[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Immune evasion and provocation by Mycobacterium tuberculosis

Abstract

Mycobacterium tuberculosis, the causative agent of tuberculosis, has infected humans for millennia. M. tuberculosis is well adapted to establish infection, persist in the face of the host immune response and be transmitted to uninfected individuals. Its ability to complete this infection cycle depends on it both evading and taking advantage of host immune responses. The outcome of M. tuberculosis infection is often a state of equilibrium characterized by immunological control and bacterial persistence. Recent data have highlighted the diverse cell populations that respond to M. tuberculosis infection and the dynamic changes in the cellular and intracellular niches of M. tuberculosis during the course of infection. M. tuberculosis possesses an arsenal of protein and lipid effectors that influence macrophage functions and inflammatory responses; however, our understanding of the role that specific bacterial virulence factors play in the context of diverse cellular reservoirs and distinct infection stages is limited. In this Review, we discuss immune evasion and provocation by M. tuberculosis during its infection cycle and describe how a more detailed molecular understanding is crucial to enable the development of novel host-directed therapies, disease biomarkers and effective vaccines.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Life cycle of Mycobacterium tuberculosis.
Fig. 2: Infection establishment and innate immune evasion by Mycobacterium tuberculosis.
Fig. 3: Mycobacterium tuberculosis resides in diverse intracellular compartments.
Fig. 4: Mycobacterium tuberculosis delays and impairs the adaptive immune response.
Fig. 5: Potential vaccine strategies to promote protection from Mycobacterium tuberculosis infection.

Similar content being viewed by others

References

  1. Comas, I. et al. Out-of-Africa migration and Neolithic coexpansion of Mycobacterium tuberculosis with modern humans. Nat. Genet. 45, 1176–1182 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Huang, L., Nazarova, E. V., Tan, S., Liu, Y. & Russell, D. G. Growth of Mycobacterium tuberculosis in vivo segregates with host macrophage metabolism and ontogeny. J. Exp. Med. 215, 1135–1152 (2018). This study demonstrates that macrophage populations have differential abilities to restrict M. tuberculosis growth during in vivo infection.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Pisu, D. et al. Single cell analysis of M. tuberculosis phenotype and macrophage lineages in the infected lung. J. Exp. Med. https://doi.org/10.1084/jem.20210615 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Pisu, D., Huang, L., Grenier, J. K. & Russell, D. G. Dual RNA-Seq of Mtb-infected macrophages in vivo reveals ontologically distinct host-pathogen interactions. Cell Rep. 30, 335–350.e4 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Lee, J. et al. CD11cHi monocyte-derived macrophages are a major cellular compartment infected by Mycobacterium tuberculosis. PLoS Pathog. 16, e1008621 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Norris, B. A. & Ernst, J. D. Mononuclear cell dynamics in M. tuberculosis infection provide opportunities for therapeutic intervention. PLoS Pathog. 14, e1007154 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Cohen, S. B. et al. Alveolar macrophages provide an early Mycobacterium tuberculosis niche and initiate dissemination. Cell Host Microbe 24, 439–446.e4 (2018). This is the first study to demonstrate that AMs, although long suspected, are the initial cells infected during pulmonary M. tuberculosis infection and that they initiate bacterial dissemination into the lung interstitium.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Boom, W. H., Schaible, U. E. & Achkar, J. M. The knowns and unknowns of latent Mycobacterium tuberculosis infection. J. Clin. Invest. https://doi.org/10.1172/JCI136222 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Pai, M. et al. Tuberculosis. Nat. Rev. Dis. Primers 2, 16076–16076 (2016).

    Article  PubMed  Google Scholar 

  10. Donald, P. R. et al. Droplets, dust and guinea pigs: an historical review of tuberculosis transmission research, 1878–1940. Int. J. Tuberc. Lung Dis. 22, 972–982 (2018).

    Article  CAS  PubMed  Google Scholar 

  11. Scordo, J. M. et al. The human lung mucosa drives differential Mycobacterium tuberculosis infection outcome in the alveolar epithelium. Mucosal Immunol. 12, 795–804 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Thacker, V. V. et al. A lung-on-chip model of early. Elife https://doi.org/10.7554/eLife.59961 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Moliva, J. I. et al. The lung mucosa environment in the elderly increases host susceptibility to Mycobacterium tuberculosis infection. J. Infect. Dis. 220, 514–523 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Li, H. & Javid, B. Antibodies and tuberculosis: finally coming of age? Nat. Rev. Immunol. 18, 591–596 (2018).

    Article  CAS  PubMed  Google Scholar 

  15. Irvine, E. B. et al. Robust IgM responses following intravenous vaccination with bacille Calmette-Guérin associate with prevention of Mycobacterium tuberculosis infection in macaques. Nat. Immunol. 22, 1515–1523 (2021). This article suggests that intravenous BCG mediates protection against M. tuberculosis through humoral immunity, with IgM titres correlating with reduced bacterial burden.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Cambier, C. J., Banik, S. M., Buonomo, J. A. & Bertozzi, C. R. Spreading of a mycobacterial cell-surface lipid into host epithelial membranes promotes infectivity. Elife https://doi.org/10.7554/eLife.60648 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Khan, H. S. et al. Identification of scavenger receptor B1 as the airway microfold cell receptor for Mycobacterium tuberculosis. Elife https://doi.org/10.7554/eLife.52551 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Nair, V. R. et al. Microfold cells actively translocate Mycobacterium tuberculosis to initiate infection. Cell Rep. 16, 1253–1258 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Hu, G. & Christman, J. W. Editorial: alveolar macrophages in lung inflammation and resolution. Front. Immunol. 10, 2275 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Hussell, T. & Bell, T. J. Alveolar macrophages: plasticity in a tissue-specific context. Nat. Rev. Immunol. 14, 81–93 (2014).

    Article  CAS  PubMed  Google Scholar 

  21. Lavalett, L. et al. Alveolar macrophages from tuberculosis patients display an altered inflammatory gene expression profile. Tuberculosis 107, 156–167 (2017).

    Article  CAS  PubMed  Google Scholar 

  22. Rothchild, A. C. et al. Alveolar macrophages generate a noncanonical NRF2-driven transcriptional response. Sci. Immunol. https://doi.org/10.1126/sciimmunol.aaw6693 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Lafuse, W. P. et al. Identification of an increased alveolar macrophage subpopulation in old mice that displays unique inflammatory characteristics and is permissive to Mycobacterium tuberculosis infection. J. Immunol. 203, 2252–2264 (2019).

    Article  CAS  PubMed  Google Scholar 

  24. Leemans, J. C. et al. Depletion of alveolar macrophages exerts protective effects in pulmonary tuberculosis in mice. J. Immunol. 166, 4604–4611 (2001).

    Article  CAS  PubMed  Google Scholar 

  25. Dunlap, M. D. et al. A novel role for C-C motif chemokine receptor 2 during infection with hypervirulent Mycobacterium tuberculosis. Mucosal Immunol. 11, 1727–1742 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Corleis, B. et al. Escape of Mycobacterium tuberculosis from oxidative killing by neutrophils. Cell. Microbiol. 14, 1109–1121 (2012).

    Article  CAS  PubMed  Google Scholar 

  27. Filio-Rodríguez, G. et al. In vivo induction of neutrophil extracellular traps by Mycobacterium tuberculosis in a guinea pig model. Innate Immun. 23, 625–637 (2017).

    Article  PubMed  Google Scholar 

  28. Kimmey, J. M. et al. Unique role for ATG5 in neutrophil-mediated immunopathology during M. tuberculosis infection. Nature 528, 565–569 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Lovewell, R. R., Baer, C. E., Mishra, B. B., Smith, C. M. & Sassetti, C. M. Granulocytes act as a niche for Mycobacterium tuberculosis growth. Mucosal Immunol. 14, 229–241 (2021).

    Article  CAS  PubMed  Google Scholar 

  30. Mishra, B. B. et al. Nitric oxide prevents a pathogen-permissive granulocytic inflammation during tuberculosis. Nat. Microbiol. 2, 17072 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Repasy, T. et al. Bacillary replication and macrophage necrosis are determinants of neutrophil recruitment in tuberculosis. Microbes Infect. 17, 564–574 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Dallenga, T. et al. M. tuberculosis-induced necrosis of infected neutrophils promotes bacterial growth following phagocytosis by macrophages. Cell Host Microbe 22, 519–530.e3 (2017).

    Article  CAS  PubMed  Google Scholar 

  33. Berry, M. P. et al. An interferon-inducible neutrophil-driven blood transcriptional signature in human tuberculosis. Nature 466, 973–977 (2010). The authors show that the transcriptional signature of active TB in humans is dominated by a neutrophil-driven type I interferon response.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Blomgran, R. & Ernst, J. D. Lung neutrophils facilitate activation of naive antigen-specific CD4+ T cells during Mycobacterium tuberculosis infection. J. Immunol. 186, 7110–7119 (2011).

    Article  CAS  PubMed  Google Scholar 

  35. Samstein, M. et al. Essential yet limited role for CCR2+ inflammatory monocytes during Mycobacterium tuberculosis-specific T cell priming. Elife 2, e01086 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Wolf, A. J. et al. Mycobacterium tuberculosis infects dendritic cells with high frequency and impairs their function in vivo. J. Immunol. 179, 2509–2519 (2007).

    Article  CAS  PubMed  Google Scholar 

  37. Lai, R. et al. CD11b+ dendritic cell–mediated anti–Mycobacterium tuberculosis Th1 activation is counterregulated by CD103+ dendritic cells via IL-10. J. Immunol. 200, 1746–1760 (2018).

    CAS  PubMed  Google Scholar 

  38. Bohrer, A. C. et al. Eosinophils are part of the granulocyte response in tuberculosis and promote host resistance in mice. J. Exp. Med. https://doi.org/10.1084/jem.20210469 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Papp, A. C. et al. AmpliSeq transcriptome analysis of human alveolar and monocyte-derived macrophages over time in response to Mycobacterium tuberculosis infection. PLoS ONE 13, e0198221 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Cambier, C. J. et al. Mycobacteria manipulate macrophage recruitment through coordinated use of membrane lipids. Nature 505, 218–222 (2014).

    Article  CAS  PubMed  Google Scholar 

  41. Khan, N. et al. M. tuberculosis reprograms hematopoietic stem cells to limit myelopoiesis and impair trained immunity. Cell 183, 752–770.e22 (2020). This study demonstrates that M. tuberculosis undermines a protective trained immune response, reprograming haematopoietic stem cells by eliciting type I interferon.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Srivastava, S. & Ernst, J. D. Cutting edge: direct recognition of infected cells by CD4 T cells is required for control of intracellular Mycobacterium tuberculosis in vivo. J. Immunol. 191, 1016–1020 (2013). This study illustrates the requirement for direct contact between infected macrophages and M. tuberculosis-specific CD4+ T cells for their effector functions.

    Article  CAS  PubMed  Google Scholar 

  43. Simmons, J. D. et al. Monocyte metabolic transcriptional programs associate with resistance to tuberculin skin test/interferon-γ release assay conversion. J. Clin. Invest. https://doi.org/10.1172/JCI140073 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Delahaye, J. L. et al. Cutting edge: bacillus Calmette–Guérin–induced T cells shape Mycobacterium tuberculosis infection before reducing the bacterial burden. J. Immunol. 203, 807–812 (2019).

    Article  CAS  PubMed  Google Scholar 

  45. Khader, S. A. et al. Targeting innate immunity for tuberculosis vaccination. J. Clin. Invest. 129, 3482–3491 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Kinsella, R. L. et al. Perspectives and advances in the understanding of tuberculosis. Annu. Rev. Pathol. 16, 377–408 (2021).

    Article  CAS  PubMed  Google Scholar 

  47. Lugo-Villarino, G. et al. The C-type lectin receptor DC-SIGN has an anti-inflammatory role in human M(IL-4) macrophages in response to Mycobacterium tuberculosis. Front. Immunol. 9, 1123 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Rajaram, M. V. S. et al. M. tuberculosis-initiated human mannose receptor signaling regulates macrophage recognition and vesicle trafficking by FcRγ-chain, Grb2, and SHP-1. Cell Rep. 21, 126–140 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Lu, L. L. et al. A functional role for antibodies in tuberculosis. Cell 167, 433–443.e14 (2016). This study compares antibodies from patients with active TB to antibodies from patients with latent TB and demonstrates that the antibodies have different glycosylation and functional profiles, suggesting their potential role in mediating infection control.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Weiss, G. & Schaible, U. E. Macrophage defense mechanisms against intracellular bacteria. Immunol. Rev. 264, 182–203 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Shi, L. et al. Infection with Mycobacterium tuberculosis induces the Warburg effect in mouse lungs. Sci. Rep. 5, 18176 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Marino, S. et al. Macrophage polarization drives granuloma outcome during Mycobacterium tuberculosis infection. Infect. Immun. 83, 324–338 (2015).

    Article  PubMed  Google Scholar 

  53. Tannahill, G. M. et al. Succinate is an inflammatory signal that induces IL-1β through HIF-1α. Nature 496, 238–242 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Mills, E. L. et al. Succinate dehydrogenase supports metabolic repurposing of mitochondria to drive inflammatory macrophages. Cell 167, 457–470.e13 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Lampropoulou, V. et al. Itaconate links inhibition of succinate dehydrogenase with macrophage metabolic remodeling and regulation of inflammation. Cell Metab. 24, 158–166 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Nair, S. et al. Irg1 expression in myeloid cells prevents immunopathology during M. tuberculosis infection. J. Exp. Med. 215, 1035–1045 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Ma, J. et al. The roles of inflammasomes in host defense against Mycobacterium tuberculosis. Pathogens https://doi.org/10.3390/pathogens10020120 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Mishra, B. B. et al. Nitric oxide controls the immunopathology of tuberculosis by inhibiting NLRP3 inflammasome-dependent processing of IL-1β. Nat. Immunol. 14, 52–60 (2013).

    Article  CAS  PubMed  Google Scholar 

  59. Mayer-Barber, K. D. et al. Host-directed therapy of tuberculosis based on interleukin-1 and type I interferon crosstalk. Nature 511, 99–103 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Collins, J. M. et al. TCA cycle remodeling drives proinflammatory signaling in humans with pulmonary tuberculosis. PLoS Pathog. 17, e1009941 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Roca, F. J. & Ramakrishnan, L. TNF dually mediates resistance and susceptibility to mycobacteria via mitochondrial reactive oxygen species. Cell 153, 521–534 (2013). This study demonstrates the mechanism by which TNF, a host- protective cytokine, can also induce inflammation and enhance TB susceptibility.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Peyron, P. et al. Foamy macrophages from tuberculous patients’ granulomas constitute a nutrient-rich reservoir for M. tuberculosis persistence. PLoS Pathog. 4, e1000204 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Ouimet, M. et al. Mycobacterium tuberculosis induces the miR-33 locus to reprogram autophagy and host lipid metabolism. Nat. Immunol. 17, 677–686 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Kim, Y. S. et al. PPAR-α activation mediates innate host defense through induction of TFEB and lipid catabolism. J. Immunol. 198, 3283–3295 (2017).

    Article  CAS  PubMed  Google Scholar 

  65. Knight, M., Braverman, J., Asfaha, K., Gronert, K. & Stanley, S. Lipid droplet formation in Mycobacterium tuberculosis infected macrophages requires IFN-γ/HIF-1α signaling and supports host defense. PLoS Pathog. 14, e1006874 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Wilburn, K. M., Fieweger, R. A. & VanderVen, B. C. Cholesterol and fatty acids grease the wheels of Mycobacterium tuberculosis pathogenesis. Pathog. Dis. https://doi.org/10.1093/femspd/fty021 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Armstrong, J. A. & Hart, P. D. Response of cultured macrophages to Mycobacterium tuberculosis, with observations on fusion of lysosomes with phagosomes. J. Exp. Med. 134, 713–740 (1971).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Augenstreich, J. & Briken, V. Host cell targets of released lipid and secreted protein effectors of Mycobacterium tuberculosis. Front. Cell Infect. Microbiol. 10, 595029 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Upadhyay, S., Mittal, E. & Philips, J. A. Tuberculosis and the art of macrophage manipulation. Pathog. Dis. https://doi.org/10.1093/femspd/fty037 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Pradhan, G., Shrivastva, R. & Mukhopadhyay, S. Mycobacterial PknG targets the Rab7l1 signaling pathway to inhibit phagosome-lysosome fusion. J. Immunol. 201, 1421–1433 (2018).

    Article  CAS  PubMed  Google Scholar 

  71. Wang, J. et al. Mycobacterium tuberculosis protein kinase G acts as an unusual ubiquitinating enzyme to impair host immunity. EMBO Rep. 22, e52175 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Ng, V. H., Cox, J. S., Sousa, A. O., MacMicking, J. D. & McKinney, J. D. Role of KatG catalase-peroxidase in mycobacterial pathogenesis: countering the phagocyte oxidative burst. Mol. Microbiol. 52, 1291–1302 (2004).

    Article  CAS  PubMed  Google Scholar 

  73. Köster, S. et al. Mycobacterium tuberculosis is protected from NADPH oxidase and LC3-associated phagocytosis by the LCP protein CpsA. Proc. Natl Acad. Sci. USA 114, E8711–E8720 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  74. Sun, J. et al. Mycobacterium tuberculosis nucleoside diphosphate kinase inactivates small GTPases leading to evasion of innate immunity. PLoS Pathog. 9, e1003499 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Srivastava, S., Battu, M. B., Khan, M. Z., Nandicoori, V. K. & Mukhopadhyay, S. Mycobacterium tuberculosis PPE2 protein interacts with p67 phox and inhibits reactive oxygen species production. J. Immunol. 203, 1218–1229 (2019).

    Article  CAS  PubMed  Google Scholar 

  76. Miller, J. L., Velmurugan, K., Cowan, M. J. & Briken, V. The type I NADH dehydrogenase of Mycobacterium tuberculosis counters phagosomal NOX2 activity to inhibit TNF-alpha-mediated host cell apoptosis. PLoS Pathog. 6, e1000864 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  77. Rivera-Calzada, A., Famelis, N., Llorca, O. & Geibel, S. Type VII secretion systems: structure, functions and transport models. Nat. Rev. Microbiol. 19, 567–584 (2021).

    Article  CAS  PubMed  Google Scholar 

  78. van der Wel, N. et al. M. tuberculosis and M. leprae translocate from the phagolysosome to the cytosol in myeloid cells. Cell 129, 1287–1298 (2007).

    Article  PubMed  Google Scholar 

  79. Augenstreich, J. et al. ESX-1 and phthiocerol dimycocerosates of Mycobacterium tuberculosis act in concert to cause phagosomal rupture and host cell apoptosis. Cell Microbiol. https://doi.org/10.1111/cmi.12726 (2017).

    Article  PubMed  Google Scholar 

  80. Barczak, A. K. et al. Systematic, multiparametric analysis of Mycobacterium tuberculosis intracellular infection offers insight into coordinated virulence. PLoS Pathog. 13, e1006363 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  81. Quigley, J. et al. The cell wall lipid PDIM contributes to phagosomal escape and host cell exit of Mycobacterium tuberculosis. mBio https://doi.org/10.1128/mBio.00148-17 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  82. Lerner, T. R. et al. Phthiocerol dimycocerosates promote access to the cytosol and intracellular burden of Mycobacterium tuberculosis in lymphatic endothelial cells. BMC Biol. 16, 1 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  83. Amaral, E. P. et al. A major role for ferroptosis in Mycobacterium tuberculosis–induced cell death and tissue necrosis. J. Exp. Med. 216, 556–570 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Shah, S. et al. Cutting edge: Mycobacterium tuberculosis but not nonvirulent mycobacteria inhibits IFN-β and AIM2 inflammasome-dependent IL-1β production via its ESX-1 secretion system. J. Immunol. 191, 3514–3518 (2013).

    Article  CAS  PubMed  Google Scholar 

  85. Rastogi, S., Ellinwood, S., Augenstreich, J., Mayer-Barber, K. D. & Briken, V. Mycobacterium tuberculosis inhibits the NLRP3 inflammasome activation via its phosphokinase PknF. PLoS Pathog. 17, e1009712 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Mittal, E. et al. Mycobacterium tuberculosis type VII secretion system effectors differentially impact the ESCRT endomembrane damage response. mBio https://doi.org/10.1128/mBio.01765-18 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  87. Sakowski, E. T. et al. Ubiquilin 1 promotes IFN-γ-induced xenophagy of Mycobacterium tuberculosis. PLoS Pathog. 11, e1005076 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  88. Bell, S. L., Lopez, K. L., Cox, J. S., Patrick, K. L. & Watson, R. O. Galectin-8 senses phagosomal damage and recruits selective autophagy adapter TAX1BP1 to control. mBio 12, e0187120 (2021).

    Article  PubMed  Google Scholar 

  89. Watson, R. O., Manzanillo, P. S. & Cox, J. S. Extracellular M. tuberculosis DNA targets bacteria for autophagy by activating the host DNA-sensing pathway. Cell 150, 803–815 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Wiens, K. E. & Ernst, J. D. The mechanism for type I interferon induction by Mycobacterium tuberculosis is bacterial strain-dependent. PLoS Pathog. 12, e1005809 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  91. Strong, E. J. et al. Identification of autophagy-inhibiting factors of Mycobacterium tuberculosis by high-throughput loss-of-function screening. Infect. Immun. https://doi.org/10.1128/IAI.00269-20 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  92. Saini, N. K. et al. Suppression of autophagy and antigen presentation by Mycobacterium tuberculosis PE_PGRS47. Nat. Microbiol. 1, 16133 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Lerner, T. R. et al. Mycobacterium tuberculosis cords within lymphatic endothelial cells to evade host immunity. JCI Insight https://doi.org/10.1172/jci.insight.136937 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  94. Chandra, P. et al. Inhibition of fatty acid oxidation promotes macrophage control of Mycobacterium tuberculosis. mBio https://doi.org/10.1128/mBio.01139-20 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  95. Baker, J. J., Dechow, S. J. & Abramovitch, R. B. Acid fasting: modulation of Mycobacterium tuberculosis metabolism at acidic pH. Trends Microbiol. 27, 942–953 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Buter, J. et al. Mycobacterium tuberculosis releases an antacid that remodels phagosomes. Nat. Chem. Biol. 15, 889–899 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Behar, S. M. et al. Apoptosis is an innate defense function of macrophages against Mycobacterium tuberculosis. Mucosal Immunol. 4, 279–287 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Martin, C. J. et al. Efferocytosis is an innate antibacterial mechanism. Cell Host Microbe 12, 289–300 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Srinivasan, L. et al. Identification of a transcription factor that regulates host cell exit and virulence of Mycobacterium tuberculosis. PLoS Pathog. 12, e1005652 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  100. Sun, J. et al. The tuberculosis necrotizing toxin kills macrophages by hydrolyzing NAD. Nat. Struct. Mol. Biol. 22, 672–678 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Pajuelo, D. et al. Toxin secretion and trafficking by Mycobacterium tuberculosis. Nat. Commun. 12, 6592 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Izquierdo Lafuente, B., Ummels, R., Kuijl, C., Bitter, W. & Speer, A. Mycobacterium tuberculosis toxin CpnT is an ESX-5 substrate and requires three type VII secretion systems for intracellular secretion. mBio https://doi.org/10.1128/mBio.02983-20 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  103. Zhang, L., Jiang, X., Pfau, D., Ling, Y. & Nathan, C. F. Type I interferon signaling mediates Mycobacterium tuberculosis-induced macrophage death. J. Exp. Med. https://doi.org/10.1084/jem.20200887 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  104. Elkington, P. et al. In vitro granuloma models of tuberculosis: potential and challenges. J. Infect. Dis. 219, 1858–1866 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  105. Dorhoi, A. et al. Activation of the NLRP3 inflammasome by Mycobacterium tuberculosis is uncoupled from susceptibility to active tuberculosis. Eur. J. Immunol. 42, 374–384 (2012).

    Article  CAS  PubMed  Google Scholar 

  106. Caruso, A. M. et al. Mice deficient in CD4 T cells have only transiently diminished levels of IFN-gamma, yet succumb to tuberculosis. J. Immunol. 162, 5407–5416 (1999).

    CAS  PubMed  Google Scholar 

  107. Flynn, J. L. et al. Tumor necrosis factor-α is required in the protective immune response against mycobacterium tuberculosis in mice. Immunity 2, 561–572 (1995).

    Article  CAS  PubMed  Google Scholar 

  108. Chávez-Galán, L. et al. Tuberculosis patients display a high proportion of CD8+ T cells with a high cytotoxic potential. Microbiol. Immunol. 63, 316–327 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  109. Lu, Y. J. et al. CD4 T cell help prevents CD8 T cell exhaustion and promotes control of Mycobacterium tuberculosis infection. Cell Rep. 36, 109696–109696 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Watson, A. et al. Human antibodies targeting a Mycobacterium transporter protein mediate protection against tuberculosis. Nat. Commun. 12, 602 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Marin, N. D., Dunlap, M. D., Kaushal, D. & Khader, S. A. Friend or foe: the protective and pathological roles of inducible bronchus-associated lymphoid tissue in pulmonary diseases. J. Immunol. 202, 2519–2526 (2019).

    Article  CAS  PubMed  Google Scholar 

  112. Flynn, J. L. et al. An essential role for interferon gamma in resistance to Mycobacterium tuberculosis infection. J. Exp. Med. 178, 2249–2254 (1993).

    Article  CAS  PubMed  Google Scholar 

  113. Schnettger, L. et al. A Rab20-dependent membrane trafficking pathway controls M. tuberculosis replication by regulating phagosome spaciousness and integrity. Cell Host Microbe 21, 619–628.e5 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. MacMicking, J. D. Interferon-inducible effector mechanisms in cell-autonomous immunity. Nat. Rev. Immunol. 12, 367–382 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Mitchell, G. & Isberg, R. R. Innate immunity to intracellular pathogens: balancing microbial elimination and inflammation. Cell Host Microbe 22, 166–175 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Fabri, M. et al. Vitamin D is required for IFN-gamma-mediated antimicrobial activity of human macrophages. Sci. Transl. Med. 3, 104ra102 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  117. Kaufmann, E. et al. BCG educates hematopoietic stem cells to generate protective innate immunity against tuberculosis. Cell 172, 176–190.e19 (2018). This study shows that BCG in the bone marrow reprogrammes haematopoietic stem cells, generating trained immunity of macrophages that can be harnessed to improve vaccine-elicited protection against TB.

    Article  CAS  PubMed  Google Scholar 

  118. Sallin, M. A. et al. Th1 differentiation drives the accumulation of intravascular, non-protective CD4 T cells during tuberculosis. Cell Rep. 18, 3091–3104 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Sakai, S. et al. CD4 T cell-derived IFN-γ plays a minimal role in control of pulmonary Mycobacterium tuberculosis infection and must be actively repressed by PD-1 to prevent lethal disease. PLoS Pathog. 12, e1005667 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  120. Tzelepis, F. et al. Mitochondrial cyclophilin D regulates T cell metabolic responses and disease tolerance to tuberculosis. Sci. Immunol. https://doi.org/10.1126/sciimmunol.aar4135 (2018).

    Article  PubMed  Google Scholar 

  121. Gallegos, A. M. et al. A gamma interferon independent mechanism of CD4 T cell mediated control of M. tuberculosis infection in vivo. PLoS Pathog. 7, e1002052 (2011). This study challenges the long-held belief that CD4+ T cell effector function is entirely mediated by interferon-γ in TB.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Sallin, M. A. et al. Host resistance to pulmonary Mycobacterium tuberculosis infection requires CD153 expression. Nat. Microbiol. 3, 1198–1205 (2018). This study identifies CD153 as a marker of protective interstitial CD4+ T cells and demonstrates that it is required for M. tuberculosis control in the lungs.

    Article  CAS  PubMed  Google Scholar 

  123. Du Bruyn, E. et al. Mycobacterium tuberculosis-specific CD4 T cells expressing CD153 inversely associate with bacterial load and disease severity in human tuberculosis. Mucosal Immunol. 14, 491–499 (2021).

    Article  PubMed  Google Scholar 

  124. Morgan, J. et al. Classical CD4 T cells as the cornerstone of antimycobacterial immunity. Immunol. Rev. 301, 10–29 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Ankley, L., Thomas, S. & Olive, A. J. Fighting persistence: how chronic infections with mycobacterium tuberculosis evade T cell-mediated clearance and new strategies to defeat them. Infect. Immun. https://doi.org/10.1128/IAI.00916-19 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  126. Srivastava, S., Grace, P. S. & Ernst, J. D. Antigen export reduces antigen presentation and limits T cell control of M. tuberculosis. Cell Host Microbe 19, 44–54 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Georgieva, M., Sia, J. K., Bizzell, E., Madan-Lala, R. & Rengarajan, J. Mycobacterium tuberculosis GroEL2 modulates dendritic cell responses. Infect. Immun. https://doi.org/10.1128/IAI.00387-17 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  128. Portal-Celhay, C. et al. Mycobacterium tuberculosis EsxH inhibits ESCRT-dependent CD4+ T-cell activation. Nat. Microbiol. 2, 16232 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  129. Pinto, R. et al. Influence of phthiocerol dimycocerosate on CD4+ T cell priming and persistence during Mycobacterium tuberculosis infection. Tuberculosis 99, 25–30 (2016).

    Article  CAS  PubMed  Google Scholar 

  130. Blomgran, R., Desvignes, L., Briken, V. & Ernst, J. D. Mycobacterium tuberculosis inhibits neutrophil apoptosis, leading to delayed activation of naive CD4 T cells. Cell Host Microbe 11, 81–90 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Griffiths, K. L. et al. Targeting dendritic cells to accelerate T-cell activation overcomes a bottleneck in tuberculosis vaccine efficacy. Nat. Commun. 7, 13894 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Athman, J. J. et al. Membrane vesicles inhibit T cell activation. J. Immunol. 198, 2028–2037 (2017).

    Article  CAS  PubMed  Google Scholar 

  133. Woodworth, J. S. et al. Mycobacterium tuberculosis directs immunofocusing of CD8+ T cell responses despite vaccination. J. Immunol. 186, 1627–1637 (2011).

    Article  CAS  PubMed  Google Scholar 

  134. Yang, J. D. et al. Mycobacterium tuberculosis-specific CD4+ and CD8+ T cells differ in their capacity to recognize infected macrophages. PLoS Pathog. https://doi.org/10.1371/journal.ppat.1007060 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  135. Bold, T. D., Banaei, N., Wolf, A. J. & Ernst, J. D. Suboptimal activation of antigen-specific CD4+ effector cells enables persistence of M. tuberculosis in vivo. PLoS Pathog. 7, e1002063 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Moguche, A. O. et al. Antigen availability shapes T cell differentiation and function during tuberculosis. Cell Host Microbe 21, 695–706.e5 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Tameris, M. D. et al. Safety and efficacy of MVA85A, a new tuberculosis vaccine, in infants previously vaccinated with BCG: a randomised, placebo-controlled phase 2b trial. Lancet 381, 1021–1028 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Sutiwisesak, R. et al. A natural polymorphism of Mycobacterium tuberculosis in the esxH gene disrupts immunodomination by the TB10.4-specific CD8 T cell response. PLoS Pathog. 16, e1009000 (2020). This study illustrates the immunofocusing of CD8+ T cells by M. tuberculosis antigens, supporting the idea that immunodominant antigens may serve as decoys.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Carpenter, S. M., Nunes-Alves, C., Booty, M. G., Way, S. S. & Behar, S. M. A higher activation threshold of memory CD8+ T cells has a fitness cost that is modified by TCR affinity during tuberculosis. PLoS Pathog. 12, e1005380 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  140. Ganchua, S. K. C. et al. Lymph nodes are sites of prolonged bacterial persistence during Mycobacterium tuberculosis infection in macaques. PLoS Pathog. 14, e1007337 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  141. Gallegos, A. M. et al. Control of T cell antigen reactivity via programmed TCR downregulation. Nat. Immunol. 17, 379–386 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Woodworth, J. S. et al. Protective CD4 T cells targeting cryptic epitopes of Mycobacterium tuberculosis resist infection-driven terminal differentiation. J. Immunol. 192, 3247–3258 (2014).

    Article  CAS  PubMed  Google Scholar 

  143. Cadena, A. M. et al. Concurrent infection with Mycobacterium tuberculosis confers robust protection against secondary infection in macaques. PLoS Pathog. 14, e1007305 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  144. Lindestam Arlehamn, C. S. et al. Memory T cells in latent Mycobacterium tuberculosis infection are directed against three antigenic islands and largely contained in a CXCR3+CCR6+ Th1 subset. PLoS Pathog. 9, e1003130 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  145. Cronan, M. R. et al. Macrophage epithelial reprogramming underlies mycobacterial granuloma formation and promotes infection. Immunity 45, 861–876 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Cronan, M. R. et al. A non-canonical type 2 immune response coordinates tuberculous granuloma formation and epithelialization. Cell 184, 1757–1774 e1714 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. McCaffrey, E. F. et al. The immunoregulatory landscape of human tuberculosis granulomas. Nat. Immunol. 23, 318–329 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Gautam, U. S. et al. In vivo inhibition of tryptophan catabolism reorganizes the tuberculoma and augments immune-mediated control of Mycobacterium tuberculosis. Proc. Natl Acad. Sci. USA 115, E62–E71 (2018). This study reports that host tryptophan metabolites generated by indoleamine 2,3-dioxygenase contribute to the immunosuppressive role of granulomas; by inhibiting indoleamine 2,3-dioxygenase, it is possible to alter granuloma architecture and enhance immune control of M. tuberculosis in NHPs.

    Article  CAS  PubMed  Google Scholar 

  149. Gern, B. H. et al. TGFβ restricts expansion, survival, and function of T cells within the tuberculous granuloma. Cell Host Microbe 29, 594–606.e6 (2021). This study identifies TGFβ as a potent suppressor of antigen sensing and interferon-γ production within granulomas, the inhibition of which reduces bacterial burdens.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Millar, J. A. et al. Spatial organization and recruitment of non-specific T cells may limit T cell-macrophage interactions within Mycobacterium tuberculosis granulomas. Front. Immunol. 11, 613638 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  151. Moreira-Teixeira, L. et al. T cell-derived IL-10 impairs host resistance to Mycobacterium tuberculosis infection. J. Immunol. 199, 613–623 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. de la Barrera, S. et al. IL-10 down-regulates costimulatory molecules on Mycobacterium tuberculosis-pulsed macrophages and impairs the lytic activity of CD4 and CD8 CTL in tuberculosis patients. Clin. Exp. Immunol. 138, 128–138 (2004).

    Article  PubMed  Google Scholar 

  153. Carow, B. et al. Spatial and temporal localization of immune transcripts defines hallmarks and diversity in the tuberculosis granuloma. Nat. Commun. 10, 1823 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  154. Gern, B. H. et al. TGFbeta restricts expansion, survival, and function of T cells within the tuberculous granuloma. Cell Host Microbe 29, 594–606.e6 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Martin, C. J. et al. Digitally barcoding mycobacterium tuberculosis reveals in vivo infection dynamics in the macaque model of tuberculosis. mBio https://doi.org/10.1128/mBio.00312-17 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  156. Lin, P. L. et al. Sterilization of granulomas is common in active and latent tuberculosis despite within-host variability in bacterial killing. Nat. Med. 20, 75–79 (2014). This study demonstrates the heterogeneity of lung lesions in NHPs, with some generating sterilizing immunity, whereas other lesions support high bacterial burden within the same animal.

    Article  CAS  PubMed  Google Scholar 

  157. Sarathy, J. P. & Dartois, V. Caseum: a niche for Mycobacterium tuberculosis drug-tolerant persisters. Clin. Microbiol. Rev. https://doi.org/10.1128/CMR.00159-19 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  158. Veatch, A. V. & Kaushal, D. Opening Pandora’s box: mechanisms of Mycobacterium tuberculosis resuscitation. Trends Microbiol. 26, 145–157 (2018).

    Article  CAS  PubMed  Google Scholar 

  159. Zak, D. E. et al. A blood RNA signature for tuberculosis disease risk: a prospective cohort study. Lancet 387, 2312–2322 (2016). When adolescents with latent TB were followed up prospectively, a transcriptional signature that correlated with risk of progression to active TB was apparent in whole blood in the 12 months preceding a clinical diagnosis of active TB.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Zhang, G. et al. A proline deletion in IFNAR1 impairs IFN-signaling and underlies increased resistance to tuberculosis in humans. Nat. Commun. 9, 85 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  161. Kana, B. D. & Mizrahi, V. Resuscitation-promoting factors as lytic enzymes for bacterial growth and signaling. FEMS Immunol. Med. Microbiol. 58, 39–50 (2010).

    Article  CAS  PubMed  Google Scholar 

  162. Kaplan, G. et al. Mycobacterium tuberculosis growth at the cavity surface: a microenvironment with failed immunity. Infect. Immun. 71, 7099–7108 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Kwan, C. K. & Ernst, J. D. HIV and tuberculosis: a deadly human syndemic. Clin. Microbiol. Rev. 24, 351–376 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  164. Urbanowski, M. E. et al. Repetitive aerosol exposure promotes cavitary tuberculosis and enables screening for targeted inhibitors of extensive lung destruction. J. Infect. Dis. 218, 53–63 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Comas, I. et al. Human T cell epitopes of Mycobacterium tuberculosis are evolutionarily hyperconserved. Nat. Genet. 42, 498–503 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Sigal, G. B. et al. Biomarkers of tuberculosis severity and treatment effect: a directed screen of 70 host markers in a randomized clinical trial. EBioMedicine 25, 112–121 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Verma, S. et al. Transmission phenotype of Mycobacterium tuberculosis strains is mechanistically linked to induction of distinct pulmonary pathology. PLoS Pathog. 15, e1007613 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  168. Nebenzahl-Guimaraes, H. et al. Transmissible Mycobacterium tuberculosis strains share genetic markers and immune phenotypes. Am. J. Respir. Crit. Care Med. 195, 1519–1527 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Garcia-Vilanova, A., Chan, J. & Torrelles, J. B. Underestimated manipulative roles of Mycobacterium tuberculosis cell envelope glycolipids during infection. Front. Immunol. 10, 2909 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Pfrommer, E. et al. Enhanced tenacity of mycobacterial aerosols from necrotic neutrophils. Sci. Rep. 10, 9159 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Ruhl, C. R. et al. Mycobacterium tuberculosis sulfolipid-1 activates nociceptive neurons and induces cough. Cell 181, 293–305.e11 (2020). This study is the first to show that an M. tuberculosis glycolipid directly activates neurons and stimulates cough in a guinea pig model to aid pathogen dissemination.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Chen, T. et al. Capsular glycan recognition provides antibody-mediated immunity against tuberculosis. J. Clin. Invest. 130, 1808–1822 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Darrah, P. A. et al. Prevention of tuberculosis in macaques after intravenous BCG immunization. Nature 577, 95–102 (2020). This study explores the association between BCG vaccine efficacy and the route of administration, finding that intravenous BCG administration elicits unprecedented protection against M. tuberculosis infection.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Lu, L. L. et al. IFN-γ-independent immune markers of Mycobacterium tuberculosis exposure. Nat. Med. 25, 977–987 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Böhme, J. et al. Metformin enhances anti-mycobacterial responses by educating CD8+ T-cell immunometabolic circuits. Nat. Commun. 11, 5225 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  176. Liu, F. et al. MicroRNA-27a controls the intracellular survival of Mycobacterium tuberculosis by regulating calcium-associated autophagy. Nat. Commun. 9, 4295 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  177. Napier, R. J. et al. Imatinib-sensitive tyrosine kinases regulate mycobacterial pathogenesis and represent therapeutic targets against tuberculosis. Cell Host Microbe 10, 635 (2011).

    Article  CAS  Google Scholar 

  178. Parihar, S. P. et al. Statin therapy reduces the mycobacterium tuberculosis burden in human macrophages and in mice by enhancing autophagy and phagosome maturation. J. Infect. Dis. 209, 754–763 (2014).

    Article  CAS  PubMed  Google Scholar 

  179. Plumlee, C. R. et al. Ultra-low dose aerosol infection of mice with Mycobacterium tuberculosis more closely models human tuberculosis. Cell Host Microbe 29, 68–82.e5 (2021).

    Article  CAS  PubMed  Google Scholar 

  180. Pichugin, A. V., Yan, B. S., Sloutsky, A., Kobzik, L. & Kramnik, I. Dominant role of the sst1 locus in pathogenesis of necrotizing lung granulomas during chronic tuberculosis infection and reactivation in genetically resistant hosts. Am. J. Pathol. 174, 2190–2201 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Smith, C. M. et al. Host-pathogen genetic interactions underlie tuberculosis susceptibility in genetically diverse mice. Elife https://doi.org/10.7554/eLife.74419 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  182. Kurtz, S. L. et al. The diversity outbred mouse population is an improved animal model of vaccination against tuberculosis that reflects heterogeneity of protection. mSphere https://doi.org/10.1128/mSphere.00097-20 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  183. Guler, R. et al. Targeting molecular inflammatory pathways in granuloma as host-directed therapies for tuberculosis. Front. Immunol. 12, 733853 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Dallenga, T. et al. Targeting neutrophils for host-directed therapy to treat tuberculosis. Int. J. Med. Microbiol. 308, 142–147 (2018).

    Article  CAS  PubMed  Google Scholar 

  185. Divangahi, M. et al. Trained immunity, tolerance, priming and differentiation: distinct immunological processes. Nat. Immunol. 22, 2–6 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Fanucchi, S. et al. Immune genes are primed for robust transcription by proximal long noncoding RNAs located in nuclear compartments. Nat. Genet. 51, 138–150 (2019).

    Article  CAS  PubMed  Google Scholar 

  187. Arts, R. J. W. et al. Immunometabolic pathways in BCG-induced trained immunity. Cell Rep. 17, 2562–2571 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Cheng, S. C. et al. mTOR- and HIF-1α-mediated aerobic glycolysis as metabolic basis for trained immunity. Science 345, 1250684 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  189. van Puffelen, J. H. et al. Trained immunity as a molecular mechanism for BCG immunotherapy in bladder cancer. Nat. Rev. Urol. 17, 513–525 (2020).

    Article  PubMed  Google Scholar 

  190. O’Neill, L. A. J. & Netea, M. G. BCG-induced trained immunity: can it offer protection against COVID-19? Nat. Rev. Immunol. 20, 335–337 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  191. Bekkering, S. et al. Oxidized low-density lipoprotein induces long-term proinflammatory cytokine production and foam cell formation via epigenetic reprogramming of monocytes. Arterioscler. Thromb. Vasc. Biol. 34, 1731–1738 (2014).

    Article  CAS  PubMed  Google Scholar 

  192. Kaufmann, E. et al. BCG vaccination provides protection against IAV but not SARS-CoV-2. Cell Rep. 38, 110502 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Cirovic, B. et al. BCG vaccination in humans elicits trained immunity via the hematopoietic progenitor compartment. Cell Host Microbe 28, 322–334.e5 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. World Health Organization. Global Tuberculosis Report 2018. (World Health Organization, 2018).

  195. Goletti, D., Lee, M. R., Wang, J. Y., Walter, N. & Ottenhoff, T. H. M. Update on tuberculosis biomarkers: from correlates of risk, to correlates of active disease and of cure from disease. Respirology 23, 455–466 (2018).

    Article  PubMed  Google Scholar 

  196. Walzl, G. et al. Tuberculosis: advances and challenges in development of new diagnostics and biomarkers. Lancet Infect. Dis. 18, e199–e210 (2018).

    Article  CAS  PubMed  Google Scholar 

  197. Diray-Arce, J. et al. Integrative metabolomics to identify molecular signatures of responses to vaccines and infections. Metabolites https://doi.org/10.3390/metabo10120492 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  198. Chandra, P., Coullon, H., Agarwal, M., Goss, C. W. & Philips, J. A. Macrophage global metabolomics identifies cholestenone as host/pathogen cometabolite present in human Mycobacterium tuberculosis infection. J. Clin. Invest. https://doi.org/10.1172/JCI152509 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  199. Day, C. L. et al. PD-1 expression on Mycobacterium tuberculosis-specific CD4 T cells is associated with bacterial load in human tuberculosis. Front. Immunol. 9, 1995 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  200. Roy Chowdhury, R. et al. A multi-cohort study of the immune factors associated with M. tuberculosis infection outcomes. Nature 560, 644–648 (2018).

    Article  CAS  PubMed  Google Scholar 

  201. Carvalho, A. C. C. et al. Pre-treatment neutrophil count as a predictor of antituberculosis therapy outcomes: a multicenter prospective cohort study. Front. Immunol. 12, 661934 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was funded by the US National Institutes of Health (R01 AI087682, R01 AI130454, R21 AI155380 and R21 AI160386 to J.A.P.; F31 AI152321 to S.J.G.). The authors thank members of the Philips laboratory for helpful discussions.

Author information

Authors and Affiliations

Authors

Contributions

J.A.P. conceived the Review; P.C. and S.J.G. contributed substantially to discussion of the content; P.C., S.J.G. and J.A.P. contributed equally to writing and editing the manuscript.

Corresponding author

Correspondence to Jennifer A. Philips.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Microbiology thanks Samuel Behar; Volker Briken, who co-reviewed with Shivangi Rastogi; and Maziar Divangahi for their contribution to the peer review of this work.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Cavitary lung disease

A pathological process in the lungs that results in gas-filled spaces, which are typically thick-walled and arise in areas of consolidation, mass or nodule.

Inflammageing

Age-associated chronic, sterile and low-grade inflammation that leads to disease exacerbation.

Opsonization

The coating of microorganisms by components of the immune system such as antibodies and complement proteins to facilitate their uptake and elimination by phagocytes.

Clodronate

A bisphosphonate that, when encapsulated in liposomes, is preferentially taken up by macrophages, where it accumulates and causes cell death.

Myelopoiesis

The process in which mature myeloid cells such as macrophages and neutrophils differentiate from myeloid progenitors that arise from haematopoietic stem cells.

Atherosclerosis

A disease of arteries that is characterized by deposition of plaque, which is composed of fats, cholesterol and lipid-laden macrophages, on the artery wall.

Paucibacillary disease

Tuberculosis with such a low number of bacilli that they are not apparent on smear microscopy.

Metformin

A medication that is used to treat type 2 diabetes mellitus and that is being evaluated as a host-directed therapy for tuberculosis.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chandra, P., Grigsby, S.J. & Philips, J.A. Immune evasion and provocation by Mycobacterium tuberculosis. Nat Rev Microbiol 20, 750–766 (2022). https://doi.org/10.1038/s41579-022-00763-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41579-022-00763-4

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology