Abstract
Tissue-like bioelectronics have emerged as practical, user-friendly and unobtrusive systems for seamless bidirectional integration with the human body. Two-dimensional materials, being led by the prototypical graphene, uniquely fit the task of creating ultrathin and functional interfaces with biological matter. In this Perspective, we comprehensively discuss 2D materials and their electrical, optical, environmental and mechanical properties relevant to bioelectronics. We present examples of 2D material-based bioelectronic devices for tissue interfacing (skintronics) and organ interfacing (organtronics). Importantly, we provide a roadmap for the future development of the field and highlight associated challenges yet to be solved.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
£14.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 digital issues and online access to articles
£99.00 per year
only £8.25 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Novoselov, K. S. S. et al. Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004).
The Nobel Prize in Physics 2010. NobelPrize.org https://www.nobelprize.org/prizes/physics/2010/summary/.
Schaibley, J. R. et al. Valleytronics in 2D materials. Nat. Rev. Mater. 1, 16055 (2016).
Bhimanapati, G. R. et al. Recent advances in two-dimensional materials beyond graphene. ACS Nano 9, 11509–11539 (2015).
Tan, C. et al. Recent advances in ultrathin two-dimensional nanomaterials. Chem. Rev. 117, 6225–6331 (2017).
Choi, W. et al. Recent development of two-dimensional transition metal dichalcogenides and their applications. Mater. Today 20, 116–130 (2017).
Kireev, D. & Offenhäusser, A. Graphene and two-dimensional devices for bioelectronics and neuroprosthetics. 2D Mater. 5, 042004 (2018).
Lemme, M. C., Akinwande, D., Huyghebaert, C. & Stampfer, C. 2D materials for future heterogeneous electronics. Nat. Commun. 13, 1392 (2022).
Wang, Q. H., Kalantar-Zadeh, K., Kis, A., Coleman, J. N. & Strano, M. S. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 7, 699–712 (2012).
Hess, L. H., Seifert, M. & Garrido, J. A. Graphene transistors for bioelectronics. Proc. IEEE 101, 1780–1792 (2013).
Kuila, T. et al. Recent advances in graphene-based biosensors. Biosens. Bioelectron. 26, 4637–4648 (2011).
Zhang, X. et al. Ultrasensitive field-effect biosensors enabled by the unique electronic properties of graphene. Small 16, 1902820 (2020).
Chen, F. et al. Structures, properties, and challenges of emerging 2D materials in bioelectronics and biosensors. InfoMat 4, e12299 (2022).
Savchenko, A., Kireev, D., Yin, R. T., Efimov, I. R. & Molokanova, E. Graphene-based cardiac sensors and actuators. Front. Bioeng. Biotechnol. 11, 1168667 (2023).
Kireev, D. et al. Fabrication, characterization and applications of graphene electronic tattoos. Nat. Protoc. 16, 2395–2417 (2021).
Viana, D. et al. Nanoporous graphene-based thin-film microelectrodes for in vivo high-resolution neural recording and stimulation. Nat. Nanotechnol. 19, 514–523 (2024).
Ramezani, M. et al. High-density transparent graphene arrays for predicting cellular calcium activity at depth from surface potential recordings. Nat. Nanotechnol. 19, 504–513 (2024).
Ku, M. et al. Smart, soft contact lens for wireless immunosensing of cortisol. Sci. Adv. 6, eabb2891 (2020).
Lee, Y. et al. Graphene-based stretchable/wearable self-powered touch sensor. Nano Energy 62, 259–267 (2019).
Choi, C. et al. Curved neuromorphic image sensor array using a MoS2-organic heterostructure inspired by the human visual recognition system. Nat. Commun. 11, 5934 (2020).
Park, Y. J. et al. All MoS2-based large area, skin-attachable active-matrix tactile sensor. ACS Nano 13, 3023–3030 (2019).
Choi, C. et al. Human eye-inspired soft optoelectronic device using high-density MoS2-graphene curved image sensor array. Nat. Commun. 8, 1664 (2017).
Park, S. et al. Laser-directed synthesis of strain-induced crumpled MoS2 structure for enhanced triboelectrification toward haptic sensors. Nano Energy 78, 105266 (2020).
Silvestri, A. et al. The era of nano-bionic: 2D materials for wearable and implantable body sensors. Adv. Drug Deliv. Rev. 186, 114315 (2022).
Kireev, D., Kampfe, J., Hall, A. & Akinwande, D. Graphene electronic tattoos 2.0 with enhanced performance, breathability and robustness. npj 2D Mater. Appl. 6, 46 (2022).
Kireev, D. et al. Continuous cuffless monitoring of arterial blood pressure via graphene bioimpedance tattoos. Nat. Nanotechnol. 17, 864–870 (2022).
Yang, Y. et al. A laser-engraved wearable sensor for sensitive detection of uric acid and tyrosine in sweat. Nat. Biotechnol. 38, 217–224 (2019).
Yan, Z. et al. Highly stretchable van der Waals thin films for adaptable and breathable electronic membranes. Science 375, 852–859 (2022).
Gogurla, N., Kim, Y., Cho, S., Kim, J. & Kim, S. Multifunctional and ultrathin electronic tattoo for on‐skin diagnostic and therapeutic applications. Adv. Mater. 33, 2008308 (2021).
Wang, Q. et al. Self‐healable multifunctional electronic tattoos based on silk and graphene. Adv. Funct. Mater. 29, 1808695 (2019).
Tringides, C. M. et al. Viscoelastic surface electrode arrays to interface with viscoelastic tissues. Nat. Nanotechnol. 16, 1019–1029 (2021).
Jang, H., Dai, Z., Ha, K.-H., Ameri, S. K. & Lu, N. Stretchability of PMMA-supported CVD graphene and of its electrical contacts. 2D Mater. 7, 014003 (2019).
Kedambaimoole, V. et al. Reduced graphene oxide tattoo as wearable proximity sensor. Adv. Electron. Mater. 7, 2001214 (2021).
Son, D. et al. An integrated self-healable electronic skin system fabricated via dynamic reconstruction of a nanostructured conducting network. Nat. Nanotechnol. 13, 1057–1065 (2018).
Torrente-Rodríguez, R. M. et al. Investigation of cortisol dynamics in human sweat using a graphene-based wireless mHealth system. Matter 2, 921–937 (2020).
Akinwande, D. & Kireev, D. Wearable graphene sensors use ambient light to monitor health. Nature 576, 220–221 (2019).
Sel, K. et al. Electrical characterization of graphene-based e-tattoos for bio-impedance-based physiological sensing. In 2019 IEEE Biomedical Circuits and Systems Conference (BioCAS) (IEEE, 2019).
Okogbue, E. et al. Multifunctional two-dimensional PtSe2-layer kirigami conductors with 2000% stretchability and metallic-to-semiconducting tunability. Nano Lett. 19, 7598–7607 (2019).
Mondal, S., Kim, S. J. & Choi, C. G. Honeycomb-like MoS2 nanotube array-based wearable sensors for noninvasive detection of human skin moisture. ACS Appl. Mater. Interfaces 12, 17029–17038 (2020).
Kedambaimoole, V. et al. Laser-induced direct patterning of free-standing Ti3C2–MXene films for skin conformal tattoo sensors. ACS Sens. 5, 2086–2095 (2020).
Kireev, D. et al. Multipurpose and reusable ultrathin electronic tattoos based on PtSe2 and PtTe2. ACS Nano 15, 2800–2811 (2021).
Lin, Z. et al. Graphene biointerface for cardiac arrhythmia diagnosis and treatment. Adv. Mater. 35, 2212190 (2023).
Penev, E. S., Marzari, N. & Yakobson, B. I. Theoretical prediction of two-dimensional materials, behavior, and properties. ACS Nano 15, 5959–5976 (2021).
Novoselov, K. S., Mishchenko, A., Carvalho, A. & Castro Neto, A. H. 2D materials and van der Waals heterostructures. Science 353, aac9439 (2016).
Zhang, L., Dong, J. & Ding, F. Strategies, status, and challenges in wafer scale single crystalline two-dimensional materials synthesis. Chem. Rev. 121, 6321–6372 (2021).
Xu, X. et al. Growth of 2D materials at the wafer scale. Adv. Mater. 34, 2108258 (2022).
Li, T. et al. Epitaxial growth of wafer-scale molybdenum disulfide semiconductor single crystals on sapphire. Nat. Nanotechnol. 16, 1201–1207 (2021).
Lemme, M. C. & Daus, A. Low-temperature MoS2 growth on CMOS wafers. Nat. Nanotechnol. 18, 446–447 (2023).
Li, J. et al. Wafer-scale single-crystal monolayer graphene grown on sapphire substrate. Nat. Mater. 21, 740–747 (2022).
Kim, H. et al. High-throughput manufacturing of epitaxial membranes from a single wafer by 2D materials-based layer transfer process. Nat. Nanotechnol. 18, 464–470 (2023).
Kim, K. S. et al. Non-epitaxial single-crystal 2D material growth by geometric confinement. Nature 614, 88–94 (2023).
Glavin, N. R. et al. Emerging applications of elemental 2D materials. Adv. Mater. 32, 1904302 (2020).
Tao, L. et al. Silicene field-effect transistors operating at room temperature. Nat. Nanotechnol. 10, 227–231 (2015).
Mannix, A. J. et al. Synthesis of borophenes: anisotropic, two-dimensional boron polymorphs. Science 350, 1513–1516 (2015).
De Padova, P. et al. Germanene: a novel two-dimensional germanium allotrope akin to graphene and silicene. N. J. Phys. 16, 095002 (2014).
Zhu, F. F. et al. Epitaxial growth of two-dimensional stanene. Nat. Mater. 14, 1020–1025 (2015).
Liu, H. et al. Phosphorene: an unexplored 2D semiconductor with a high hole mobility. ACS Nano 8, 4033–4041 (2014).
Zhang, S., Yan, Z., Li, Y., Chen, Z. & Zeng, H. Atomically thin arsenene and antimonene: semimetal–semiconductor and indirect–direct band-gap transitions. Angew. Chem. Int. Ed. Engl. 54, 3112–3115 (2015).
Watanabe, K., Taniguchi, T. & Kanda, H. Direct-bandgap properties and evidence for ultraviolet lasing of hexagonal boron nitride single crystal. Nat. Mater. 3, 404–409 (2004).
Manzeli, S., Ovchinnikov, D., Pasquier, D., Yazyev, O. V. & Kis, A. 2D transition metal dichalcogenides. Nat. Rev. Mater. 2, 17033 (2017).
Mak, K. F., Lee, C., Hone, J., Shan, J. & Heinz, T. F. Atomically thin MoS2: a new direct-gap semiconductor. Phys. Rev. Lett. 105, 136805 (2010).
Zhao, W. et al. Evolution of electronic structure in atomically thin sheets of WS2 and WSe2. ACS Nano 7, 791–797 (2013).
Kong, D. et al. Synthesis of MoS2 and MoSe2 films with vertically aligned layers. Nano Lett. 13, 1341–1347 (2013).
Bandurin, D. A. et al. High electron mobility, quantum Hall effect and anomalous optical response in atomically thin InSe. Nat. Nanotechnol. 11, 223–227 (2016).
Wang, Y. et al. Monolayer PtSe2, a new semiconducting transition-metal-dichalcogenide, epitaxially grown by direct selenization of Pt. Nano Lett. 15, 4013–4018 (2015).
Ma, H. et al. Thickness-tunable synthesis of ultrathin type-II Dirac semimetal PtTe2 single crystals and their thickness-dependent electronic properties. Nano Lett. 18, 3523–3529 (2018).
Anasori, B. & Gogotsi, Y. The global expansion of MXenes. Graphene 2D Mater. 8, 39–41 (2023).
Gogotsi, Y. The future of MXenes. Chem. Mater. 35, 8767–8770 (2023).
Zhang, T., Shuck, C. E., Shevchuk, K., Anayee, M. & Gogotsi, Y. Synthesis of three families of titanium carbonitride MXenes. J. Am. Chem. Soc. 145, 22374–22383 (2023).
Lim, K. R. G. et al. Fundamentals of MXene synthesis. Nat. Synth. 1, 601–614 (2022).
Khazaei, M., Ranjbar, A., Arai, M., Sasaki, T. & Yunoki, S. Electronic properties and applications of MXenes: a theoretical review. J. Mater. Chem. C Mater. 5, 2488–2503 (2017).
Li, N. et al. MXenes: an emerging platform for wearable electronics and looking beyond. Matter 4, 377–407 (2021).
Garg, R. & Vitale, F. Latest advances on MXenes in biomedical research and health care. MRS Bull. 48, 283–290 (2023).
Amara, U. et al. 2D MXene-based biosensing: a review. Small 19, 2205249 (2023).
Rhazouani, A. et al. Synthesis and toxicity of graphene oxide nanoparticles: a literature review of in vitro and in vivo studies. Biomed. Res. Int. 2021, 5518999 (2021).
Ou, L. et al. Toxicity of graphene-family nanoparticles: a general review of the origins and mechanisms. Part. Fibre Toxicol. 13, 57 (2016).
Illarionov, Y. Y. et al. Insulators for 2D nanoelectronics: the gap to bridge. Nat. Commun. 11, 3385 (2020).
Novoselov, K. S. et al. Two-dimensional gas of massless Dirac fermions in graphene. Nature 438, 197–200 (2005).
Young, S. M. & Kane, C. L. Dirac semimetals in two dimensions. Phys. Rev. Lett. 115, 126803 (2015).
Akinwande, D. et al. Graphene and two-dimensional materials for silicon technology. Nature 2019, 507–518 (2019).
Huang, H. et al. Graphene-based sensors for human health monitoring. Front. Chem. 7, 399 (2019).
Pang, Y., Yang, Z., Yang, Y. & Ren, T. L. Wearable electronics based on 2D materials for human physiological information detection. Small 16, 1901124 (2020).
Lin, Z., Huang, Y. & Duan, X. Van der Waals thin-film electronics. Nat. Electron. 2, 378–388 (2019).
Wang, M., Yang, Y. & Gao, W. Laser-engraved graphene for flexible and wearable electronics. Trends Chem. 3, 969–981 (2021).
Kim, J. et al. 2D materials for skin-mountable electronic devices. Adv. Mater. 33, 2005858 (2021).
Kostarelos, K., Aguilar, C. & Garrido, J. A. Clinical translation of graphene-based medical technology. Nat. Rev. Electr. Eng. 1, 75–76 (2024).
Castro Neto, A. H., Guinea, F., Peres, N. M. R., Novoselov, K. S. & Geim, A. K. The electronic properties of graphene. Rev. Mod. Phys. 81, 109–162 (2009).
Moon, H. et al. Strong thermopower enhancement and tunable power factor via semimetal to semiconductor transition in a transition-metal dichalcogenide. ACS Nano 13, 13317–13324 (2019).
Ciarrocchi, A., Avsar, A., Ovchinnikov, D. & Kis, A. Thickness-modulated metal-to-semiconductor transformation in a transition metal dichalcogenide. Nat. Commun. 9, 919 (2018).
Lebègue, S. & Eriksson, O. Electronic structure of two-dimensional crystals from ab initio theory. Phys. Rev. B Condens. Matter Mater. Phys. 79, 115409 (2009).
Li, L. et al. Black phosphorus field-effect transistors. Nat. Nanotechnol. 9, 372–377 (2014).
Li, L. et al. Direct observation of the layer-dependent electronic structure in phosphorene. Nat. Nanotechnol. 11, 21–25 (2016).
Carvalho, A. et al. Phosphorene: from theory to applications. Nat. Rev. Mater. 1, 16061 (2016).
Wang, Z. Q., Lü, T. Y., Wang, H. Q., Feng, Y. P. & Zheng, J. C. Review of borophene and its potential applications. Front. Phys. 14, 33403 (2019).
Das, S. et al. Transistors based on two-dimensional materials for future integrated circuits. Nat. Electron. 4, 786–799 (2021).
Zhu, K. et al. The development of integrated circuits based on two-dimensional materials. Nat. Electron. 4, 775–785 (2021).
Krishnaprasad, A. et al. MoS2 synapses with ultra-low variability and their implementation in Boolean logic. ACS Nano 16, 2866–2876 (2022).
Wang, S., Liu, X. & Zhou, P. The road for 2D semiconductors in the silicon age. Adv. Mater. 34, 2106886 (2022).
Wang, X. et al. Pass-transistor logic circuits based on wafer-scale 2D semiconductors. Adv. Mater. 34, 2202472 (2022).
Wachter, S., Polyushkin, D. K., Bethge, O. & Mueller, T. A microprocessor based on a two-dimensional semiconductor. Nat. Commun. 8, 14948 (2017).
Hong, S. et al. Highly sensitive active pixel image sensor array driven by large-area bilayer MoS2 transistor circuitry. Nat. Commun. 12, 3559 (2021).
Chou, A. S. et al. High-performance monolayer WSe2 p/n FETs via antimony-platinum modulated contact technology towards 2D CMOS electronics. In Technical Digest — International Electron Devices Meeting (IEDM) (2022).
Sebastian, A., Pendurthi, R., Choudhury, T. H., Redwing, J. M. & Das, S. Benchmarking monolayer MoS2 and WS2 field-effect transistors. Nat. Commun. 12, 693 (2021).
Chang, Y. Y., Han, H. N. & Kim, M. Analyzing the microstructure and related properties of 2D materials by transmission electron microscopy. Appl. Microsc. 49, 10 (2019).
Yan, J. et al. Construction of electrochemical biosensors based on MoSe2@1T-MoS2 heterojunction for the sensitive and rapid detection of miRNA-155 biomarker in breast cancer. Bioelectrochemistry 154, 108541 (2023).
Lacour, S. P., Courtine, G. & Guck, J. Materials and technologies for soft implantable neuroprostheses. Nat. Rev. Mater. 1, 16063 (2016).
Akinwande, D. et al. A review on mechanics and mechanical properties of 2D materials — graphene and beyond. Extrem. Mech. Lett. 13, 42–77 (2017).
Peng, Z., Chen, X., Fan, Y., Srolovitz, D. J. & Lei, D. Strain engineering of 2D semiconductors and graphene: from strain fields to band-structure tuning and photonic applications. Light Sci. Appl. 9, 190 (2020).
Chen, X., Yi, C. & Ke, C. Bending stiffness and interlayer shear modulus of few-layer graphene. Appl. Phys. Lett. 106, 101907 (2015).
Rejhon, M. et al. Relation between interfacial shear and friction force in 2D materials. Nat. Nanotechnol. 17, 1280–1287 (2022).
Gao, Y. et al. Ultrahard carbon film from epitaxial two-layer graphene. Nat. Nanotechnol. 13, 133–138 (2017).
Wilson, M. N. et al. Multimodal monitoring of human cortical organoids implanted in mice reveal functional connection with visual cortex. Nat. Commun. 13, 7945 (2022).
Sunwoo, S. H., Ha, K. H., Lee, S., Lu, N. & Kim, D. H. Wearable and implantable soft bioelectronics: device designs and material strategies. Annu. Rev. Chem. Biomol. Eng. 12, 359–391 (2021).
Kabiri Ameri, S. et al. Graphene electronic tattoo sensors. ACS Nano 11, 7634–7641 (2017).
Jeong, J. W. et al. Materials and optimized designs for human-machine interfaces via epidermal electronics. Adv. Mater. 25, 6839–6846 (2013).
Huang, Z. et al. Three-dimensional integrated stretchable electronics. Nat. Electron. 1, 473–480 (2018).
Bonaccorso, F., Sun, Z., Hasan, T. & Ferrari, A. C. Graphene photonics and optoelectronics. Nat. Photonics 4, 611–622 (2010).
Bae, S. et al. Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat. Nanotechnol. 5, 574–578 (2010).
Kuzum, D. et al. Transparent and flexible low noise graphene electrodes for simultaneous electrophysiology and neuroimaging. Nat. Commun. 5, 5259 (2014).
Park, D. W. et al. Graphene-based carbon-layered electrode array technology for neural imaging and optogenetic applications. Nat. Commun. 5, 5258 (2014).
Lopez-Sanchez, O. et al. Light generation and harvesting in a van der Waals heterostructure. ACS Nano 8, 3042–3048 (2014).
Shin, G. H., Park, C., Lee, K. J., Jin, H. J. & Choi, S. Y. Ultrasensitive phototransistor based on WSe2-MoS2 van der Waals heterojunction. Nano Lett. 20, 5741–5748 (2020).
Withers, F. et al. Light-emitting diodes by band-structure engineering in van der Waals heterostructures. Nat. Mater. 14, 301–306 (2015).
Pang, J. et al. Applications of phosphorene and black phosphorus in energy conversion and storage devices. Adv. Energy Mater. 8, 1702093 (2018).
Choi, M. et al. Full-color active-matrix organic light-emitting diode display on human skin based on a large-area MoS2 backplane. Sci. Adv. 6, eabb5898 (2020).
Zhou, H. et al. Graphene-based intrinsically stretchable 2D-contact electrodes for highly efficient organic light-emitting diodes. Adv. Mater. 34, 2203040 (2022).
Hao Lee, M., Wu, W., Lee, M. H. & Wu, W. 2D materials for wearable energy harvesting. Adv. Mater. Technol. 7, 2101623 (2022).
Abnavi, A. et al. Flexible high-performance photovoltaic devices based on 2D MoS2 diodes with geometrically asymmetric contact areas. Adv. Funct. Mater. 33, 2210619 (2023).
Mary Francis, B. et al. Recent developments in 2D materials for energy harvesting applications. J. Phys. Energy 5, 032001 (2023).
Yi, F. et al. Wearable energy sources based on 2D materials. Chem. Soc. Rev. 47, 3152–3188 (2018).
Kizhepat, S., Rasal, A. S., Chang, J. Y. & Wu, H. F. Development of two-dimensional functional nanomaterials for biosensor applications: opportunities, challenges, and future prospects. Nanomaterials 13, 1520 (2023).
Bolotsky, A. et al. Two-dimensional materials in biosensing and healthcare: from in vitro diagnostics to optogenetics and beyond. ACS Nano 13, 9781–9810 (2019).
Conti, S. et al. Printed transistors made of 2D material-based inks. Nat. Rev. Mater. 8, 651–667 (2023).
Minemawari, H. et al. Inkjet printing of single-crystal films. Nature 475, 364–367 (2011).
Kaliyaraj Selva Kumar, A., Zhang, Y., Li, D. & Compton, R. G. A mini-review: how reliable is the drop casting technique? Electrochem. Commun. 121, 106867 (2020).
Katiyar, A. K. et al. 2D materials in flexible electronics: recent advances and future prospectives. Chem. Rev. 124, 318–419 (2024).
Ma, T. et al. Tailoring the thermal and electrical transport properties of graphene films by grain size engineering. Nat. Commun. 8, 14486 (2017).
Wang, Q. et al. Atomic-scale engineering of chemical-vapor-deposition-grown 2D transition metal dichalcogenides for electrocatalysis. Energy Environ. Sci. 13, 1593–1616 (2020).
Yang, L. et al. Chloride molecular doping technique on 2D materials: WS2 and MoS2. Nano Lett. 14, 6275–6280 (2014).
Zhang, K. et al. Manganese doping of monolayer MoS2: the substrate is critical. Nano Lett. 15, 6586–6591 (2015).
Lei, Y. et al. Single-atom doping of MoS2 with manganese enables ultrasensitive detection of dopamine: experimental and computational approach. Sci. Adv. 6, 4250–4257 (2020).
Bahri, M. et al. Tungsten disulfide nanosheet-based field-effect transistor biosensor for DNA hybridization detection. ACS Appl. Nano Mater. 5, 5035–5044 (2022).
Briggs, N. et al. A roadmap for electronic grade 2D materials. 2D Mater. 6, 022001 (2019).
Lin, L. et al. Towards super-clean graphene. Nat. Commun. 10, 1912 (2019).
Qing, F. et al. Towards large-scale graphene transfer. Nanoscale 12, 10890–10911 (2020).
Khatib, M. et al. Spiral neurostring: high-density soft bioelectronic fibers for multimodal sensing and stimulation. Preprint at bioRxiv https://doi.org/10.1101/2023.10.02.560482 (2023).
Lin, M., Hu, H., Zhou, S. & Xu, S. Soft wearable devices for deep-tissue sensing. Nat. Rev. Mater. 7, 850–869 (2022).
Hu, L. et al. Smart electronics based on 2D materials for wireless healthcare monitoring. Appl. Phys. Rev. 9, 041308 (2022).
Kwon, Y. T. et al. Printed, wireless, soft bioelectronics and deep learning algorithm for smart human-machine interfaces. ACS Appl. Mater. Interfaces 12, 49398–49406 (2020).
Luo, Y. et al. Technology roadmap for flexible sensors. ACS Nano 17, 5211–5295 (2023).
Yang, H., Xue, T., Li, F., Liu, W. & Song, Y. Graphene: diversified flexible 2D material for wearable vital signs monitoring. Adv. Mater. Technol. 4, 1800574 (2019).
Gao, W., Ota, H., Kiriya, D., Takei, K. & Javey, A. Flexible electronics toward wearable sensing. Acc. Chem. Res. 52, 523–533 (2019).
Iqbal, S. M. A., Mahgoub, I., Du, E., Leavitt, M. A. & Asghar, W. Advances in healthcare wearable devices. npj Flex. Electron. 5, 9 (2021).
Choi, C., Lee, Y., Cho, K. W., Koo, J. H. & Kim, D. H. Wearable and implantable soft bioelectronics using two-dimensional materials. Acc. Chem. Res. 52, 73–81 (2019).
Ameri, S. K. et al. Imperceptible electrooculography graphene sensor system for human–robot interface. npj 2D Mater. Appl. 2, 19 (2018).
Trung, T. Q., Ramasundaram, S., Hwang, B. U. & Lee, N. E. An all-elastomeric transparent and stretchable temperature sensor for body-attachable wearable electronics. Adv. Mater. 28, 502–509 (2016).
Kwon, Y. T. et al. All-printed nanomembrane wireless bioelectronics using a biocompatible solderable graphene for multimodal human-machine interfaces. Nat. Commun. 11, 3450 (2020).
Lim, H. R. et al. Advanced soft materials, sensor integrations, and applications of wearable flexible hybrid electronics in healthcare, energy, and environment. Adv. Mater. 32, 1901924 (2020).
Bhattacharya, S. et al. A chest-conformable, wireless electro-mechanical e-tattoo for measuring multiple cardiac time intervals. Adv. Electron. Mater. 9, 2201284 (2023).
Shimura, T. et al. A high-resolution, transparent, and stretchable polymer conductor for wearable sensor arrays. Adv. Mater. Technol. 8, 2201992 (2023).
Yang, H. et al. Topographic design in wearable MXene sensors with in-sensor machine learning for full-body avatar reconstruction. Nat. Commun. 13, 5311 (2022).
Park, M. et al. MoS2-based tactile sensor for electronic skin applications. Adv. Mater. 28, 2556–2562 (2016).
Ma, Y. et al. A highly flexible and sensitive piezoresistive sensor based on MXene with greatly changed interlayer distances. Nat. Commun. 8, 1207 (2017).
Lee, H. et al. A graphene-based electrochemical device with thermoresponsive microneedles for diabetes monitoring and therapy. Nat. Nanotechnol. 11, 566–572 (2016).
Kim, J. et al. Wearable smart sensor systems integrated on soft contact lenses for wireless ocular diagnostics. Nat. Commun. 8, 14997 (2017).
Guo, H. et al. Transparent, flexible, and stretchable WS2 based humidity sensors for electronic skin. Nanoscale 9, 6246–6253 (2017).
Polat, E. O. et al. Flexible graphene photodetectors for wearable fitness monitoring. Sci. Adv. 5, eaaw7846 (2019).
Lim, J. et al. Hybrid graphene electrode for the diagnosis and treatment of epilepsy in free-moving animal models. NPG Asia Mater. 15, 7 (2023).
Kwon, S. J. et al. Extremely stable graphene electrodes doped with macromolecular acid. Nat. Commun. 9, 2037 (2018).
Jang, H. et al. Graphene e-tattoos for unobstructive ambulatory electrodermal activity sensing on the palm enabled by heterogeneous serpentine ribbons. Nat. Commun. 13, 6604 (2022).
Ziȩba, W. et al. High-surface-area graphene oxide for next-generation energy storage applications. ACS Appl. Nano Mater. 5, 18448–18461 (2022).
Shao, Y., Wang, H., Zhang, Q. & Li, Y. Fabrication of large-area and high-crystallinity photoreduced graphene oxide films via reconstructed two-dimensional multilayer structures. NPG Asia Mater. 6, e119 (2014).
De Silva, T. et al. Ultrasensitive rapid cytokine sensors based on asymmetric geometry two-dimensional MoS2 diodes. Nat. Commun. 13, 7593 (2022).
Lopez-Sanchez, O., Lembke, D., Kayci, M., Radenovic, A. & Kis, A. Ultrasensitive photodetectors based on monolayer MoS2. Nat. Nanotechnol. 8, 497–501 (2013).
Thai, K. Y. et al. MoS2/graphene photodetector array with strain-modulated photoresponse up to the near-infrared regime. ACS Nano 15, 12836–12846 (2021).
Nur, R. et al. High responsivity in MoS2 phototransistors based on charge trapping HfO2 dielectrics. Commun. Mater. 1, 103 (2020).
Liao, F. et al. Bioinspired in-sensor visual adaptation for accurate perception. Nat. Electron. 5, 84–91 (2022).
Kang, M. et al. Wireless graphene-based thermal patch for obtaining temperature distribution and performing thermography. Sci. Adv. 8, 6693 (2022).
Zhou, J. et al. Multiscale and hierarchical wrinkle enhanced graphene/Ecoflex sensors integrated with human-machine interfaces and cloud-platform. npj Flex. Electron. 6, 55 (2022).
Yan, W. et al. Giant gauge factor of van der Waals material based strain sensors. Nat. Commun. 12, 2018 (2021).
Qiu, D., Chu, Y., Zeng, H., Xu, H. & Dan, G. Stretchable MoS2 electromechanical sensors with ultrahigh sensitivity and large detection range for skin-on monitoring. ACS Appl. Mater. Interfaces 11, 37035–37042 (2019).
Lipani, L. et al. Non-invasive, transdermal, path-selective and specific glucose monitoring via a graphene-based platform. Nat. Nanotechnol. 13, 504–511 (2018).
Mannoor, M. S. et al. Graphene-based wireless bacteria detection on tooth enamel. Nat. Commun. 3, 763 (2012).
Yin, R. et al. Soft transparent graphene contact lens electrodes for conformal full-cornea recording of electroretinogram. Nat. Commun. 9, 2334 (2018).
Koppens, F. H. L. et al. Photodetectors based on graphene, other two-dimensional materials and hybrid systems. Nat. Nanotechnol. 9, 780–793 (2014).
Xia, F., Mueller, T., Lin, Y. M., Valdes-Garcia, A. & Avouris, P. Ultrafast graphene photodetector. Nat. Nanotechnol. 4, 839–843 (2009).
Mueller, T., Xia, F. & Avouris, P. Graphene photodetectors for high-speed optical communications. Nat. Photonics 4, 297–301 (2010).
De Sanctis, A. et al. Extraordinary linear dynamic range in laser-defined functionalized graphene photodetectors. Sci. Adv. 3, e1602617 (2017).
Cohen-Karni, T., Qing, Q., Li, Q., Fang, Y. & Lieber, C. M. Graphene and nanowire transistors for cellular interfaces and electrical recording. Nano Lett. 10, 1098–1102 (2010).
Chen, C. H. et al. A graphene-based microelectrode for recording neural signals. In 16th International Solid-State Sensors, Actuators and Microsystems Conference, TRANSDUCERS’11 1883–1886 (IEEE, 2011).
Hess, L. H. et al. Graphene transistor arrays for recording action potentials from electrogenic cells. Adv. Mater. 23, 5045–5049 (2011).
Lu, Y. et al. Ultralow impedance graphene microelectrodes with high optical transparency for simultaneous deep two-photon imaging in transgenic mice. Adv. Funct. Mater. 28, 1800002 (2018).
Lee, J. M. et al. The ultra-thin, minimally invasive surface electrode array NeuroWeb for probing neural activity. Nat. Commun. 14, 7088 (2023).
Fromherz, P. Extracellular recording with transistors and the distribution of ionic conductances in a cell membrane. Eur. Biophys. J. 28, 254–258 (1999).
Hébert, C. et al. Flexible graphene solution-gated field-effect transistors: efficient transducers for micro-electrocorticography. Adv. Funct. Mater. 28, 1703976 (2018).
Garcia-Cortadella, R. et al. Graphene active sensor arrays for long-term and wireless mapping of wide frequency band epicortical brain activity. Nat. Commun. 12, 211 (2021).
Garcia-Cortadella, R. et al. Switchless multiplexing of graphene active sensor arrays for brain mapping. Nano Lett. 20, 3528–3537 (2020).
Bonaccini Calia, A. et al. Full-bandwidth electrophysiology of seizures and epileptiform activity enabled by flexible graphene microtransistor depth neural probes. Nat. Nanotechnol. 17, 301–309 (2021).
Liu, X. et al. E-Cannula reveals anatomical diversity in sharp-wave ripples as a driver for the recruitment of distinct hippocampal assemblies. Cell Rep. 41, 111453 (2022).
Quadrato, G. et al. Cell diversity and network dynamics in photosensitive human brain organoids. Nature 545, 48–53 (2017).
Di Lullo, E. & Kriegstein, A. R. The use of brain organoids to investigate neural development and disease. Nat. Rev. Neurosci. 18, 573–584 (2017).
Gordon, A. et al. Long-term maturation of human cortical organoids matches key early postnatal transitions. Nat. Neurosci. 24, 331–342 (2021).
Karzbrun, E., Kshirsagar, A., Cohen, S. R., Hanna, J. H. & Reiner, O. Human brain organoids on a chip reveal the physics of folding. Nat. Phys. 14, 515–522 (2018).
Lancaster, M. A. et al. Guided self-organization and cortical plate formation in human brain organoids. Nat. Biotechnol. 35, 659–666 (2017).
Krencik, R. et al. Systematic three-dimensional coculture rapidly recapitulates interactions between human neurons and astrocytes. Stem Cell Rep. 9, 1745–1753 (2017).
Trujillo, C. A. & Muotri, A. R. Brain organoids and the study of neurodevelopment. Trends Mol. Med. 24, 982–990 (2018).
Trujillo, C. A. et al. Complex oscillatory waves emerging from cortical organoids model early human brain network development. Cell Stem Cell 25, 558–569.e7 (2019).
Park, Y. et al. Three-dimensional, multifunctional neural interfaces for cortical spheroids and engineered assembloids. Sci. Adv. 7, 9153–9170 (2021).
Yang, X. et al. Kirigami electronics for long-term electrophysiological recording of human neural organoids and assembloids. Nat. Biotechnol. https://doi.org/10.1038/s41587-023-02081-3 (2024).
Wilson, M. N. et al. Investigation of functional integration of cortical organoids transplanted in vivo towards future neural prosthetics applications. In International IEEE/EMBS Conference on Neural Engineering, NER 2023-April (2023).
Ding, D. et al. Evaluation of durability of transparent graphene electrodes fabricated on different flexible substrates for chronic in vivo experiments. IEEE Trans. Biomed. Eng. 67, 3203–3210 (2020).
Gao, H. et al. Graphene-integrated mesh electronics with converged multifunctionality for tracking multimodal excitation-contraction dynamics in cardiac microtissues. Nat. Commun. 15, 2321 (2024).
Hong, G., Yang, X., Zhou, T. & Lieber, C. M. Mesh electronics: a new paradigm for tissue-like brain probes. Curr. Opin. Neurobiol. 50, 33–41 (2018).
Zhang, A., Lee, J. H. & Lieber, C. M. Nanowire-enabled bioelectronics. Nano Today 38, 101135 (2021).
Schuhmann, T. G. et al. Syringe-injectable mesh electronics for stable chronic rodent electrophysiology. JoVE https://doi.org/10.3791/58003 (2018).
Kim, S. et al. Magnetic manipulation of locomotive liquid electrodes for wireless active cardiac monitoring. ACS Appl. Mater. Interfaces 15, 28954–28963 (2023).
Reichert, W. M. (ed.) Indwelling Neural Implants: Strategies for Contending with the In Vivo Environment (CRC Press, 2007).
Wu, T. et al. Fast growth of inch-sized single-crystalline graphene from a controlled single nucleus on Cu–Ni alloys. Nat. Mater. 15, 43–47 (2015).
Geim, A. K. & Grigorieva, I. V. Van der Waals heterostructures. Nature 499, 419–425 (2013).
Castellanos-Gomez, A. et al. Van der Waals heterostructures. Nat. Rev. Methods Primers 2, 58 (2022).
Kang, J. H. et al. Monolithic 3D integration of 2D materials-based electronics towards ultimate edge computing solutions. Nat. Mater. 22, 1470–1477 (2023).
Hoang, A. T. et al. Low-temperature growth of MoS2 on polymer and thin glass substrates for flexible electronics. Nat. Nanotechnol. 18, 1439–1447 (2023).
Bendali, A. et al. Purified neurons can survive on peptide-free graphene layers. Adv. Healthc. Mater. 2, 929–933 (2013).
Pampaloni, N. P. et al. Single-layer graphene modulates neuronal communication and augments membrane ion currents. Nat. Nanotechnol. 13, 755–764 (2018).
Fabbro, A. et al. Graphene-based interfaces do not alter target nerve cells. ACS Nano 10, 615–623 (2016).
Pinto, A. M., Gonçalves, I. C. & Magalhães, F. D. Graphene-based materials biocompatibility: a review. Colloids Surf. B Biointerfaces 111, 188–202 (2013).
Vranic, S. et al. Live imaging of label-free graphene oxide reveals critical factors causing oxidative-stress-mediated cellular responses. ACS Nano 12, 1373–1389 (2018).
Rodrigues, A. F. et al. Immunological impact of graphene oxide sheets in the abdominal cavity is governed by surface reactivity. Arch. Toxicol. 92, 3359–3379 (2018).
Andrews, J. P. M. et al. First-in-human controlled inhalation of thin graphene oxide nanosheets to study acute cardiorespiratory responses. Nat. Nanotechnol. 19, 705–714 (2024).
Bullock, C. J. & Bussy, C. Biocompatibility considerations in the design of graphene biomedical materials. Adv. Mater. Interfaces 6, 1900229 (2019).
Bianco, A. et al. All in the graphene family — a recommended nomenclature for two-dimensional carbon materials. Carbon N. Y. 65, 1–6 (2013).
ISO 10993-1:2018 — Biological evaluation of medical devices — part 1: evaluation and testing within a risk management process. International Organization for Standardization https://www.iso.org/standard/68936.html (ISO, 2018).
Wang, T., Park, M., Yu, Q., Zhang, J. & Yang, Y. Stability and synthesis of 2D metals and alloys: a review. Mater. Today Adv. 8, 100092 (2020).
Longo, R. C. et al. Intrinsic air stability mechanisms of two-dimensional transition metal dichalcogenide surfaces: basal versus edge oxidation. 2D Mater. 4, 025050 (2017).
Tang, Q. & Jiang, D. E. Stabilization and band-gap tuning of the 1T-MoS2 monolayer by covalent functionalization. Chem. Mater. 27, 3743–3748 (2015).
Huo, Z., Wei, Y., Wang, Y., Wang, Z. L. & Sun, Q. Integrated self-powered sensors based on 2D material devices. Adv. Funct. Mater. 32, 2206900 (2022).
Ghosh, S. K. & Mandal, D. in 2D Nanomaterials for Energy Applications: Graphene and Beyond (ed. Zafeiratos, S.) 1–38 (2020).
Tantis, I. et al. Non-van der Waals 2D materials for electrochemical energy storage. Adv. Funct. Mater. 33, 2209360 (2023).
Zhu, J. et al. Progress in TENG technology — a journey from energy harvesting to nanoenergy and nanosystem. EcoMat 2, e12058 (2020).
Gao, W., Wang, Y., Lai, F., Paulson, J. A. & Feili Lai, C. Thermoelectric energy harvesting for personalized healthcare. Smart Med. 1, e20220016 (2022).
Xiao, X. The direct use of enzymatic biofuel cells as functional bioelectronics. eScience 2, 1–9 (2022).
Jeerapan, I., Sempionatto, J. R. & Wang, J. On-body bioelectronics: wearable biofuel cells for bioenergy harvesting and self-powered biosensing. Adv. Funct. Mater. 30, 1906243 (2020).
Song, Y., Mukasa, D., Zhang, H. & Gao, W. Self-powered wearable biosensors. Acc. Mater. Res. 2, 184–197 (2021).
Wang, H. et al. Bilayer of polyelectrolyte films for spontaneous power generation in air up to an integrated 1,000 V output. Nat. Nanotechnol. 16, 811–819 (2021).
Bhatnagar, P., Patel, M., Nguyen, T. T., Kim, S. & Kim, J. Transparent photovoltaics for self-powered bioelectronics and neuromorphic applications. J. Phys. Chem. Lett. 12, 12426–12436 (2021).
Zhu, H. et al. Observation of piezoelectricity in free-standing monolayer MoS2. Nat. Nanotechnol. 10, 151–155 (2015).
Blonsky, M. N., Zhuang, H. L., Singh, A. K. & Hennig, R. G. Ab initio prediction of piezoelectricity in two-dimensional materials. ACS Nano 9, 9885–9891 (2015).
Seol, M. et al. Triboelectric series of 2D layered materials. Adv. Mater. 30, 1801210 (2018).
Pace, G. et al. 2D materials-based electrochemical triboelectric nanogenerators. Adv. Mater. 35, 2211037 (2023).
Liu, Y., Ping, J. & Ying, Y. Recent progress in 2D-nanomaterial-based triboelectric nanogenerators. Adv. Funct. Mater. 31, 2009994 (2021).
Wang, L. et al. 2D photovoltaic devices: progress and prospects. Small Methods 2, 1700294 (2018).
Aftab, S. et al. Bulk photovoltaic effect in 2D materials for solar-power harvesting. Adv. Opt. Mater. 10, 2201288 (2022).
Li, D. et al. Recent progress of two-dimensional thermoelectric materials. Nanomicro Lett. 12, 36 (2020).
Zhang, Y. et al. 2D black phosphorus for energy storage and thermoelectric applications. Small 13, 1700661 (2017).
Kanahashi, K., Pu, J. & Takenobu, T. 2D materials for large-area flexible thermoelectric devices. Adv. Energy Mater. 10, 1902842 (2020).
Min, J. et al. An autonomous wearable biosensor powered by a perovskite solar cell. Nat. Electron. 6, 630–641 (2023).
Cosnier, S., Le Goff, A. & Holzinger, M. Towards glucose biofuel cells implanted in human body for powering artificial organs: review. Electrochem. Commun. 38, 19–23 (2014).
Yīng, Y. & Zülicke, U. Magnetoelectricity in two-dimensional materials. Adv. Phys. X 7, 2032343 (2022).
Zhang, J. et al. Distorted monolayer ReS2 with low-magnetic-field controlled magnetoelectricity. ACS Nano 13, 2334–2340 (2019).
Gao, Y., Gao, M. & Lu, Y. Two-dimensional multiferroics. Nanoscale 13, 19324–19340 (2021).
Ma, B. E. X., Jiang, Z. & Lin, Y. Flexible energy storage devices for wearable bioelectronics. J. Semiconduct. 42, 101602 (2021).
Sheng, H. et al. Recent advances of energy solutions for implantable bioelectronics. Adv. Healthc. Mater. 10, 2100199 (2021).
Jeong, Y. R., Lee, G., Park, H. & Ha, J. S. Stretchable, skin-attachable electronics with integrated energy storage devices for biosignal monitoring. Acc. Chem. Res. 52, 91–99 (2019).
Lukatskaya, M. R. et al. Ultra-high-rate pseudocapacitive energy storage in two-dimensional transition metal carbides. Nat. Energy 2, 17105 (2017).
Wang, J., Malgras, V., Sugahara, Y. & Yamauchi, Y. Electrochemical energy storage performance of 2D nanoarchitectured hybrid materials. Nat. Commun. 12, 3563 (2021).
Gao, M. et al. Two-dimensional materials for wireless power transfer. Device 1, 100022 (2023).
Guo, S. et al. Integrated contact lens sensor system based on multifunctional ultrathin MoS2 transistors. Matter 4, 969–985 (2021).
Zhang, X. et al. Two-dimensional MoS2-enabled flexible rectenna for Wi-Fi-band wireless energy harvesting. Nature 566, 368–372 (2019).
Chowdhury, S. F., Yogeesh, M. N., Banerjee, S. K. & Akinwande, D. Black phosphorous thin-film transistor and RF circuit applications. IEEE Electron. Device Lett. 37, 449–451 (2016).
Zhou, X. et al. Conformal screen printed graphene 4 × 4 wideband MIMO antenna on flexible substrate for 5G communication and IoT applications. 2D Mater. 8, 045021 (2021).
Isobe, H., Xu, S. Y. & Fu, L. High-frequency rectification via chiral Bloch electrons. Sci. Adv. 6, eaay2497 (2020).
Huang, X. et al. Highly flexible and conductive printed graphene for wireless wearable communications applications. Sci. Rep. 5, 18298 (2015).
Fan, X. et al. Flexible two-dimensional MXene-based antennas. Nanoscale Horiz. 8, 309–319 (2023).
Shao, Y. et al. Room-temperature high-precision printing of flexible wireless electronics based on MXene inks. Nat. Commun. 13, 3223 (2022).
Ge, R. et al. A library of atomically thin 2D materials featuring the conductive-point resistive switching phenomenon. Adv. Mater. 33, 2007792 (2021).
Kim, M. et al. Monolayer molybdenum disulfide switches for 6G communication systems. Nat. Electron. 5, 367–373 (2022).
Boutry, C. M. et al. Biodegradable and flexible arterial-pulse sensor for the wireless monitoring of blood flow. Nat. Biomed. Eng. 3, 47–57 (2019).
Zhao, Z., Spyropoulos, G. D., Cea, C., Gelinas, J. N. & Khodagholy, D. Ionic communication for implantable bioelectronics. Sci. Adv. 8, eabm7851 (2022).
Zhao, B., Mao, J., Zhao, J., Yang, H. & Lian, Y. The role and challenges of body channel communication in wearable flexible electronics. IEEE Trans. Biomed. Circuits Syst. 14, 283–296 (2020).
Aran, K., Goldsmith, B. & Moarefian, M. Applications of graphene field effect biosensors for biological sensing. Adv. Biochem. Eng. Biotechnol. 187, 37–70 (2024).
Aran, K. & Goldsmith, B. R. CRISPR quality control on a chip. Nat. Rev. Bioeng. 2, 194–195 (2024).
Zaaba, N. et al. Synthesis of graphene oxide using modified hummers method: solvent influence. Procedia Eng. 184, 469–477 (2017).
Liu, S. et al. Boron nitride nanopores: highly sensitive DNA single-molecule detectors. Adv. Mater. 25, 4549–4554 (2013).
Llenas, M. et al. Sustainable synthesis of highly biocompatible 2D boron nitride nanosheets. Biomedicines 10, 3238 (2022).
Shivayogimath, A. et al. Do-it-yourself transfer of large-area graphene using an office laminator and water. Chem. Mater. 31, 2328–2336 (2019).
Her, M., Beams, R. & Novotny, L. Graphene transfer with reduced residue. Phys. Lett. A 377, 1455–1458 (2013).
Zhao, Y. et al. Large-area transfer of two-dimensional materials free of cracks, contamination and wrinkles via controllable conformal contact. Nat. Commun. 13, 4409 (2022).
Weidling, A. M., Turkani, V. S., Akhavan, V., Schroder, K. A. & Swisher, S. L. Large-area photonic lift-off process for flexible thin-film transistors. npj Flex. Electron. 6, 14 (2022).
Fatima, S. et al. Comparative study between sulfurized MoS2 from molybdenum and molybdenum trioxide precursors for thin-film device applications. ACS Appl. Mater. Interfaces 15, 16308–16316 (2023).
Ko, T. J. et al. Two-dimensional near-atom-thickness materials for emerging neuromorphic devices and applications. iScience 23, 101676 (2020).
Lee, G. et al. Artificial neuron and synapse devices based on 2D materials. Small 17, 2100640 (2021).
Bruno, U. et al. From neuromorphic to neurohybrid: transition from the emulation to the integration of neuronal networks. Neuromorphic Comput. Eng. 3, 023002 (2023).
Mehonic, A. & Kenyon, A. J. Brain-inspired computing needs a master plan. Nature 604, 255–260 (2022).
Ham, D., Park, H., Hwang, S. & Kim, K. Neuromorphic electronics based on copying and pasting the brain. Nat. Electron. 4, 635–644 (2021).
Sharbati, M. T. et al. Low‐power, electrochemically tunable graphene synapses for neuromorphic computing. Adv. Mater. 30, e1802353 (2018).
Zhu, J. et al. Ion gated synaptic transistors based on 2D van der Waals crystals with tunable diffusive dynamics. Adv. Mater. 30, 1800195 (2018).
McKnight, R. F. et al. Lithium toxicity profile: a systematic review and meta-analysis. Lancet 379, 721–728 (2012).
Kireev, D. et al. Metaplastic and energy-efficient biocompatible graphene artificial synaptic transistors for enhanced accuracy neuromorphic computing. Nat. Commun. 13, 4386 (2022).
Chen, Q. et al. Long-term electrical conductivity stability of graphene under uncontrolled ambient conditions. Carbon N. Y. 133, 410–415 (2018).
Kumar, N. et al. Graphene field effect biosensor for concurrent and specific detection of SARS-CoV-2 and influenza. ACS Nano 17, 18629–18640 (2023).
Yeh, C. N., Raidongia, K., Shao, J., Yang, Q. H. & Huang, J. On the origin of the stability of graphene oxide membranes in water. Nat. Chem. 7, 166–170 (2015).
Qiao, Y. et al. Graphene-based wearable sensors. Nanoscale 11, 18923–18945 (2019).
Krishnan, S. K., Singh, E., Singh, P., Meyyappan, M. & Nalwa, H. S. A review on graphene-based nanocomposites for electrochemical and fluorescent biosensors. RSC Adv. 9, 8778–8881 (2019).
Nie, Y. et al. Stable silicene wrapped by graphene in air. ACS Appl. Mater. Interfaces 12, 40620–40628 (2020).
Molle, A. et al. Silicene, silicene derivatives, and their device applications. Chem. Soc. Rev. 47, 6370–6387 (2018).
Lei, X., Zatsepin, A. F. & Boukhvalov, D. W. Chemical instability of free-standing boron monolayers and properties of oxidized borophene sheets. Phys. E Low Dimens. Syst. Nanostruct. 120, 114082 (2020).
Shen, J. et al. Organic gas sensing performance of the borophene van der Waals heterostructure. J. Phys. Chem. C. 125, 427–435 (2021).
Chegel, R. & Behzad, S. Tunable electronic, optical, and thermal properties of two-dimensional germanene via an external electric field. Sci. Rep. 10, 704 (2020).
Chia, H. L., Sturala, J., Webster, R. D. & Pumera, M. Functionalized 2D germanene and silicene enzymatic system. Adv. Funct. Mater. 31, 2011125 (2021).
Favron, A. et al. Photooxidation and quantum confinement effects in exfoliated black phosphorus. Nat. Mater. 14, 826–832 (2015).
Li, P. et al. Air-stable black phosphorus devices for ion sensing. ACS Appl. Mater. Interfaces 7, 24396–24402 (2015).
Chen, R. et al. High-crystallinity and high-temperature stability of the hexagonal boron nitride film grown on sapphire. Cryst. Growth Des. 23, 8783–8792 (2023).
Liu, H. et al. Highly sensitive humidity sensors based on hexagonal boron nitride nanosheets for contactless sensing. Nano Res. 16, 10279–10286 (2023).
Gao, J. et al. Aging of transition metal dichalcogenide monolayers. ACS Nano 10, 2628–2635 (2016).
Mirabelli, G. et al. Air sensitivity of MoS2, MoSe2, MoTe2, HfS2, and HfSe2. J. Appl. Phys. 120, 125102 (2016).
Şar, H. et al. Long-term stability control of CVD-grown monolayer MoS2. phys. status solidi Rapid Res. Lett. 13, 1800687 (2019).
Rajput, N. S., Kotbi, A., Kaja, K. & Jouiad, M. Long-term aging of CVD grown 2D-MoS2 nanosheets in ambient environment. npj Mater. Degrad. 6, 75 (2022).
Singh, S., Deb, J., Sarkar, U. & Sharma, S. MoSe2 crystalline nanosheets for room-temperature ammonia sensing. ACS Appl. Nano Mater. 3, 9375–9384 (2020).
Shen, H. et al. WS2 nanosheets functionalized by biomimetic lipids with enhanced dispersibility for photothermal and chemo combination therapy. J. Mater. Chem. B 8, 2331–2342 (2020).
Li, J., Qi, X., Ye, P., Yang, M. & Xie, M. Construction of WS2/Au-lipid drug delivery system for multiple combined therapy of tumor. J. Drug Deliv. Sci. Technol. 76, 103747 (2022).
Gammelgaard, L., Whelan, P. R., Booth, T. J. & Bøggild, P. Long-term stability and tree-ring oxidation of WSe2 using phase-contrast AFM. Nanoscale 13, 19238–19246 (2021).
Fathi-Hafshejani, P. et al. Two-dimensional-material-based field-effect transistor biosensor for detecting COVID-19 virus (SARS-CoV-2). ACS Nano 15, 11461–11469 (2021).
Politano, A. et al. Tailoring the surface chemical reactivity of transition-metal dichalcogenide PtTe2 crystals. Adv. Funct. Mater. 28, 1706504 (2018).
Daws, S. et al. Platinum diselenide PtSe2: an ambient-stable material for flexible electronics. Mater. Sci. Eng. B 283, 115824 (2022).
Huang, C. et al. InSe nanosheets for efficient NIR-II-responsive drug release. ACS Appl. Mater. Interfaces 11, 27521–27528 (2019).
Jiang, J. et al. Stable InSe transistors with high-field effect mobility for reliable nerve signal sensing. npj 2D Mater. Appl. 3, 29 (2019).
Hong, Y. J., Jeong, H., Cho, K. W., Lu, N. & Kim, D.-H. Wearable and implantable devices for cardiovascular healthcare: from monitoring to therapy based on flexible and stretchable electronics. Adv. Funct. Mater. 29, 1808247 (2019).
Acknowledgements
Dm.K. acknowledges funding from the US National Science Foundation (NSF) grant #2400494. D.A. acknowledges the Cockrell Family Regents Chair Professorship. Du.K. acknowledges the Kavli Foundation, NSF (ECCS-2024776) and NIH (DP2 EB030992). J.-H.A. and J.H. acknowledge the Ministry of Trade, Industry and Energy (MOTIE) grant funded by the Korean government (MSIT) (20012355, Fully implantable closed-loop Brain to X for voice communication).
Author information
Authors and Affiliations
Contributions
Dm.K. and D.A. conceived the manuscript. All authors contributed to writing, figure design, discussion and reviewing of the manuscript.
Corresponding author
Ethics declarations
Competing interests
The authors declare that they have no competing interests.
Peer review
Peer review information
Nature Reviews Materials thanks the anonymous reviewer(s) for their contribution to the peer review of this work.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Related links
Sankey diagram: https://observablehq.com/@kireevlab/graphene-application-2
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Kireev, D., Kutagulla, S., Hong, J. et al. Atomically thin bioelectronics. Nat Rev Mater 9, 906–922 (2024). https://doi.org/10.1038/s41578-024-00728-4
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41578-024-00728-4