Abstract
Recent discoveries of contemporary genotypes of hepatitis B virus and parvovirus B19 in ancient human remains demonstrate that little genetic change has occurred in these viruses over 4,500–6,000 years. Endogenous viral elements in host genomes provide separate evidence that viruses similar to many major contemporary groups circulated 100 million years ago or earlier. In this Opinion article, we argue that the extraordinary conservation of virus genome sequences is best explained by a niche-filling model in which fitness optimization is rapidly achieved in their specific hosts. Whereas short-term substitution rates reflect the accumulation of tolerated sequence changes within adapted genomes, longer-term rates increasingly resemble those of their hosts as the evolving niche moulds and effectively imprisons the virus in co-adapted virus–host relationships. Contrastingly, viruses that jump hosts undergo strong and stringent adaptive selection as they maximize their fit to their new niche. This adaptive capability may paradoxically create evolutionary stasis in long-term host relationships. While viruses can evolve and adapt rapidly, their hosts may ultimately shape their longer-term evolution.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
£14.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 print issues and online access
£139.00 per year
only £11.58 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Jenkins, G. M., Rambaut, A., Pybus, O. G. & Holmes, E. C. Rates of molecular evolution in RNA viruses: a quantitative phylogenetic analysis. J. Mol. Evol. 54, 156–165 (2002).
Lemey, P., Rambaut, A. & Pybus, O. G. HIV evolutionary dynamics within and among hosts. AIDS Rev. 8, 125–140 (2006).
Sanjuan, R. From molecular genetics to phylodynamics: evolutionary relevance of mutation rates across viruses. PLOS Pathog. 8, e1002685 (2012).
Hanada, K., Suzuki, Y. & Gojobori, T. A large variation in the rates of synonymous substitution for RNA viruses and its relationship to a diversity of viral infection and transmission modes. Mol. Biol. Evol. 21, 1074–1080 (2004).
Duffy, S., Shackelton, L. A. & Holmes, E. C. Rates of evolutionary change in viruses: patterns and determinants. Nat. Rev. Genet. 9, 267–276 (2008).
Shackelton, L. A., Parrish, C. R., Truyen, U. & Holmes, E. C. High rate of viral evolution associated with the emergence of carnivore parvovirus. Proc. Natl Acad. Sci. USA 102, 379–384 (2005).
Shackelton, L. A. & Holmes, E. C. Phylogenetic evidence for the rapid evolution of human B19 erythrovirus. J. Virol. 80, 3666–3669 (2006).
Takeda, N., Tanimura, M. & Miyamura, K. Molecular evolution of the major capsid protein VP1 of enterovirus 70. J. Virol. 68, 854–862 (1994).
Drummond, A. J., Suchard, M. A., Xie, D. & Rambaut, A. Bayesian phylogenetics with BEAUti and the BEAST 1.7. Mol. Biol. Evol. 29, 1969–1973 (2012).
Drummond, A. J. & Rambaut, A. BEAST: Bayesian evolutionary analysis by sampling trees. BMC. Evol. Biol. 7, 214 (2007).
Markov, P. V. et al. Phylogeography and molecular epidemiology of hepatitis C virus genotype 2 in Africa. J. Gen. Virol. 90, 2086–2096 (2009).
Bollyky, P. L., Rambaut, A., Grassly, N., Carman, W. F. & Holmes, E. C. Hepatitis B virus has a new world evolutionary origin. Hepatology 26, 765–765 (1997).
Purdy, M. A. & Khudyakov, Y. E. Evolutionary history and population dynamics of hepatitis E virus. PLOS ONE 5, e14376 (2010).
Tanaka, Y. et al. Molecular tracing of Japan-indigenous hepatitis E viruses. J. Gen. Virol. 87, 949–954 (2006).
McCrone, J. T. & Lauring, A. S. Genetic bottlenecks in intraspecies virus transmission. Curr. Opin. Virol. 28, 20–25 (2018).
Fitch, W. M., Leiter, J. M., Li, X. Q. & Palese, P. Positive Darwinian evolution in human influenza A viruses. Proc. Natl Acad. Sci. USA 88, 4270–4274 (1991).
Leslie, A. J. et al. HIV evolution: CTL escape mutation and reversion after transmission. Nat. Med. 10, 282–289 (2004).
Timm, J. et al. CD8 epitope escape and reversion in acute HCV infection. J. Exp. Med. 200, 1593–1604 (2004).
Holland, J. J. Transitions in understanding of RNA viruses: a historical perspective. Curr. Top. Microbiol. Immunol. 299, 371–401 (2006).
Pybus, O. G. & Rambaut, A. Evolutionary analysis of the dynamics of viral infectious disease. Nat. Rev. Genet. 10, 540–550 (2009).
Sharp, P. M. et al. Origins and evolution of AIDS viruses: estimating the time-scale. Biochem. Soc. Trans. 28, 275–282 (2000).
Sauter, D. et al. Tetherin-driven adaptation of Vpu and Nef function and the evolution of pandemic and nonpandemic HIV-1 strains. Cell Host Microbe 6, 409–421 (2009).
Wain, L. V. et al. Adaptation of HIV-1 to its human host. Mol. Biol. Evol. 24, 1853–1860 (2007).
Woolhouse, M. & Gaunt, E. Ecological origins of novel human pathogens. Crit. Rev. Microbiol. 33, 231–242 (2007).
Wertheim, J. O. & Worobey, M. Dating the age of the SIV lineages that gave rise to HIV-1 and HIV-2. PLOS Comput. Biol. 5, e1000377 (2009).
Worobey, M. et al. Island biogeography reveals the deep history of SIV. Science 329, 1487 (2010).
Galassi, F. M., Habicht, M. E. & Ruhli, F. J. Poliomyelitis in Ancient Egypt? Neurol. Sci. 38, 375 (2017).
Lukashev, A. N. & Vakulenko, Y. A. Molecular evolution of types in non-polio enteroviruses. J. Gen. Virol. 98, 2968–2981 (2017).
Olalde, I. et al. The Beaker phenomenon and the genomic transformation of northwest Europe. Nature 555, 190–196 (2018).
Meyer, M. et al. A high-coverage genome sequence from an archaic Denisovan individual. Science 338, 222–226 (2012).
Noonan, J. P. et al. Sequencing and analysis of Neanderthal genomic DNA. Science 314, 1113–1118 (2006).
Toppinen, M. et al. Bones hold the key to DNA virus history and epidemiology. Sci. Rep. 5, 17226 (2015).
Reid, A. H., Fanning, T. G., Hultin, J. V. & Taubenberger, J. K. Origin and evolution of the 1918 “Spanish” influenza virus hemagglutinin gene. Proc. Natl Acad. Sci. USA 96, 1651–1656 (1999).
Duggan, A. T. et al. 17(th) century variola virus reveals the recent history of smallpox. Curr. Biol. 26, 3407–3412 (2016).
Patterson Ross, Z. et al. The paradox of HBV evolution as revealed from a 16th century mummy. PLOS Pathog. 14, e1006750 (2018).
Muhlemann, B. et al. Ancient hepatitis B viruses from the Bronze Age to the Medieval period. Nature 557, 418–423 (2018).
Krause-Kyora, B. et al. Neolithic and Medieval virus genomes reveal complex evolution of Hepatitis B. eLife 7, e36666 (2018).
Muhlemann, B. et al. Ancient human parvovirus B19 in Eurasia reveals its long-term association with humans. Proc. Natl Acad. Sci. USA 115, 7557–7562 (2018).
Zhou, Y. & Holmes, E. C. Bayesian estimates of the evolutionary rate and age of hepatitis B virus. J. Mol. Evol. 65, 197–205 (2007).
Kryukov, K., Ueda, M. T., Imanishi, T. & Nakagawa, S. Systematic survey of non-retroviral virus-like elements in eukaryotic genomes. Virus Res. https://doi.org/10.1016/j.virusres.2018.02.002 (2018).
Aiewsakun, P. & Katzourakis, A. Endogenous viruses: connecting recent and ancient viral evolution. Virology 479–480, 26–37 (2015).
Belyi, V. A., Levine, A. J. & Skalka, A. M. Sequences from ancestral single-stranded DNA viruses in vertebrate genomes: the parvoviridae and circoviridae are more than 40 to 50 million years old. J. Virol. 84, 12458–12462 (2010).
Horie, M. et al. Endogenous non-retroviral RNA virus elements in mammalian genomes. Nature 463, 84–87 (2010).
Katzourakis, A. & Gifford, R. J. Endogenous viral elements in animal genomes. PLOS Genet. 6, e1001191 (2010).
Katzourakis, A., Tristem, M., Pybus, O. G. & Gifford, R. J. Discovery and analysis of the first endogenous lentivirus. Proc. Natl Acad. Sci. USA 104, 6261–6265 (2007).
Han, G. Z. & Worobey, M. Endogenous lentiviral elements in the weasel family (Mustelidae). Mol. Biol. Evol. 29, 2905–2908 (2012).
Gifford, R. J. et al. A transitional endogenous lentivirus from the genome of a basal primate and implications for lentivirus evolution. Proc. Natl Acad. Sci. USA 105, 20362–20367 (2008).
Hron, T., Farkasova, H., Padhi, A., Paces, J. & Elleder, D. Life history of the oldest lentivirus: characterization of ELVgv integrations in the dermopteran genome. Mol. Biol. Evol. 33, 2659–2669 (2016).
Taylor, D. J., Leach, R. W. & Bruenn, J. Filoviruses are ancient and integrated into mammalian genomes. BMC Evol. Biol. 10, 193 (2010).
Suh, A. et al. Early mesozoic coexistence of amniotes and hepadnaviridae. PLOS Genet. 10, e1004559 (2014).
Sharp, P. M. & Simmonds, P. Evaluating the evidence for virus/host co-evolution. Curr. Opin. Virol. 1, 436–441 (2011).
Katzourakis, A., Gifford, R. J., Tristem, M., Gilbert, M. T. & Pybus, O. G. Macroevolution of complex retroviruses. Science 325, 1512 (2009).
Aiewsakun, P. & Katzourakis, A. Marine origin of retroviruses in the early Palaeozoic era. Nat. Commun. 8, 13954 (2017).
Van Doorslaer, K. et al. Unique genome organization of non-mammalian papillomaviruses provides insights into the evolution of viral early proteins. Virus Evol. 3, vex027 (2017).
Lauber, C. et al. Deciphering the origin and evolution of hepatitis B viruses by means of a family of non-enveloped fish viruses. Cell Host Microbe 22, 387–399 (2017).
Buck, C. B. et al. The ancient evolutionary history of polyomaviruses. PLOS Pathog. 12, e1005574 (2016).
Aiewsakun, P. & Katzourakis, A. Time-dependent rate phenomenon in viruses. J. Virol. 90, 7184–7195 (2016).
Kumar, S. & Subramanian, S. Mutation rates in mammalian genomes. Proc. Natl Acad. Sci. USA 99, 803–808 (2002).
Ho, S. Y. et al. Time-dependent rates of molecular evolution. Mol. Ecol. 20, 3087–3101 (2011).
Wertheim, J. O. & Kosakovsky Pond, S. L. Purifying selection can obscure the ancient age of viral lineages. Mol. Biol. Evol. 28, 3355–3365 (2011).
Gilbert, C. & Feschotte, C. Genomic fossils calibrate the long-term evolution of hepadnaviruses. PLOS Biol. 8, e1000495 (2010).
Lythgoe, K. A., Gardner, A., Pybus, O. G. & Grove, J. Short-sighted virus evolution and a germline hypothesis for chronic viral infections. Trends Microbiol. 25, 336–348 (2017).
Lythgoe, K. A., Pellis, L. & Fraser, C. Is HIV short-sighted? Insights from a multistrain nested model. Evolution 67, 2769–2782 (2013).
Duchene, S., Holmes, E. C. & Ho, S. Y. Analyses of evolutionary dynamics in viruses are hindered by a time-dependent bias in rate estimates. Proc. Biol. Sci. 281, 20140732 (2014).
Cooper, N., Jetz, W. & Freckleton, R. P. Phylogenetic comparative approaches for studying niche conservatism. J. Evol. Biol. 23, 2529–2539 (2010).
Holt, R. D. Bringing the Hutchinsonian niche into the 21st century: ecological and evolutionary perspectives. Proc. Natl Acad. Sci. USA 106 (Suppl. 2), 19659–19665 (2009).
Price, T. Correlated evolution and independent contrasts. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 352, 519–529 (1997).
Harvey, P. H. & Rambaut, A. Comparative analyses for adaptive radiations. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 355, 1599–1605 (2000).
Koonin, E. V. & Gorbalenya, A. E. Evolution of RNA genomes: does the high mutation rate necessitate high rate of evolution of viral proteins? J. Mol. Evol. 28, 524–527 (1989).
Belshaw, R., Gardner, A., Rambaut, A. & Pybus, O. G. Pacing a small cage: mutation and RNA viruses. Trends Ecol. Evol. 23, 188–193 (2008).
Sheppard, S. K., Guttmann, D. S. & Fitzgerald, J. R. Population genomics of bacterial host adaptation. Nat. Rev. Genet. 19, 549–565 (2018).
Sawyer, S. L., Emerman, M. & Malik, H. S. Ancient adaptive evolution of the primate antiviral DNA-editing enzyme APOBEC3G. PLOS Biol. 2, E275 (2004).
Taubenberger, J. K. & Kash, J. C. Influenza virus evolution, host adaptation, and pandemic formation. Cell Host Microbe 7, 440–451 (2010).
Li, W. et al. Receptor and viral determinants of SARS-coronavirus adaptation to human ACE2. EMBO J. 24, 1634–1643 (2005).
Urbanowicz, R. A. et al. Human adaptation of ebola virus during the West African outbreak. Cell 167, 1079–1087 (2016).
Allison, A. B. et al. Host-specific parvovirus evolution in nature is recapitulated by in vitro adaptation to different carnivore species. PLOS Pathog. 10, e1004475 (2014).
Bhatt, S. et al. The evolutionary dynamics of influenza A virus adaptation to mammalian hosts. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 368, 20120382 (2013).
Blanquart, F. et al. A transmission-virulence evolutionary trade-off explains attenuation of HIV-1 in Uganda. eLife 5, e20492 (2016).
Clarke, D. K. et al. The red queen reigns in the kingdom of RNA viruses. Proc. Natl Acad. Sci. USA 91, 4821–4824 (1994).
Tedder, R. S., Bissett, S. L., Myers, R. & Ijaz, S. The ‘Red Queen’ dilemma—running to stay in the same place: reflections on the evolutionary vector of HBV in humans. Antivir. Ther. 18, 489–496 (2013).
Faria, N. R., Suchard, M. A., Rambaut, A., Streicker, D. G. & Lemey, P. Simultaneously reconstructing viral cross-species transmission history and identifying the underlying constraints. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 368, 20120196 (2013).
Streicker, D. G. et al. Host phylogeny constrains cross-species emergence and establishment of rabies virus in bats. Science 329, 676–679 (2010).
Longdon, B., Hadfield, J. D., Webster, C. L., Obbard, D. J. & Jiggins, F. M. Host phylogeny determines viral persistence and replication in novel hosts. PLOS Pathog. 7, e1002260 (2011).
Davies, T. J. & Pedersen, A. B. Phylogeny and geography predict pathogen community similarity in wild primates and humans. Proc. Biol. Sci. 275, 1695–1701 (2008).
Nyamweya, S. et al. Comparing HIV-1 and HIV-2 infection: lessons for viral immunopathogenesis. Rev. Med. Virol. 23, 221–240 (2013).
Charleston, M. A. & Robertson, D. L. Preferential host switching by primate lentiviruses can account for phylogenetic similarity with the primate phylogeny. Syst. Biol. 51, 528–535 (2002).
Frost, S. D. W., Magalis, B. R. & Kosakovsky Pond, S. L. Neutral theory and rapidly evolving viral pathogens. Mol. Biol. Evol. 35, 1348–1354 (2018).
Van Regenmortel, M. H. Virus species and virus identification: past and current controversies. Infect. Genet. Evol. 7, 133–144 (2007).
Simmonds, P. A clash of ideas - the varying uses of the ‘species’ term in virology and their utility for classifying viruses in metagenomic datasets. J. Gen. Virol. 99, 277–287 (2018).
Kern, A. D. & Hahn, M. W. The neutral theory in light of natural selection. Mol. Biol. Evol. 35, 1366–1371 (2018).
Keckesova, Z., Ylinen, L. M., Towers, G. J., Gifford, R. J. & Katzourakis, A. Identification of a RELIK orthologue in the European hare (Lepus europaeus) reveals a minimum age of 12 million years for the lagomorph lentiviruses. Virology 384, 7–11 (2009).
Daugherty, M. D., Young, J. M., Kerns, J. A. & Malik, H. S. Rapid evolution of PARP genes suggests a broad role for ADP-ribosylation in host-virus conflicts. PLOS Genet. 10, e1004403 (2014).
van der Lee, R., Wiel, L., van Dam, T. J. P. & Huynen, M. A. Genome-scale detection of positive selection in nine primates predicts human-virus evolutionary conflicts. Nucleic Acids Res. 45, 10634–10648 (2017).
Sawyer, S. L., Emerman, M. & Malik, H. S. Discordant evolution of the adjacent antiretroviral genes TRIM22 and TRIM5 in mammals. PLOS Pathog. 3, e197 (2007).
Munk, C., Willemsen, A. & Bravo, I. G. An ancient history of gene duplications, fusions and losses in the evolution of APOBEC3 mutators in mammals. BMC Evol. Biol. 12, 71 (2012).
Acknowledgements
The authors thank J. Metcalf, Princeton University, for reviewing and providing helpful comments on the manuscript before submission.
Reviewer information
Nature Reviews Microbiology thanks P. Lemey, A. Vandamme and other anonymous reviewer(s) for their contribution to the peer review of this work.
Author information
Authors and Affiliations
Contributions
P.S., P.A. and A.K. researched the data for the article. P.S., P.A. and A.K. substantially contributed to discussion of content. P.S. and A.K. wrote the article. P.S., P.A. and A.K. reviewed and edited the manuscript before submission.
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Rights and permissions
About this article
Cite this article
Simmonds, P., Aiewsakun, P. & Katzourakis, A. Prisoners of war — host adaptation and its constraints on virus evolution. Nat Rev Microbiol 17, 321–328 (2019). https://doi.org/10.1038/s41579-018-0120-2
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41579-018-0120-2