[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Atomically thin bioelectronics

Abstract

Tissue-like bioelectronics have emerged as practical, user-friendly and unobtrusive systems for seamless bidirectional integration with the human body. Two-dimensional materials, being led by the prototypical graphene, uniquely fit the task of creating ultrathin and functional interfaces with biological matter. In this Perspective, we comprehensively discuss 2D materials and their electrical, optical, environmental and mechanical properties relevant to bioelectronics. We present examples of 2D material-based bioelectronic devices for tissue interfacing (skintronics) and organ interfacing (organtronics). Importantly, we provide a roadmap for the future development of the field and highlight associated challenges yet to be solved.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Overview of skintronics and organtronics with a focus on the importance of 2D materials.
Fig. 2: Overview of 2D skintronics and their applications.
Fig. 3: Overview of 2D organtronics and their applications.
Fig. 4: Roadmap for 2D bioelectronics.

Similar content being viewed by others

References

  1. Novoselov, K. S. S. et al. Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004).

    Article  CAS  PubMed  Google Scholar 

  2. The Nobel Prize in Physics 2010. NobelPrize.org https://www.nobelprize.org/prizes/physics/2010/summary/.

  3. Schaibley, J. R. et al. Valleytronics in 2D materials. Nat. Rev. Mater. 1, 16055 (2016).

    Article  CAS  Google Scholar 

  4. Bhimanapati, G. R. et al. Recent advances in two-dimensional materials beyond graphene. ACS Nano 9, 11509–11539 (2015).

    Article  CAS  PubMed  Google Scholar 

  5. Tan, C. et al. Recent advances in ultrathin two-dimensional nanomaterials. Chem. Rev. 117, 6225–6331 (2017).

    Article  CAS  PubMed  Google Scholar 

  6. Choi, W. et al. Recent development of two-dimensional transition metal dichalcogenides and their applications. Mater. Today 20, 116–130 (2017).

    Article  CAS  Google Scholar 

  7. Kireev, D. & Offenhäusser, A. Graphene and two-dimensional devices for bioelectronics and neuroprosthetics. 2D Mater. 5, 042004 (2018).

    Article  CAS  Google Scholar 

  8. Lemme, M. C., Akinwande, D., Huyghebaert, C. & Stampfer, C. 2D materials for future heterogeneous electronics. Nat. Commun. 13, 1392 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Wang, Q. H., Kalantar-Zadeh, K., Kis, A., Coleman, J. N. & Strano, M. S. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 7, 699–712 (2012).

    Article  CAS  PubMed  Google Scholar 

  10. Hess, L. H., Seifert, M. & Garrido, J. A. Graphene transistors for bioelectronics. Proc. IEEE 101, 1780–1792 (2013).

    Article  CAS  Google Scholar 

  11. Kuila, T. et al. Recent advances in graphene-based biosensors. Biosens. Bioelectron. 26, 4637–4648 (2011).

    Article  CAS  PubMed  Google Scholar 

  12. Zhang, X. et al. Ultrasensitive field-effect biosensors enabled by the unique electronic properties of graphene. Small 16, 1902820 (2020).

    Article  CAS  Google Scholar 

  13. Chen, F. et al. Structures, properties, and challenges of emerging 2D materials in bioelectronics and biosensors. InfoMat 4, e12299 (2022).

    Article  CAS  Google Scholar 

  14. Savchenko, A., Kireev, D., Yin, R. T., Efimov, I. R. & Molokanova, E. Graphene-based cardiac sensors and actuators. Front. Bioeng. Biotechnol. 11, 1168667 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Kireev, D. et al. Fabrication, characterization and applications of graphene electronic tattoos. Nat. Protoc. 16, 2395–2417 (2021).

    Article  CAS  PubMed  Google Scholar 

  16. Viana, D. et al. Nanoporous graphene-based thin-film microelectrodes for in vivo high-resolution neural recording and stimulation. Nat. Nanotechnol. 19, 514–523 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ramezani, M. et al. High-density transparent graphene arrays for predicting cellular calcium activity at depth from surface potential recordings. Nat. Nanotechnol. 19, 504–513 (2024).

    Article  CAS  PubMed  Google Scholar 

  18. Ku, M. et al. Smart, soft contact lens for wireless immunosensing of cortisol. Sci. Adv. 6, eabb2891 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Lee, Y. et al. Graphene-based stretchable/wearable self-powered touch sensor. Nano Energy 62, 259–267 (2019).

    Article  CAS  Google Scholar 

  20. Choi, C. et al. Curved neuromorphic image sensor array using a MoS2-organic heterostructure inspired by the human visual recognition system. Nat. Commun. 11, 5934 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Park, Y. J. et al. All MoS2-based large area, skin-attachable active-matrix tactile sensor. ACS Nano 13, 3023–3030 (2019).

    Article  CAS  PubMed  Google Scholar 

  22. Choi, C. et al. Human eye-inspired soft optoelectronic device using high-density MoS2-graphene curved image sensor array. Nat. Commun. 8, 1664 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Park, S. et al. Laser-directed synthesis of strain-induced crumpled MoS2 structure for enhanced triboelectrification toward haptic sensors. Nano Energy 78, 105266 (2020).

    Article  CAS  Google Scholar 

  24. Silvestri, A. et al. The era of nano-bionic: 2D materials for wearable and implantable body sensors. Adv. Drug Deliv. Rev. 186, 114315 (2022).

    Article  CAS  PubMed  Google Scholar 

  25. Kireev, D., Kampfe, J., Hall, A. & Akinwande, D. Graphene electronic tattoos 2.0 with enhanced performance, breathability and robustness. npj 2D Mater. Appl. 6, 46 (2022).

    Article  CAS  Google Scholar 

  26. Kireev, D. et al. Continuous cuffless monitoring of arterial blood pressure via graphene bioimpedance tattoos. Nat. Nanotechnol. 17, 864–870 (2022).

    Article  CAS  PubMed  Google Scholar 

  27. Yang, Y. et al. A laser-engraved wearable sensor for sensitive detection of uric acid and tyrosine in sweat. Nat. Biotechnol. 38, 217–224 (2019).

    Article  PubMed  Google Scholar 

  28. Yan, Z. et al. Highly stretchable van der Waals thin films for adaptable and breathable electronic membranes. Science 375, 852–859 (2022).

    Article  CAS  PubMed  Google Scholar 

  29. Gogurla, N., Kim, Y., Cho, S., Kim, J. & Kim, S. Multifunctional and ultrathin electronic tattoo for on‐skin diagnostic and therapeutic applications. Adv. Mater. 33, 2008308 (2021).

    Article  CAS  Google Scholar 

  30. Wang, Q. et al. Self‐healable multifunctional electronic tattoos based on silk and graphene. Adv. Funct. Mater. 29, 1808695 (2019).

    Article  Google Scholar 

  31. Tringides, C. M. et al. Viscoelastic surface electrode arrays to interface with viscoelastic tissues. Nat. Nanotechnol. 16, 1019–1029 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Jang, H., Dai, Z., Ha, K.-H., Ameri, S. K. & Lu, N. Stretchability of PMMA-supported CVD graphene and of its electrical contacts. 2D Mater. 7, 014003 (2019).

    Article  Google Scholar 

  33. Kedambaimoole, V. et al. Reduced graphene oxide tattoo as wearable proximity sensor. Adv. Electron. Mater. 7, 2001214 (2021).

    Article  CAS  Google Scholar 

  34. Son, D. et al. An integrated self-healable electronic skin system fabricated via dynamic reconstruction of a nanostructured conducting network. Nat. Nanotechnol. 13, 1057–1065 (2018).

    Article  CAS  PubMed  Google Scholar 

  35. Torrente-Rodríguez, R. M. et al. Investigation of cortisol dynamics in human sweat using a graphene-based wireless mHealth system. Matter 2, 921–937 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Akinwande, D. & Kireev, D. Wearable graphene sensors use ambient light to monitor health. Nature 576, 220–221 (2019).

    Article  CAS  PubMed  Google Scholar 

  37. Sel, K. et al. Electrical characterization of graphene-based e-tattoos for bio-impedance-based physiological sensing. In 2019 IEEE Biomedical Circuits and Systems Conference (BioCAS) (IEEE, 2019).

  38. Okogbue, E. et al. Multifunctional two-dimensional PtSe2-layer kirigami conductors with 2000% stretchability and metallic-to-semiconducting tunability. Nano Lett. 19, 7598–7607 (2019).

    Article  CAS  PubMed  Google Scholar 

  39. Mondal, S., Kim, S. J. & Choi, C. G. Honeycomb-like MoS2 nanotube array-based wearable sensors for noninvasive detection of human skin moisture. ACS Appl. Mater. Interfaces 12, 17029–17038 (2020).

    Article  CAS  PubMed  Google Scholar 

  40. Kedambaimoole, V. et al. Laser-induced direct patterning of free-standing Ti3C2–MXene films for skin conformal tattoo sensors. ACS Sens. 5, 2086–2095 (2020).

    Article  CAS  PubMed  Google Scholar 

  41. Kireev, D. et al. Multipurpose and reusable ultrathin electronic tattoos based on PtSe2 and PtTe2. ACS Nano 15, 2800–2811 (2021).

    Article  CAS  PubMed  Google Scholar 

  42. Lin, Z. et al. Graphene biointerface for cardiac arrhythmia diagnosis and treatment. Adv. Mater. 35, 2212190 (2023).

    Article  CAS  Google Scholar 

  43. Penev, E. S., Marzari, N. & Yakobson, B. I. Theoretical prediction of two-dimensional materials, behavior, and properties. ACS Nano 15, 5959–5976 (2021).

    Article  CAS  PubMed  Google Scholar 

  44. Novoselov, K. S., Mishchenko, A., Carvalho, A. & Castro Neto, A. H. 2D materials and van der Waals heterostructures. Science 353, aac9439 (2016).

    Article  CAS  PubMed  Google Scholar 

  45. Zhang, L., Dong, J. & Ding, F. Strategies, status, and challenges in wafer scale single crystalline two-dimensional materials synthesis. Chem. Rev. 121, 6321–6372 (2021).

    Article  CAS  PubMed  Google Scholar 

  46. Xu, X. et al. Growth of 2D materials at the wafer scale. Adv. Mater. 34, 2108258 (2022).

    Article  CAS  Google Scholar 

  47. Li, T. et al. Epitaxial growth of wafer-scale molybdenum disulfide semiconductor single crystals on sapphire. Nat. Nanotechnol. 16, 1201–1207 (2021).

    Article  CAS  PubMed  Google Scholar 

  48. Lemme, M. C. & Daus, A. Low-temperature MoS2 growth on CMOS wafers. Nat. Nanotechnol. 18, 446–447 (2023).

    Article  CAS  PubMed  Google Scholar 

  49. Li, J. et al. Wafer-scale single-crystal monolayer graphene grown on sapphire substrate. Nat. Mater. 21, 740–747 (2022).

    Article  CAS  PubMed  Google Scholar 

  50. Kim, H. et al. High-throughput manufacturing of epitaxial membranes from a single wafer by 2D materials-based layer transfer process. Nat. Nanotechnol. 18, 464–470 (2023).

    Article  CAS  PubMed  Google Scholar 

  51. Kim, K. S. et al. Non-epitaxial single-crystal 2D material growth by geometric confinement. Nature 614, 88–94 (2023).

    Article  CAS  PubMed  Google Scholar 

  52. Glavin, N. R. et al. Emerging applications of elemental 2D materials. Adv. Mater. 32, 1904302 (2020).

    Article  CAS  Google Scholar 

  53. Tao, L. et al. Silicene field-effect transistors operating at room temperature. Nat. Nanotechnol. 10, 227–231 (2015).

    Article  CAS  PubMed  Google Scholar 

  54. Mannix, A. J. et al. Synthesis of borophenes: anisotropic, two-dimensional boron polymorphs. Science 350, 1513–1516 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. De Padova, P. et al. Germanene: a novel two-dimensional germanium allotrope akin to graphene and silicene. N. J. Phys. 16, 095002 (2014).

    Article  Google Scholar 

  56. Zhu, F. F. et al. Epitaxial growth of two-dimensional stanene. Nat. Mater. 14, 1020–1025 (2015).

    Article  CAS  PubMed  Google Scholar 

  57. Liu, H. et al. Phosphorene: an unexplored 2D semiconductor with a high hole mobility. ACS Nano 8, 4033–4041 (2014).

    Article  CAS  PubMed  Google Scholar 

  58. Zhang, S., Yan, Z., Li, Y., Chen, Z. & Zeng, H. Atomically thin arsenene and antimonene: semimetal–semiconductor and indirect–direct band-gap transitions. Angew. Chem. Int. Ed. Engl. 54, 3112–3115 (2015).

    Article  CAS  PubMed  Google Scholar 

  59. Watanabe, K., Taniguchi, T. & Kanda, H. Direct-bandgap properties and evidence for ultraviolet lasing of hexagonal boron nitride single crystal. Nat. Mater. 3, 404–409 (2004).

    Article  CAS  PubMed  Google Scholar 

  60. Manzeli, S., Ovchinnikov, D., Pasquier, D., Yazyev, O. V. & Kis, A. 2D transition metal dichalcogenides. Nat. Rev. Mater. 2, 17033 (2017).

    Article  CAS  Google Scholar 

  61. Mak, K. F., Lee, C., Hone, J., Shan, J. & Heinz, T. F. Atomically thin MoS2: a new direct-gap semiconductor. Phys. Rev. Lett. 105, 136805 (2010).

    Article  PubMed  Google Scholar 

  62. Zhao, W. et al. Evolution of electronic structure in atomically thin sheets of WS2 and WSe2. ACS Nano 7, 791–797 (2013).

    Article  CAS  PubMed  Google Scholar 

  63. Kong, D. et al. Synthesis of MoS2 and MoSe2 films with vertically aligned layers. Nano Lett. 13, 1341–1347 (2013).

    Article  CAS  PubMed  Google Scholar 

  64. Bandurin, D. A. et al. High electron mobility, quantum Hall effect and anomalous optical response in atomically thin InSe. Nat. Nanotechnol. 11, 223–227 (2016).

    Google Scholar 

  65. Wang, Y. et al. Monolayer PtSe2, a new semiconducting transition-metal-dichalcogenide, epitaxially grown by direct selenization of Pt. Nano Lett. 15, 4013–4018 (2015).

    Article  CAS  PubMed  Google Scholar 

  66. Ma, H. et al. Thickness-tunable synthesis of ultrathin type-II Dirac semimetal PtTe2 single crystals and their thickness-dependent electronic properties. Nano Lett. 18, 3523–3529 (2018).

    Article  CAS  PubMed  Google Scholar 

  67. Anasori, B. & Gogotsi, Y. The global expansion of MXenes. Graphene 2D Mater. 8, 39–41 (2023).

    Article  Google Scholar 

  68. Gogotsi, Y. The future of MXenes. Chem. Mater. 35, 8767–8770 (2023).

    Article  CAS  Google Scholar 

  69. Zhang, T., Shuck, C. E., Shevchuk, K., Anayee, M. & Gogotsi, Y. Synthesis of three families of titanium carbonitride MXenes. J. Am. Chem. Soc. 145, 22374–22383 (2023).

    Article  CAS  PubMed  Google Scholar 

  70. Lim, K. R. G. et al. Fundamentals of MXene synthesis. Nat. Synth. 1, 601–614 (2022).

    Article  Google Scholar 

  71. Khazaei, M., Ranjbar, A., Arai, M., Sasaki, T. & Yunoki, S. Electronic properties and applications of MXenes: a theoretical review. J. Mater. Chem. C Mater. 5, 2488–2503 (2017).

    Article  CAS  Google Scholar 

  72. Li, N. et al. MXenes: an emerging platform for wearable electronics and looking beyond. Matter 4, 377–407 (2021).

    Article  CAS  Google Scholar 

  73. Garg, R. & Vitale, F. Latest advances on MXenes in biomedical research and health care. MRS Bull. 48, 283–290 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Amara, U. et al. 2D MXene-based biosensing: a review. Small 19, 2205249 (2023).

    Article  CAS  Google Scholar 

  75. Rhazouani, A. et al. Synthesis and toxicity of graphene oxide nanoparticles: a literature review of in vitro and in vivo studies. Biomed. Res. Int. 2021, 5518999 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  76. Ou, L. et al. Toxicity of graphene-family nanoparticles: a general review of the origins and mechanisms. Part. Fibre Toxicol. 13, 57 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  77. Illarionov, Y. Y. et al. Insulators for 2D nanoelectronics: the gap to bridge. Nat. Commun. 11, 3385 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Novoselov, K. S. et al. Two-dimensional gas of massless Dirac fermions in graphene. Nature 438, 197–200 (2005).

    Article  CAS  PubMed  Google Scholar 

  79. Young, S. M. & Kane, C. L. Dirac semimetals in two dimensions. Phys. Rev. Lett. 115, 126803 (2015).

    Article  PubMed  Google Scholar 

  80. Akinwande, D. et al. Graphene and two-dimensional materials for silicon technology. Nature 2019, 507–518 (2019).

    Article  Google Scholar 

  81. Huang, H. et al. Graphene-based sensors for human health monitoring. Front. Chem. 7, 399 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Pang, Y., Yang, Z., Yang, Y. & Ren, T. L. Wearable electronics based on 2D materials for human physiological information detection. Small 16, 1901124 (2020).

    Article  CAS  Google Scholar 

  83. Lin, Z., Huang, Y. & Duan, X. Van der Waals thin-film electronics. Nat. Electron. 2, 378–388 (2019).

    Article  Google Scholar 

  84. Wang, M., Yang, Y. & Gao, W. Laser-engraved graphene for flexible and wearable electronics. Trends Chem. 3, 969–981 (2021).

    Article  CAS  Google Scholar 

  85. Kim, J. et al. 2D materials for skin-mountable electronic devices. Adv. Mater. 33, 2005858 (2021).

    Article  CAS  Google Scholar 

  86. Kostarelos, K., Aguilar, C. & Garrido, J. A. Clinical translation of graphene-based medical technology. Nat. Rev. Electr. Eng. 1, 75–76 (2024).

    Article  Google Scholar 

  87. Castro Neto, A. H., Guinea, F., Peres, N. M. R., Novoselov, K. S. & Geim, A. K. The electronic properties of graphene. Rev. Mod. Phys. 81, 109–162 (2009).

    Article  CAS  Google Scholar 

  88. Moon, H. et al. Strong thermopower enhancement and tunable power factor via semimetal to semiconductor transition in a transition-metal dichalcogenide. ACS Nano 13, 13317–13324 (2019).

    Article  CAS  PubMed  Google Scholar 

  89. Ciarrocchi, A., Avsar, A., Ovchinnikov, D. & Kis, A. Thickness-modulated metal-to-semiconductor transformation in a transition metal dichalcogenide. Nat. Commun. 9, 919 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  90. Lebègue, S. & Eriksson, O. Electronic structure of two-dimensional crystals from ab initio theory. Phys. Rev. B Condens. Matter Mater. Phys. 79, 115409 (2009).

    Article  Google Scholar 

  91. Li, L. et al. Black phosphorus field-effect transistors. Nat. Nanotechnol. 9, 372–377 (2014).

    Article  CAS  PubMed  Google Scholar 

  92. Li, L. et al. Direct observation of the layer-dependent electronic structure in phosphorene. Nat. Nanotechnol. 11, 21–25 (2016).

    Google Scholar 

  93. Carvalho, A. et al. Phosphorene: from theory to applications. Nat. Rev. Mater. 1, 16061 (2016).

    Article  CAS  Google Scholar 

  94. Wang, Z. Q., Lü, T. Y., Wang, H. Q., Feng, Y. P. & Zheng, J. C. Review of borophene and its potential applications. Front. Phys. 14, 33403 (2019).

    Article  Google Scholar 

  95. Das, S. et al. Transistors based on two-dimensional materials for future integrated circuits. Nat. Electron. 4, 786–799 (2021).

    Article  CAS  Google Scholar 

  96. Zhu, K. et al. The development of integrated circuits based on two-dimensional materials. Nat. Electron. 4, 775–785 (2021).

    Article  CAS  Google Scholar 

  97. Krishnaprasad, A. et al. MoS2 synapses with ultra-low variability and their implementation in Boolean logic. ACS Nano 16, 2866–2876 (2022).

    Article  CAS  PubMed  Google Scholar 

  98. Wang, S., Liu, X. & Zhou, P. The road for 2D semiconductors in the silicon age. Adv. Mater. 34, 2106886 (2022).

    Article  CAS  Google Scholar 

  99. Wang, X. et al. Pass-transistor logic circuits based on wafer-scale 2D semiconductors. Adv. Mater. 34, 2202472 (2022).

    Article  CAS  Google Scholar 

  100. Wachter, S., Polyushkin, D. K., Bethge, O. & Mueller, T. A microprocessor based on a two-dimensional semiconductor. Nat. Commun. 8, 14948 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Hong, S. et al. Highly sensitive active pixel image sensor array driven by large-area bilayer MoS2 transistor circuitry. Nat. Commun. 12, 3559 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Chou, A. S. et al. High-performance monolayer WSe2 p/n FETs via antimony-platinum modulated contact technology towards 2D CMOS electronics. In Technical DigestInternational Electron Devices Meeting (IEDM) (2022).

  103. Sebastian, A., Pendurthi, R., Choudhury, T. H., Redwing, J. M. & Das, S. Benchmarking monolayer MoS2 and WS2 field-effect transistors. Nat. Commun. 12, 693 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Chang, Y. Y., Han, H. N. & Kim, M. Analyzing the microstructure and related properties of 2D materials by transmission electron microscopy. Appl. Microsc. 49, 10 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  105. Yan, J. et al. Construction of electrochemical biosensors based on MoSe2@1T-MoS2 heterojunction for the sensitive and rapid detection of miRNA-155 biomarker in breast cancer. Bioelectrochemistry 154, 108541 (2023).

    Article  CAS  PubMed  Google Scholar 

  106. Lacour, S. P., Courtine, G. & Guck, J. Materials and technologies for soft implantable neuroprostheses. Nat. Rev. Mater. 1, 16063 (2016).

    Article  CAS  Google Scholar 

  107. Akinwande, D. et al. A review on mechanics and mechanical properties of 2D materials — graphene and beyond. Extrem. Mech. Lett. 13, 42–77 (2017).

    Article  Google Scholar 

  108. Peng, Z., Chen, X., Fan, Y., Srolovitz, D. J. & Lei, D. Strain engineering of 2D semiconductors and graphene: from strain fields to band-structure tuning and photonic applications. Light Sci. Appl. 9, 190 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Chen, X., Yi, C. & Ke, C. Bending stiffness and interlayer shear modulus of few-layer graphene. Appl. Phys. Lett. 106, 101907 (2015).

    Article  Google Scholar 

  110. Rejhon, M. et al. Relation between interfacial shear and friction force in 2D materials. Nat. Nanotechnol. 17, 1280–1287 (2022).

    Article  CAS  PubMed  Google Scholar 

  111. Gao, Y. et al. Ultrahard carbon film from epitaxial two-layer graphene. Nat. Nanotechnol. 13, 133–138 (2017).

    Article  PubMed  Google Scholar 

  112. Wilson, M. N. et al. Multimodal monitoring of human cortical organoids implanted in mice reveal functional connection with visual cortex. Nat. Commun. 13, 7945 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Sunwoo, S. H., Ha, K. H., Lee, S., Lu, N. & Kim, D. H. Wearable and implantable soft bioelectronics: device designs and material strategies. Annu. Rev. Chem. Biomol. Eng. 12, 359–391 (2021).

    Article  CAS  PubMed  Google Scholar 

  114. Kabiri Ameri, S. et al. Graphene electronic tattoo sensors. ACS Nano 11, 7634–7641 (2017).

    Article  CAS  PubMed  Google Scholar 

  115. Jeong, J. W. et al. Materials and optimized designs for human-machine interfaces via epidermal electronics. Adv. Mater. 25, 6839–6846 (2013).

    Article  CAS  PubMed  Google Scholar 

  116. Huang, Z. et al. Three-dimensional integrated stretchable electronics. Nat. Electron. 1, 473–480 (2018).

    Article  Google Scholar 

  117. Bonaccorso, F., Sun, Z., Hasan, T. & Ferrari, A. C. Graphene photonics and optoelectronics. Nat. Photonics 4, 611–622 (2010).

    Article  CAS  Google Scholar 

  118. Bae, S. et al. Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat. Nanotechnol. 5, 574–578 (2010).

    Article  CAS  PubMed  Google Scholar 

  119. Kuzum, D. et al. Transparent and flexible low noise graphene electrodes for simultaneous electrophysiology and neuroimaging. Nat. Commun. 5, 5259 (2014).

    Article  CAS  PubMed  Google Scholar 

  120. Park, D. W. et al. Graphene-based carbon-layered electrode array technology for neural imaging and optogenetic applications. Nat. Commun. 5, 5258 (2014).

    Article  CAS  PubMed  Google Scholar 

  121. Lopez-Sanchez, O. et al. Light generation and harvesting in a van der Waals heterostructure. ACS Nano 8, 3042–3048 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Shin, G. H., Park, C., Lee, K. J., Jin, H. J. & Choi, S. Y. Ultrasensitive phototransistor based on WSe2-MoS2 van der Waals heterojunction. Nano Lett. 20, 5741–5748 (2020).

    Article  CAS  PubMed  Google Scholar 

  123. Withers, F. et al. Light-emitting diodes by band-structure engineering in van der Waals heterostructures. Nat. Mater. 14, 301–306 (2015).

    Article  CAS  PubMed  Google Scholar 

  124. Pang, J. et al. Applications of phosphorene and black phosphorus in energy conversion and storage devices. Adv. Energy Mater. 8, 1702093 (2018).

    Article  Google Scholar 

  125. Choi, M. et al. Full-color active-matrix organic light-emitting diode display on human skin based on a large-area MoS2 backplane. Sci. Adv. 6, eabb5898 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Zhou, H. et al. Graphene-based intrinsically stretchable 2D-contact electrodes for highly efficient organic light-emitting diodes. Adv. Mater. 34, 2203040 (2022).

    Article  CAS  Google Scholar 

  127. Hao Lee, M., Wu, W., Lee, M. H. & Wu, W. 2D materials for wearable energy harvesting. Adv. Mater. Technol. 7, 2101623 (2022).

    Article  Google Scholar 

  128. Abnavi, A. et al. Flexible high-performance photovoltaic devices based on 2D MoS2 diodes with geometrically asymmetric contact areas. Adv. Funct. Mater. 33, 2210619 (2023).

    Article  CAS  Google Scholar 

  129. Mary Francis, B. et al. Recent developments in 2D materials for energy harvesting applications. J. Phys. Energy 5, 032001 (2023).

    Article  Google Scholar 

  130. Yi, F. et al. Wearable energy sources based on 2D materials. Chem. Soc. Rev. 47, 3152–3188 (2018).

    Article  CAS  PubMed  Google Scholar 

  131. Kizhepat, S., Rasal, A. S., Chang, J. Y. & Wu, H. F. Development of two-dimensional functional nanomaterials for biosensor applications: opportunities, challenges, and future prospects. Nanomaterials 13, 1520 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Bolotsky, A. et al. Two-dimensional materials in biosensing and healthcare: from in vitro diagnostics to optogenetics and beyond. ACS Nano 13, 9781–9810 (2019).

    Article  CAS  PubMed  Google Scholar 

  133. Conti, S. et al. Printed transistors made of 2D material-based inks. Nat. Rev. Mater. 8, 651–667 (2023).

    Article  Google Scholar 

  134. Minemawari, H. et al. Inkjet printing of single-crystal films. Nature 475, 364–367 (2011).

    Article  CAS  PubMed  Google Scholar 

  135. Kaliyaraj Selva Kumar, A., Zhang, Y., Li, D. & Compton, R. G. A mini-review: how reliable is the drop casting technique? Electrochem. Commun. 121, 106867 (2020).

    Article  CAS  Google Scholar 

  136. Katiyar, A. K. et al. 2D materials in flexible electronics: recent advances and future prospectives. Chem. Rev. 124, 318–419 (2024).

    Article  CAS  PubMed  Google Scholar 

  137. Ma, T. et al. Tailoring the thermal and electrical transport properties of graphene films by grain size engineering. Nat. Commun. 8, 14486 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Wang, Q. et al. Atomic-scale engineering of chemical-vapor-deposition-grown 2D transition metal dichalcogenides for electrocatalysis. Energy Environ. Sci. 13, 1593–1616 (2020).

    Article  CAS  Google Scholar 

  139. Yang, L. et al. Chloride molecular doping technique on 2D materials: WS2 and MoS2. Nano Lett. 14, 6275–6280 (2014).

    Article  CAS  PubMed  Google Scholar 

  140. Zhang, K. et al. Manganese doping of monolayer MoS2: the substrate is critical. Nano Lett. 15, 6586–6591 (2015).

    Article  CAS  PubMed  Google Scholar 

  141. Lei, Y. et al. Single-atom doping of MoS2 with manganese enables ultrasensitive detection of dopamine: experimental and computational approach. Sci. Adv. 6, 4250–4257 (2020).

    Article  Google Scholar 

  142. Bahri, M. et al. Tungsten disulfide nanosheet-based field-effect transistor biosensor for DNA hybridization detection. ACS Appl. Nano Mater. 5, 5035–5044 (2022).

    Article  CAS  Google Scholar 

  143. Briggs, N. et al. A roadmap for electronic grade 2D materials. 2D Mater. 6, 022001 (2019).

    Article  CAS  Google Scholar 

  144. Lin, L. et al. Towards super-clean graphene. Nat. Commun. 10, 1912 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  145. Qing, F. et al. Towards large-scale graphene transfer. Nanoscale 12, 10890–10911 (2020).

    Article  CAS  PubMed  Google Scholar 

  146. Khatib, M. et al. Spiral neurostring: high-density soft bioelectronic fibers for multimodal sensing and stimulation. Preprint at bioRxiv https://doi.org/10.1101/2023.10.02.560482 (2023).

  147. Lin, M., Hu, H., Zhou, S. & Xu, S. Soft wearable devices for deep-tissue sensing. Nat. Rev. Mater. 7, 850–869 (2022).

    Article  Google Scholar 

  148. Hu, L. et al. Smart electronics based on 2D materials for wireless healthcare monitoring. Appl. Phys. Rev. 9, 041308 (2022).

    Article  CAS  Google Scholar 

  149. Kwon, Y. T. et al. Printed, wireless, soft bioelectronics and deep learning algorithm for smart human-machine interfaces. ACS Appl. Mater. Interfaces 12, 49398–49406 (2020).

    Article  CAS  PubMed  Google Scholar 

  150. Luo, Y. et al. Technology roadmap for flexible sensors. ACS Nano 17, 5211–5295 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Yang, H., Xue, T., Li, F., Liu, W. & Song, Y. Graphene: diversified flexible 2D material for wearable vital signs monitoring. Adv. Mater. Technol. 4, 1800574 (2019).

    Article  Google Scholar 

  152. Gao, W., Ota, H., Kiriya, D., Takei, K. & Javey, A. Flexible electronics toward wearable sensing. Acc. Chem. Res. 52, 523–533 (2019).

    Article  CAS  PubMed  Google Scholar 

  153. Iqbal, S. M. A., Mahgoub, I., Du, E., Leavitt, M. A. & Asghar, W. Advances in healthcare wearable devices. npj Flex. Electron. 5, 9 (2021).

    Article  Google Scholar 

  154. Choi, C., Lee, Y., Cho, K. W., Koo, J. H. & Kim, D. H. Wearable and implantable soft bioelectronics using two-dimensional materials. Acc. Chem. Res. 52, 73–81 (2019).

    Article  CAS  PubMed  Google Scholar 

  155. Ameri, S. K. et al. Imperceptible electrooculography graphene sensor system for human–robot interface. npj 2D Mater. Appl. 2, 19 (2018).

    Article  Google Scholar 

  156. Trung, T. Q., Ramasundaram, S., Hwang, B. U. & Lee, N. E. An all-elastomeric transparent and stretchable temperature sensor for body-attachable wearable electronics. Adv. Mater. 28, 502–509 (2016).

    Article  CAS  PubMed  Google Scholar 

  157. Kwon, Y. T. et al. All-printed nanomembrane wireless bioelectronics using a biocompatible solderable graphene for multimodal human-machine interfaces. Nat. Commun. 11, 3450 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Lim, H. R. et al. Advanced soft materials, sensor integrations, and applications of wearable flexible hybrid electronics in healthcare, energy, and environment. Adv. Mater. 32, 1901924 (2020).

    Article  CAS  Google Scholar 

  159. Bhattacharya, S. et al. A chest-conformable, wireless electro-mechanical e-tattoo for measuring multiple cardiac time intervals. Adv. Electron. Mater. 9, 2201284 (2023).

    Article  CAS  Google Scholar 

  160. Shimura, T. et al. A high-resolution, transparent, and stretchable polymer conductor for wearable sensor arrays. Adv. Mater. Technol. 8, 2201992 (2023).

    Article  CAS  Google Scholar 

  161. Yang, H. et al. Topographic design in wearable MXene sensors with in-sensor machine learning for full-body avatar reconstruction. Nat. Commun. 13, 5311 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Park, M. et al. MoS2-based tactile sensor for electronic skin applications. Adv. Mater. 28, 2556–2562 (2016).

    Article  CAS  PubMed  Google Scholar 

  163. Ma, Y. et al. A highly flexible and sensitive piezoresistive sensor based on MXene with greatly changed interlayer distances. Nat. Commun. 8, 1207 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  164. Lee, H. et al. A graphene-based electrochemical device with thermoresponsive microneedles for diabetes monitoring and therapy. Nat. Nanotechnol. 11, 566–572 (2016).

    Article  PubMed  Google Scholar 

  165. Kim, J. et al. Wearable smart sensor systems integrated on soft contact lenses for wireless ocular diagnostics. Nat. Commun. 8, 14997 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  166. Guo, H. et al. Transparent, flexible, and stretchable WS2 based humidity sensors for electronic skin. Nanoscale 9, 6246–6253 (2017).

    Article  CAS  PubMed  Google Scholar 

  167. Polat, E. O. et al. Flexible graphene photodetectors for wearable fitness monitoring. Sci. Adv. 5, eaaw7846 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Lim, J. et al. Hybrid graphene electrode for the diagnosis and treatment of epilepsy in free-moving animal models. NPG Asia Mater. 15, 7 (2023).

    Article  Google Scholar 

  169. Kwon, S. J. et al. Extremely stable graphene electrodes doped with macromolecular acid. Nat. Commun. 9, 2037 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  170. Jang, H. et al. Graphene e-tattoos for unobstructive ambulatory electrodermal activity sensing on the palm enabled by heterogeneous serpentine ribbons. Nat. Commun. 13, 6604 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Ziȩba, W. et al. High-surface-area graphene oxide for next-generation energy storage applications. ACS Appl. Nano Mater. 5, 18448–18461 (2022).

    Article  Google Scholar 

  172. Shao, Y., Wang, H., Zhang, Q. & Li, Y. Fabrication of large-area and high-crystallinity photoreduced graphene oxide films via reconstructed two-dimensional multilayer structures. NPG Asia Mater. 6, e119 (2014).

    Article  CAS  Google Scholar 

  173. De Silva, T. et al. Ultrasensitive rapid cytokine sensors based on asymmetric geometry two-dimensional MoS2 diodes. Nat. Commun. 13, 7593 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  174. Lopez-Sanchez, O., Lembke, D., Kayci, M., Radenovic, A. & Kis, A. Ultrasensitive photodetectors based on monolayer MoS2. Nat. Nanotechnol. 8, 497–501 (2013).

    Article  CAS  PubMed  Google Scholar 

  175. Thai, K. Y. et al. MoS2/graphene photodetector array with strain-modulated photoresponse up to the near-infrared regime. ACS Nano 15, 12836–12846 (2021).

    Article  CAS  PubMed  Google Scholar 

  176. Nur, R. et al. High responsivity in MoS2 phototransistors based on charge trapping HfO2 dielectrics. Commun. Mater. 1, 103 (2020).

    Article  Google Scholar 

  177. Liao, F. et al. Bioinspired in-sensor visual adaptation for accurate perception. Nat. Electron. 5, 84–91 (2022).

    Article  Google Scholar 

  178. Kang, M. et al. Wireless graphene-based thermal patch for obtaining temperature distribution and performing thermography. Sci. Adv. 8, 6693 (2022).

    Article  Google Scholar 

  179. Zhou, J. et al. Multiscale and hierarchical wrinkle enhanced graphene/Ecoflex sensors integrated with human-machine interfaces and cloud-platform. npj Flex. Electron. 6, 55 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  180. Yan, W. et al. Giant gauge factor of van der Waals material based strain sensors. Nat. Commun. 12, 2018 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Qiu, D., Chu, Y., Zeng, H., Xu, H. & Dan, G. Stretchable MoS2 electromechanical sensors with ultrahigh sensitivity and large detection range for skin-on monitoring. ACS Appl. Mater. Interfaces 11, 37035–37042 (2019).

    Article  CAS  PubMed  Google Scholar 

  182. Lipani, L. et al. Non-invasive, transdermal, path-selective and specific glucose monitoring via a graphene-based platform. Nat. Nanotechnol. 13, 504–511 (2018).

    Article  CAS  PubMed  Google Scholar 

  183. Mannoor, M. S. et al. Graphene-based wireless bacteria detection on tooth enamel. Nat. Commun. 3, 763 (2012).

    Article  PubMed  Google Scholar 

  184. Yin, R. et al. Soft transparent graphene contact lens electrodes for conformal full-cornea recording of electroretinogram. Nat. Commun. 9, 2334 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  185. Koppens, F. H. L. et al. Photodetectors based on graphene, other two-dimensional materials and hybrid systems. Nat. Nanotechnol. 9, 780–793 (2014).

    Article  CAS  PubMed  Google Scholar 

  186. Xia, F., Mueller, T., Lin, Y. M., Valdes-Garcia, A. & Avouris, P. Ultrafast graphene photodetector. Nat. Nanotechnol. 4, 839–843 (2009).

    Article  CAS  PubMed  Google Scholar 

  187. Mueller, T., Xia, F. & Avouris, P. Graphene photodetectors for high-speed optical communications. Nat. Photonics 4, 297–301 (2010).

    Article  CAS  Google Scholar 

  188. De Sanctis, A. et al. Extraordinary linear dynamic range in laser-defined functionalized graphene photodetectors. Sci. Adv. 3, e1602617 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  189. Cohen-Karni, T., Qing, Q., Li, Q., Fang, Y. & Lieber, C. M. Graphene and nanowire transistors for cellular interfaces and electrical recording. Nano Lett. 10, 1098–1102 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Chen, C. H. et al. A graphene-based microelectrode for recording neural signals. In 16th International Solid-State Sensors, Actuators and Microsystems Conference, TRANSDUCERS’11 1883–1886 (IEEE, 2011).

  191. Hess, L. H. et al. Graphene transistor arrays for recording action potentials from electrogenic cells. Adv. Mater. 23, 5045–5049 (2011).

    Article  CAS  PubMed  Google Scholar 

  192. Lu, Y. et al. Ultralow impedance graphene microelectrodes with high optical transparency for simultaneous deep two-photon imaging in transgenic mice. Adv. Funct. Mater. 28, 1800002 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  193. Lee, J. M. et al. The ultra-thin, minimally invasive surface electrode array NeuroWeb for probing neural activity. Nat. Commun. 14, 7088 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Fromherz, P. Extracellular recording with transistors and the distribution of ionic conductances in a cell membrane. Eur. Biophys. J. 28, 254–258 (1999).

    Article  CAS  PubMed  Google Scholar 

  195. Hébert, C. et al. Flexible graphene solution-gated field-effect transistors: efficient transducers for micro-electrocorticography. Adv. Funct. Mater. 28, 1703976 (2018).

    Article  Google Scholar 

  196. Garcia-Cortadella, R. et al. Graphene active sensor arrays for long-term and wireless mapping of wide frequency band epicortical brain activity. Nat. Commun. 12, 211 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Garcia-Cortadella, R. et al. Switchless multiplexing of graphene active sensor arrays for brain mapping. Nano Lett. 20, 3528–3537 (2020).

    Article  CAS  PubMed  Google Scholar 

  198. Bonaccini Calia, A. et al. Full-bandwidth electrophysiology of seizures and epileptiform activity enabled by flexible graphene microtransistor depth neural probes. Nat. Nanotechnol. 17, 301–309 (2021).

    Article  PubMed  Google Scholar 

  199. Liu, X. et al. E-Cannula reveals anatomical diversity in sharp-wave ripples as a driver for the recruitment of distinct hippocampal assemblies. Cell Rep. 41, 111453 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Quadrato, G. et al. Cell diversity and network dynamics in photosensitive human brain organoids. Nature 545, 48–53 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Di Lullo, E. & Kriegstein, A. R. The use of brain organoids to investigate neural development and disease. Nat. Rev. Neurosci. 18, 573–584 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  202. Gordon, A. et al. Long-term maturation of human cortical organoids matches key early postnatal transitions. Nat. Neurosci. 24, 331–342 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Karzbrun, E., Kshirsagar, A., Cohen, S. R., Hanna, J. H. & Reiner, O. Human brain organoids on a chip reveal the physics of folding. Nat. Phys. 14, 515–522 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Lancaster, M. A. et al. Guided self-organization and cortical plate formation in human brain organoids. Nat. Biotechnol. 35, 659–666 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Krencik, R. et al. Systematic three-dimensional coculture rapidly recapitulates interactions between human neurons and astrocytes. Stem Cell Rep. 9, 1745–1753 (2017).

    Article  CAS  Google Scholar 

  206. Trujillo, C. A. & Muotri, A. R. Brain organoids and the study of neurodevelopment. Trends Mol. Med. 24, 982–990 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Trujillo, C. A. et al. Complex oscillatory waves emerging from cortical organoids model early human brain network development. Cell Stem Cell 25, 558–569.e7 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Park, Y. et al. Three-dimensional, multifunctional neural interfaces for cortical spheroids and engineered assembloids. Sci. Adv. 7, 9153–9170 (2021).

    Article  Google Scholar 

  209. Yang, X. et al. Kirigami electronics for long-term electrophysiological recording of human neural organoids and assembloids. Nat. Biotechnol. https://doi.org/10.1038/s41587-023-02081-3 (2024).

  210. Wilson, M. N. et al. Investigation of functional integration of cortical organoids transplanted in vivo towards future neural prosthetics applications. In International IEEE/EMBS Conference on Neural Engineering, NER 2023-April (2023).

  211. Ding, D. et al. Evaluation of durability of transparent graphene electrodes fabricated on different flexible substrates for chronic in vivo experiments. IEEE Trans. Biomed. Eng. 67, 3203–3210 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  212. Gao, H. et al. Graphene-integrated mesh electronics with converged multifunctionality for tracking multimodal excitation-contraction dynamics in cardiac microtissues. Nat. Commun. 15, 2321 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Hong, G., Yang, X., Zhou, T. & Lieber, C. M. Mesh electronics: a new paradigm for tissue-like brain probes. Curr. Opin. Neurobiol. 50, 33–41 (2018).

    Article  CAS  PubMed  Google Scholar 

  214. Zhang, A., Lee, J. H. & Lieber, C. M. Nanowire-enabled bioelectronics. Nano Today 38, 101135 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Schuhmann, T. G. et al. Syringe-injectable mesh electronics for stable chronic rodent electrophysiology. JoVE https://doi.org/10.3791/58003 (2018).

  216. Kim, S. et al. Magnetic manipulation of locomotive liquid electrodes for wireless active cardiac monitoring. ACS Appl. Mater. Interfaces 15, 28954–28963 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  217. Reichert, W. M. (ed.) Indwelling Neural Implants: Strategies for Contending with the In Vivo Environment (CRC Press, 2007).

  218. Wu, T. et al. Fast growth of inch-sized single-crystalline graphene from a controlled single nucleus on Cu–Ni alloys. Nat. Mater. 15, 43–47 (2015).

    Article  PubMed  Google Scholar 

  219. Geim, A. K. & Grigorieva, I. V. Van der Waals heterostructures. Nature 499, 419–425 (2013).

    Article  CAS  PubMed  Google Scholar 

  220. Castellanos-Gomez, A. et al. Van der Waals heterostructures. Nat. Rev. Methods Primers 2, 58 (2022).

    Article  CAS  Google Scholar 

  221. Kang, J. H. et al. Monolithic 3D integration of 2D materials-based electronics towards ultimate edge computing solutions. Nat. Mater. 22, 1470–1477 (2023).

    Article  CAS  PubMed  Google Scholar 

  222. Hoang, A. T. et al. Low-temperature growth of MoS2 on polymer and thin glass substrates for flexible electronics. Nat. Nanotechnol. 18, 1439–1447 (2023).

    Article  CAS  PubMed  Google Scholar 

  223. Bendali, A. et al. Purified neurons can survive on peptide-free graphene layers. Adv. Healthc. Mater. 2, 929–933 (2013).

    Article  CAS  PubMed  Google Scholar 

  224. Pampaloni, N. P. et al. Single-layer graphene modulates neuronal communication and augments membrane ion currents. Nat. Nanotechnol. 13, 755–764 (2018).

    Article  CAS  PubMed  Google Scholar 

  225. Fabbro, A. et al. Graphene-based interfaces do not alter target nerve cells. ACS Nano 10, 615–623 (2016).

    Article  CAS  PubMed  Google Scholar 

  226. Pinto, A. M., Gonçalves, I. C. & Magalhães, F. D. Graphene-based materials biocompatibility: a review. Colloids Surf. B Biointerfaces 111, 188–202 (2013).

    Article  CAS  PubMed  Google Scholar 

  227. Vranic, S. et al. Live imaging of label-free graphene oxide reveals critical factors causing oxidative-stress-mediated cellular responses. ACS Nano 12, 1373–1389 (2018).

    Article  CAS  PubMed  Google Scholar 

  228. Rodrigues, A. F. et al. Immunological impact of graphene oxide sheets in the abdominal cavity is governed by surface reactivity. Arch. Toxicol. 92, 3359–3379 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  229. Andrews, J. P. M. et al. First-in-human controlled inhalation of thin graphene oxide nanosheets to study acute cardiorespiratory responses. Nat. Nanotechnol. 19, 705–714 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  230. Bullock, C. J. & Bussy, C. Biocompatibility considerations in the design of graphene biomedical materials. Adv. Mater. Interfaces 6, 1900229 (2019).

    Article  Google Scholar 

  231. Bianco, A. et al. All in the graphene family — a recommended nomenclature for two-dimensional carbon materials. Carbon N. Y. 65, 1–6 (2013).

    Article  CAS  Google Scholar 

  232. ISO 10993-1:2018 — Biological evaluation of medical devices — part 1: evaluation and testing within a risk management process. International Organization for Standardization https://www.iso.org/standard/68936.html (ISO, 2018).

  233. Wang, T., Park, M., Yu, Q., Zhang, J. & Yang, Y. Stability and synthesis of 2D metals and alloys: a review. Mater. Today Adv. 8, 100092 (2020).

    Article  Google Scholar 

  234. Longo, R. C. et al. Intrinsic air stability mechanisms of two-dimensional transition metal dichalcogenide surfaces: basal versus edge oxidation. 2D Mater. 4, 025050 (2017).

    Article  Google Scholar 

  235. Tang, Q. & Jiang, D. E. Stabilization and band-gap tuning of the 1T-MoS2 monolayer by covalent functionalization. Chem. Mater. 27, 3743–3748 (2015).

    Article  CAS  Google Scholar 

  236. Huo, Z., Wei, Y., Wang, Y., Wang, Z. L. & Sun, Q. Integrated self-powered sensors based on 2D material devices. Adv. Funct. Mater. 32, 2206900 (2022).

    Article  CAS  Google Scholar 

  237. Ghosh, S. K. & Mandal, D. in 2D Nanomaterials for Energy Applications: Graphene and Beyond (ed. Zafeiratos, S.) 1–38 (2020).

  238. Tantis, I. et al. Non-van der Waals 2D materials for electrochemical energy storage. Adv. Funct. Mater. 33, 2209360 (2023).

    Article  CAS  Google Scholar 

  239. Zhu, J. et al. Progress in TENG technology — a journey from energy harvesting to nanoenergy and nanosystem. EcoMat 2, e12058 (2020).

    Article  CAS  Google Scholar 

  240. Gao, W., Wang, Y., Lai, F., Paulson, J. A. & Feili Lai, C. Thermoelectric energy harvesting for personalized healthcare. Smart Med. 1, e20220016 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  241. Xiao, X. The direct use of enzymatic biofuel cells as functional bioelectronics. eScience 2, 1–9 (2022).

    Article  Google Scholar 

  242. Jeerapan, I., Sempionatto, J. R. & Wang, J. On-body bioelectronics: wearable biofuel cells for bioenergy harvesting and self-powered biosensing. Adv. Funct. Mater. 30, 1906243 (2020).

    Article  CAS  Google Scholar 

  243. Song, Y., Mukasa, D., Zhang, H. & Gao, W. Self-powered wearable biosensors. Acc. Mater. Res. 2, 184–197 (2021).

    Article  CAS  Google Scholar 

  244. Wang, H. et al. Bilayer of polyelectrolyte films for spontaneous power generation in air up to an integrated 1,000 V output. Nat. Nanotechnol. 16, 811–819 (2021).

    Article  CAS  PubMed  Google Scholar 

  245. Bhatnagar, P., Patel, M., Nguyen, T. T., Kim, S. & Kim, J. Transparent photovoltaics for self-powered bioelectronics and neuromorphic applications. J. Phys. Chem. Lett. 12, 12426–12436 (2021).

    Article  CAS  PubMed  Google Scholar 

  246. Zhu, H. et al. Observation of piezoelectricity in free-standing monolayer MoS2. Nat. Nanotechnol. 10, 151–155 (2015).

    Article  CAS  PubMed  Google Scholar 

  247. Blonsky, M. N., Zhuang, H. L., Singh, A. K. & Hennig, R. G. Ab initio prediction of piezoelectricity in two-dimensional materials. ACS Nano 9, 9885–9891 (2015).

    Article  CAS  PubMed  Google Scholar 

  248. Seol, M. et al. Triboelectric series of 2D layered materials. Adv. Mater. 30, 1801210 (2018).

    Article  Google Scholar 

  249. Pace, G. et al. 2D materials-based electrochemical triboelectric nanogenerators. Adv. Mater. 35, 2211037 (2023).

    Article  CAS  Google Scholar 

  250. Liu, Y., Ping, J. & Ying, Y. Recent progress in 2D-nanomaterial-based triboelectric nanogenerators. Adv. Funct. Mater. 31, 2009994 (2021).

    Article  CAS  Google Scholar 

  251. Wang, L. et al. 2D photovoltaic devices: progress and prospects. Small Methods 2, 1700294 (2018).

    Article  Google Scholar 

  252. Aftab, S. et al. Bulk photovoltaic effect in 2D materials for solar-power harvesting. Adv. Opt. Mater. 10, 2201288 (2022).

    Article  CAS  Google Scholar 

  253. Li, D. et al. Recent progress of two-dimensional thermoelectric materials. Nanomicro Lett. 12, 36 (2020).

    PubMed  PubMed Central  Google Scholar 

  254. Zhang, Y. et al. 2D black phosphorus for energy storage and thermoelectric applications. Small 13, 1700661 (2017).

    Article  Google Scholar 

  255. Kanahashi, K., Pu, J. & Takenobu, T. 2D materials for large-area flexible thermoelectric devices. Adv. Energy Mater. 10, 1902842 (2020).

    Article  CAS  Google Scholar 

  256. Min, J. et al. An autonomous wearable biosensor powered by a perovskite solar cell. Nat. Electron. 6, 630–641 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  257. Cosnier, S., Le Goff, A. & Holzinger, M. Towards glucose biofuel cells implanted in human body for powering artificial organs: review. Electrochem. Commun. 38, 19–23 (2014).

    Article  CAS  Google Scholar 

  258. Yīng, Y. & Zülicke, U. Magnetoelectricity in two-dimensional materials. Adv. Phys. X 7, 2032343 (2022).

    Google Scholar 

  259. Zhang, J. et al. Distorted monolayer ReS2 with low-magnetic-field controlled magnetoelectricity. ACS Nano 13, 2334–2340 (2019).

    CAS  PubMed  Google Scholar 

  260. Gao, Y., Gao, M. & Lu, Y. Two-dimensional multiferroics. Nanoscale 13, 19324–19340 (2021).

    Article  CAS  PubMed  Google Scholar 

  261. Ma, B. E. X., Jiang, Z. & Lin, Y. Flexible energy storage devices for wearable bioelectronics. J. Semiconduct. 42, 101602 (2021).

    Article  CAS  Google Scholar 

  262. Sheng, H. et al. Recent advances of energy solutions for implantable bioelectronics. Adv. Healthc. Mater. 10, 2100199 (2021).

    Article  CAS  Google Scholar 

  263. Jeong, Y. R., Lee, G., Park, H. & Ha, J. S. Stretchable, skin-attachable electronics with integrated energy storage devices for biosignal monitoring. Acc. Chem. Res. 52, 91–99 (2019).

    Article  CAS  PubMed  Google Scholar 

  264. Lukatskaya, M. R. et al. Ultra-high-rate pseudocapacitive energy storage in two-dimensional transition metal carbides. Nat. Energy 2, 17105 (2017).

    Article  CAS  Google Scholar 

  265. Wang, J., Malgras, V., Sugahara, Y. & Yamauchi, Y. Electrochemical energy storage performance of 2D nanoarchitectured hybrid materials. Nat. Commun. 12, 3563 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  266. Gao, M. et al. Two-dimensional materials for wireless power transfer. Device 1, 100022 (2023).

    Article  Google Scholar 

  267. Guo, S. et al. Integrated contact lens sensor system based on multifunctional ultrathin MoS2 transistors. Matter 4, 969–985 (2021).

    Article  CAS  PubMed  Google Scholar 

  268. Zhang, X. et al. Two-dimensional MoS2-enabled flexible rectenna for Wi-Fi-band wireless energy harvesting. Nature 566, 368–372 (2019).

    Article  PubMed  Google Scholar 

  269. Chowdhury, S. F., Yogeesh, M. N., Banerjee, S. K. & Akinwande, D. Black phosphorous thin-film transistor and RF circuit applications. IEEE Electron. Device Lett. 37, 449–451 (2016).

    Article  CAS  Google Scholar 

  270. Zhou, X. et al. Conformal screen printed graphene 4 × 4 wideband MIMO antenna on flexible substrate for 5G communication and IoT applications. 2D Mater. 8, 045021 (2021).

    Article  CAS  Google Scholar 

  271. Isobe, H., Xu, S. Y. & Fu, L. High-frequency rectification via chiral Bloch electrons. Sci. Adv. 6, eaay2497 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  272. Huang, X. et al. Highly flexible and conductive printed graphene for wireless wearable communications applications. Sci. Rep. 5, 18298 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  273. Fan, X. et al. Flexible two-dimensional MXene-based antennas. Nanoscale Horiz. 8, 309–319 (2023).

    Article  CAS  PubMed  Google Scholar 

  274. Shao, Y. et al. Room-temperature high-precision printing of flexible wireless electronics based on MXene inks. Nat. Commun. 13, 3223 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  275. Ge, R. et al. A library of atomically thin 2D materials featuring the conductive-point resistive switching phenomenon. Adv. Mater. 33, 2007792 (2021).

    Article  CAS  Google Scholar 

  276. Kim, M. et al. Monolayer molybdenum disulfide switches for 6G communication systems. Nat. Electron. 5, 367–373 (2022).

    Article  CAS  Google Scholar 

  277. Boutry, C. M. et al. Biodegradable and flexible arterial-pulse sensor for the wireless monitoring of blood flow. Nat. Biomed. Eng. 3, 47–57 (2019).

    Article  CAS  PubMed  Google Scholar 

  278. Zhao, Z., Spyropoulos, G. D., Cea, C., Gelinas, J. N. & Khodagholy, D. Ionic communication for implantable bioelectronics. Sci. Adv. 8, eabm7851 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  279. Zhao, B., Mao, J., Zhao, J., Yang, H. & Lian, Y. The role and challenges of body channel communication in wearable flexible electronics. IEEE Trans. Biomed. Circuits Syst. 14, 283–296 (2020).

    Article  PubMed  Google Scholar 

  280. Aran, K., Goldsmith, B. & Moarefian, M. Applications of graphene field effect biosensors for biological sensing. Adv. Biochem. Eng. Biotechnol. 187, 37–70 (2024).

    PubMed  Google Scholar 

  281. Aran, K. & Goldsmith, B. R. CRISPR quality control on a chip. Nat. Rev. Bioeng. 2, 194–195 (2024).

    Article  Google Scholar 

  282. Zaaba, N. et al. Synthesis of graphene oxide using modified hummers method: solvent influence. Procedia Eng. 184, 469–477 (2017).

    Article  CAS  Google Scholar 

  283. Liu, S. et al. Boron nitride nanopores: highly sensitive DNA single-molecule detectors. Adv. Mater. 25, 4549–4554 (2013).

    Article  CAS  PubMed  Google Scholar 

  284. Llenas, M. et al. Sustainable synthesis of highly biocompatible 2D boron nitride nanosheets. Biomedicines 10, 3238 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  285. Shivayogimath, A. et al. Do-it-yourself transfer of large-area graphene using an office laminator and water. Chem. Mater. 31, 2328–2336 (2019).

    Article  CAS  Google Scholar 

  286. Her, M., Beams, R. & Novotny, L. Graphene transfer with reduced residue. Phys. Lett. A 377, 1455–1458 (2013).

    Article  CAS  Google Scholar 

  287. Zhao, Y. et al. Large-area transfer of two-dimensional materials free of cracks, contamination and wrinkles via controllable conformal contact. Nat. Commun. 13, 4409 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  288. Weidling, A. M., Turkani, V. S., Akhavan, V., Schroder, K. A. & Swisher, S. L. Large-area photonic lift-off process for flexible thin-film transistors. npj Flex. Electron. 6, 14 (2022).

    Article  CAS  Google Scholar 

  289. Fatima, S. et al. Comparative study between sulfurized MoS2 from molybdenum and molybdenum trioxide precursors for thin-film device applications. ACS Appl. Mater. Interfaces 15, 16308–16316 (2023).

    Article  CAS  PubMed  Google Scholar 

  290. Ko, T. J. et al. Two-dimensional near-atom-thickness materials for emerging neuromorphic devices and applications. iScience 23, 101676 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  291. Lee, G. et al. Artificial neuron and synapse devices based on 2D materials. Small 17, 2100640 (2021).

    Article  CAS  Google Scholar 

  292. Bruno, U. et al. From neuromorphic to neurohybrid: transition from the emulation to the integration of neuronal networks. Neuromorphic Comput. Eng. 3, 023002 (2023).

    Article  Google Scholar 

  293. Mehonic, A. & Kenyon, A. J. Brain-inspired computing needs a master plan. Nature 604, 255–260 (2022).

    Article  CAS  PubMed  Google Scholar 

  294. Ham, D., Park, H., Hwang, S. & Kim, K. Neuromorphic electronics based on copying and pasting the brain. Nat. Electron. 4, 635–644 (2021).

    Article  Google Scholar 

  295. Sharbati, M. T. et al. Low‐power, electrochemically tunable graphene synapses for neuromorphic computing. Adv. Mater. 30, e1802353 (2018).

    Article  Google Scholar 

  296. Zhu, J. et al. Ion gated synaptic transistors based on 2D van der Waals crystals with tunable diffusive dynamics. Adv. Mater. 30, 1800195 (2018).

    Article  Google Scholar 

  297. McKnight, R. F. et al. Lithium toxicity profile: a systematic review and meta-analysis. Lancet 379, 721–728 (2012).

    Article  CAS  PubMed  Google Scholar 

  298. Kireev, D. et al. Metaplastic and energy-efficient biocompatible graphene artificial synaptic transistors for enhanced accuracy neuromorphic computing. Nat. Commun. 13, 4386 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  299. Chen, Q. et al. Long-term electrical conductivity stability of graphene under uncontrolled ambient conditions. Carbon N. Y. 133, 410–415 (2018).

    Article  CAS  Google Scholar 

  300. Kumar, N. et al. Graphene field effect biosensor for concurrent and specific detection of SARS-CoV-2 and influenza. ACS Nano 17, 18629–18640 (2023).

    Article  CAS  PubMed  Google Scholar 

  301. Yeh, C. N., Raidongia, K., Shao, J., Yang, Q. H. & Huang, J. On the origin of the stability of graphene oxide membranes in water. Nat. Chem. 7, 166–170 (2015).

    Article  CAS  Google Scholar 

  302. Qiao, Y. et al. Graphene-based wearable sensors. Nanoscale 11, 18923–18945 (2019).

    Article  CAS  PubMed  Google Scholar 

  303. Krishnan, S. K., Singh, E., Singh, P., Meyyappan, M. & Nalwa, H. S. A review on graphene-based nanocomposites for electrochemical and fluorescent biosensors. RSC Adv. 9, 8778–8881 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  304. Nie, Y. et al. Stable silicene wrapped by graphene in air. ACS Appl. Mater. Interfaces 12, 40620–40628 (2020).

    Article  CAS  PubMed  Google Scholar 

  305. Molle, A. et al. Silicene, silicene derivatives, and their device applications. Chem. Soc. Rev. 47, 6370–6387 (2018).

    Article  CAS  PubMed  Google Scholar 

  306. Lei, X., Zatsepin, A. F. & Boukhvalov, D. W. Chemical instability of free-standing boron monolayers and properties of oxidized borophene sheets. Phys. E Low Dimens. Syst. Nanostruct. 120, 114082 (2020).

    Article  CAS  Google Scholar 

  307. Shen, J. et al. Organic gas sensing performance of the borophene van der Waals heterostructure. J. Phys. Chem. C. 125, 427–435 (2021).

    Article  CAS  Google Scholar 

  308. Chegel, R. & Behzad, S. Tunable electronic, optical, and thermal properties of two-dimensional germanene via an external electric field. Sci. Rep. 10, 704 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  309. Chia, H. L., Sturala, J., Webster, R. D. & Pumera, M. Functionalized 2D germanene and silicene enzymatic system. Adv. Funct. Mater. 31, 2011125 (2021).

    Article  CAS  Google Scholar 

  310. Favron, A. et al. Photooxidation and quantum confinement effects in exfoliated black phosphorus. Nat. Mater. 14, 826–832 (2015).

    Article  CAS  PubMed  Google Scholar 

  311. Li, P. et al. Air-stable black phosphorus devices for ion sensing. ACS Appl. Mater. Interfaces 7, 24396–24402 (2015).

    Article  CAS  PubMed  Google Scholar 

  312. Chen, R. et al. High-crystallinity and high-temperature stability of the hexagonal boron nitride film grown on sapphire. Cryst. Growth Des. 23, 8783–8792 (2023).

    Article  CAS  Google Scholar 

  313. Liu, H. et al. Highly sensitive humidity sensors based on hexagonal boron nitride nanosheets for contactless sensing. Nano Res. 16, 10279–10286 (2023).

    Article  CAS  Google Scholar 

  314. Gao, J. et al. Aging of transition metal dichalcogenide monolayers. ACS Nano 10, 2628–2635 (2016).

    Article  CAS  PubMed  Google Scholar 

  315. Mirabelli, G. et al. Air sensitivity of MoS2, MoSe2, MoTe2, HfS2, and HfSe2. J. Appl. Phys. 120, 125102 (2016).

    Article  Google Scholar 

  316. Şar, H. et al. Long-term stability control of CVD-grown monolayer MoS2. phys. status solidi Rapid Res. Lett. 13, 1800687 (2019).

    Article  Google Scholar 

  317. Rajput, N. S., Kotbi, A., Kaja, K. & Jouiad, M. Long-term aging of CVD grown 2D-MoS2 nanosheets in ambient environment. npj Mater. Degrad. 6, 75 (2022).

    Article  CAS  Google Scholar 

  318. Singh, S., Deb, J., Sarkar, U. & Sharma, S. MoSe2 crystalline nanosheets for room-temperature ammonia sensing. ACS Appl. Nano Mater. 3, 9375–9384 (2020).

    Article  CAS  Google Scholar 

  319. Shen, H. et al. WS2 nanosheets functionalized by biomimetic lipids with enhanced dispersibility for photothermal and chemo combination therapy. J. Mater. Chem. B 8, 2331–2342 (2020).

    Article  PubMed  Google Scholar 

  320. Li, J., Qi, X., Ye, P., Yang, M. & Xie, M. Construction of WS2/Au-lipid drug delivery system for multiple combined therapy of tumor. J. Drug Deliv. Sci. Technol. 76, 103747 (2022).

    Article  CAS  Google Scholar 

  321. Gammelgaard, L., Whelan, P. R., Booth, T. J. & Bøggild, P. Long-term stability and tree-ring oxidation of WSe2 using phase-contrast AFM. Nanoscale 13, 19238–19246 (2021).

    Article  CAS  PubMed  Google Scholar 

  322. Fathi-Hafshejani, P. et al. Two-dimensional-material-based field-effect transistor biosensor for detecting COVID-19 virus (SARS-CoV-2). ACS Nano 15, 11461–11469 (2021).

    Article  CAS  PubMed  Google Scholar 

  323. Politano, A. et al. Tailoring the surface chemical reactivity of transition-metal dichalcogenide PtTe2 crystals. Adv. Funct. Mater. 28, 1706504 (2018).

    Article  Google Scholar 

  324. Daws, S. et al. Platinum diselenide PtSe2: an ambient-stable material for flexible electronics. Mater. Sci. Eng. B 283, 115824 (2022).

    Article  CAS  Google Scholar 

  325. Huang, C. et al. InSe nanosheets for efficient NIR-II-responsive drug release. ACS Appl. Mater. Interfaces 11, 27521–27528 (2019).

    Article  CAS  PubMed  Google Scholar 

  326. Jiang, J. et al. Stable InSe transistors with high-field effect mobility for reliable nerve signal sensing. npj 2D Mater. Appl. 3, 29 (2019).

    Article  Google Scholar 

  327. Hong, Y. J., Jeong, H., Cho, K. W., Lu, N. & Kim, D.-H. Wearable and implantable devices for cardiovascular healthcare: from monitoring to therapy based on flexible and stretchable electronics. Adv. Funct. Mater. 29, 1808247 (2019).

    Article  Google Scholar 

Download references

Acknowledgements

Dm.K. acknowledges funding from the US National Science Foundation (NSF) grant #2400494. D.A. acknowledges the Cockrell Family Regents Chair Professorship. Du.K. acknowledges the Kavli Foundation, NSF (ECCS-2024776) and NIH (DP2 EB030992). J.-H.A. and J.H. acknowledge the Ministry of Trade, Industry and Energy (MOTIE) grant funded by the Korean government (MSIT) (20012355, Fully implantable closed-loop Brain to X for voice communication).

Author information

Authors and Affiliations

Authors

Contributions

Dm.K. and D.A. conceived the manuscript. All authors contributed to writing, figure design, discussion and reviewing of the manuscript.

Corresponding author

Correspondence to Dmitry Kireev.

Ethics declarations

Competing interests

The authors declare that they have no competing interests.

Peer review

Peer review information

Nature Reviews Materials thanks the anonymous reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Sankey diagram: https://observablehq.com/@kireevlab/graphene-application-2

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kireev, D., Kutagulla, S., Hong, J. et al. Atomically thin bioelectronics. Nat Rev Mater 9, 906–922 (2024). https://doi.org/10.1038/s41578-024-00728-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41578-024-00728-4

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing