. & Lowe, A. B. Combining RAFT radical polymerization and click/highly efficient coupling chemistries: a powerful strategy for the preparation of novel materials. Macromol. Rapid Commun. 32, 779–800 (2011).
Inglis, A. J., Sinnwell, S., Stenzel, M. H. & Barner-Kowollik, C. Ultrafast click conjugation of macromolecular building blocks at ambient temperature. Angew. Chem. Int. Ed. 48, 2411–2414 (2009).
Hansell, C. F. et al. Additive-free clicking for polymer functionalization and coupling by tetrazine–norbornene chemistry. J. Am. Chem. Soc. 133, 13828–13831 (2011).
Nebhani, L. et al. Efficient surface modification of divinylbenzene microspheres via a combination of RAFT and hetero Diels–Alder chemistry. Macromol. Rapid Commun. 29, 1431–1437 (2008).
Inglis, A. J., Sinnwell, S., Davis, T. P., Barner-Kowollik, C. & Stenzel, M. H. Reversible addition fragmentation chain transfer (RAFT) and hetero-Diels–Alder chemistry as a convenient conjugation tool for access to complex macromolecular designs. Macromolecules 41, 4120–4126 (2008).
Dietrich, M. et al. Facile conversion of RAFT polymers into hydroxyl functional polymers: a detailed investigation of variable monomer and RAFT agent combinations. Polym. Chem. 1, 634–644 (2010).
Lunn, D. J., Discekici, E. H., Read de Alaniz, J., Gutekunst, W. R. & Hawker, C. J. Established and emerging strategies for polymer chain-end modification. J. Polym. Sci. A Polym. Chem. 55, 2903–2914 (2017).
Destarac, M. Industrial development of reversible-deactivation radical polymerization: is the induction period over? Polym. Chem. 9, 4947–4967 (2018).
Theodorou, A. et al. Protein–polymer bioconjugates via a versatile oxygen tolerant photoinduced controlled radical polymerization approach. Nat. Commun. 11, 1486 (2020).
De, P., Li, M., Gondi, S. R. & Sumerlin, B. S. Temperature-regulated activity of responsive polymer–protein conjugates prepared by grafting-from via RAFT polymerization. J. Am. Chem. Soc. 130, 11288–11289 (2008).
Bontempo, D., Heredia, K. L., Fish, B. A. & Maynard, H. D. Cysteine-reactive polymers synthesized by atom transfer radical polymerization for conjugation to proteins. J. Am. Chem. Soc. 126, 15372–15373 (2004).
Panganiban, B. et al. Random heteropolymers preserve protein function in foreign environments. Science 359, 1239–1243 (2018).
Niu, J. et al. Engineering live cell surfaces with functional polymers via cytocompatible controlled radical polymerization. Nat. Chem. 9, 537–545 (2017).
Kim, J. Y. et al. Cytocompatible polymer grafting from individual living cells by atom-transfer radical polymerization. Angew. Chem. Int. Ed. 55, 15306–15309 (2016).
Warren, N. J. & Armes, S. P. Polymerization-induced self-assembly of block copolymer nano-objects via RAFT aqueous dispersion polymerization. J. Am. Chem. Soc. 136, 10174–10185 (2014).
Yan, J. et al. Solution processable liquid metal nanodroplets by surface-initiated atom transfer radical polymerization. Nat. Nanotechnol. 14, 684–690 (2019).
Ramírez-García, P. D. et al. A pH-responsive nanoparticle targets the neurokinin 1 receptor in endosomes to prevent chronic pain. Nat. Nanotechnol. 14, 1150–1159 (2019).
Jung, K. et al. Designing with light: advanced 2D, 3D, and 4D materials. Adv. Mater. 32, 1903850 (2020).
Zhang, Z., Corrigan, N., Bagheri, A., Jin, J. & Boyer, C. A versatile 3D and 4D printing system through photocontrolled RAFT polymerization. Angew. Chem. Int. Ed. 58, 17954–17963 (2019).
Convertine, A. J., Benoit, D. S., Duvall, C. L., Hoffman, A. S. & Stayton, P. S. Development of a novel endosomolytic diblock copolymer for siRNA delivery. J. Control. Release 133, 221–229 (2009).
Hedir, G. G. et al. Functional degradable polymers by xanthate-mediated polymerization. Macromolecules 47, 2847–2852 (2014).
Benaglia, M. et al. Universal (switchable) RAFT agents. J. Am. Chem. Soc. 131, 6914–6915 (2009).
Lawrence, J. et al. A versatile and scalable strategy to discrete oligomers. J. Am. Chem. Soc. 138, 6306–6310 (2016).
Holerca, M. N. et al. Monodisperse macromolecules by self-interrupted living polymerization. J. Am. Chem. Soc. 142, 15265–15270 (2020).
Lutz, J.-F., Neugebauer, D. & Matyjaszewski, K. Stereoblock copolymers and tacticity control in controlled/living radical polymerization. J. Am. Chem. Soc. 125, 6986–6993 (2003).
Shanmugam, S. & Boyer, C. Stereo-, temporal and chemical control through photoactivation of living radical polymerization: synthesis of block and gradient copolymers. J. Am. Chem. Soc. 137, 9988–9999 (2015).
Rubens, M., Vrijsen, J. H., Laun, J. & Junkers, T. Precise polymer synthesis by autonomous self-optimizing flow reactors. Angew. Chem. Int. Ed. 58, 3183–3187 (2019).
Coates, G. W. & Getzler, Y. D. Chemical recycling to monomer for an ideal, circular polymer economy. Nat. Rev. Mater. 5, 501–516 (2020).
Acknowledgements
A.A. gratefully acknowledges ETH Zürich for financial support. N.P.T. acknowledges the award of a DECRA Fellowship from the ARC (DE180100076). D.K. acknowledges the National Science Foundation under grant no. DMR-1749730 and the Robert H. and Nancy J. Blayney Professorship.
Author information
Authors and Affiliations
Contributions
N.P.T., G.R.J., K.G.E.B., D.K. and A.A. co-wrote the manuscript. Key concepts were developed by A.A. and D.K.
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Peer review information
Nature Reviews Chemistry thanks G. Moad, C. Barner-Kowollik and the other, anonymous, reviewers for their contribution to the peer review of this work.
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Truong, N.P., Jones, G.R., Bradford, K.G.E. et al. A comparison of RAFT and ATRP methods for controlled radical polymerization. Nat Rev Chem 5, 859–869 (2021). https://doi.org/10.1038/s41570-021-00328-8
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41570-021-00328-8
This article is cited by
-
Mechanically triggered on-demand degradation of polymers synthesized by radical polymerizations
Nature Chemistry (2024)
-
Proton transfer anionic polymerization with C–H bond as the dormant species
Nature Chemistry (2024)
-
Acid-triggered radical polymerization of vinyl monomers
Nature Synthesis (2024)
-
Synthesis of ultra-high molecular weight homo- and copolymers via an ultrasonic emulsion process with a fast rate
Communications Chemistry (2024)
-
An acidic route for radical polymerizations
Nature Synthesis (2024)