Abstract
Control over the dispersion of the refractive index is essential to the performance of most modern optical systems. These range from laboratory microscopes to optical fibres and even consumer products, such as photography cameras. Conventional methods of engineering optical dispersion are based on altering material composition, but this process is time-consuming and difficult, and the resulting optical performance is often limited to a certain bandwidth. Recent advances in nanofabrication have led to high-quality metasurfaces with the potential to perform at a level comparable to their state-of-the-art refractive counterparts. In this Review, we introduce the underlying physical principles of metasurface optical elements (with a focus on metalenses) and, drawing on various works in the literature, discuss how their constituent nanostructures can be designed with a highly customizable effective index of refraction that incorporates both phase and dispersion engineering. These metasurfaces can serve as an essential component for achromatic optics with unprecedented levels of performance across a broad bandwidth or provide highly customized, engineered chromatic behaviour in instruments such as miniature aberration-corrected spectrometers. We identify some key areas in which these achromatic or dispersion-engineered metasurface optical elements could be useful and highlight some future challenges, as well as promising ways to overcome them.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
£14.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 digital issues and online access to articles
£99.00 per year
only £8.25 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Grüner-Nielsen, L. et al. Dispersion-compensating fibers. J. Lightwave Technol. 23, 3566–3579 (2005).
Smith, G. H., Novak, D. & Ahmed, Z. Overcoming chromatic-dispersion effects in fiber-wireless systems incorporating external modulators. IEEE Trans. Microw. Theory Tech. 45, 1410–1415 (1997).
Brabec, T. & Krausz, F. Intense few-cycle laser fields: frontiers of nonlinear optics. Rev. Mod. Phys. 72, 545 (2000).
Weiner, A. M. Femtosecond pulse shaping using spatial light modulators. Rev. Sci. Instrum. 71, 1929–1960 (2000).
Strickland, D. & Mourou, G. Compression of amplified chirped optical pulses. Opt. Commun. 55, 447–449 (1985).
Herzberger, M. & McClure, N. R. The design of superachromatic lenses. Appl. Opt. 2, 553–560 (1963).
Newton, I. A new theory about light and colors. Am. J. Phys. 61, 108–112 (1993).
Hartmann, P. Optical Glass (SPIE, 2014).
Hartmann, P., Jedamzik, R., Reichel, S. & Schreder, B. Optical glass and glass ceramic historical aspects and recent developments: a Schott view. Appl. Opt. 49, D157–D176 (2010).
Voelkel, R. Wafer-scale micro-optics fabrication. Adv. Opt. Technol. 1, 135–150 (2012).
Khorasaninejad, M. & Capasso, F. Metalenses: versatile multifunctional photonic components. Science 358, eaam8100 (2017).
Lalanne, P. & Chavel, P. Metalenses at visible wavelengths: past, present, perspectives. Laser Photonics Rev. 11, 1600295 (2017).
Li, B., Piyawattanametha, W. & Qiu, Z. Metalens-based miniaturized optical systems. Micromachines 10, 310 (2019).
Mueller, J. P. B., Rubin, N. A., Devlin, R. C., Groever, B. & Capasso, F. Metasurface polarization optics: independent phase control of arbitrary orthogonal states of polarization. Phys. Rev. Lett. 118, 113901 (2017).
Arbabi, A., Horie, Y., Bagheri, M. & Faraon, A. Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission. Nat. Nanotechnol. 10, 937–943 (2015).
Ding, F., Wang, Z., He, S., Shalaev, V. M. & Kildishev, A. V. Broadband high-efficiency half-wave plate: a supercell-based plasmonic metasurface approach. ACS Nano 9, 4111–4119 (2015).
Kildishev, A. V., Boltasseva, A. & Shalaev, V. M. Planar photonics with metasurfaces. Science 339, 1232009 (2013).
Yu, N. et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science 334, 333–337 (2011).
Sun, S. et al. Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves. Nat. Mater. 11, 426–431 (2012).
Sun, S. et al. High-efficiency broadband anomalous reflection by gradient meta-surfaces. Nano Lett. 12, 6223–6229 (2012).
Devlin, R. C., Khorasaninejad, M., Chen, W. T., Oh, J. & Capasso, F. Broadband high-efficiency dielectric metasurfaces for the visible spectrum. Proc. Natl Acad. Sci. USA 113, 10473–10478 (2016).
Liang, Y. et al. High-efficiency, near-diffraction limited, dielectric metasurface lenses based on crystalline titanium dioxide at visible wavelengths. Nanomaterials 8, 288 (2018).
Brière, G. et al. An etching-free approach toward large-scale light-emitting metasurfaces. Adv. Opt. Mater. 7, 1801271 (2019).
Chen, B. H. et al. GaN metalens for pixel-level full-color routing at visible light. Nano Lett. 17, 6345–6352 (2017).
Sell, D., Yang, J., Doshay, S., Zhang, K. & Fan, J. A. Visible light metasurfaces based on single-crystal silicon. ACS Photonics 3, 1919–1925 (2016).
Zhou, Z. et al. Efficient silicon metasurfaces for visible light. ACS Photonics 4, 544–551 (2017).
Wang, B. et al. Visible-frequency dielectric metasurfaces for multiwavelength achromatic and highly dispersive holograms. Nano Lett. 16, 5235–5240 (2016).
Ye, M., Peng, Y. & Yi, Y. S. Silicon-rich silicon nitride thin films for subwavelength grating metalens. Opt. Mater. Express 9, 1200–1207 (2019).
Zhan, A. et al. Low-contrast dielectric metasurface optics. ACS Photonics 3, 209–214 (2016).
Khorasaninejad, M. et al. Metalenses at visible wavelengths: diffraction-limited focusing and subwavelength resolution imaging. Science 352, 1190–1194 (2016).
Iyer, P. P. et al. Unidirectional luminescence from quantum well metasurfaces. Preprint at arXiv https://arxiv.org/abs/1905.01816v1 (2019).
Li, Q. et al. Single-mode GaN nanowire lasers. Opt. Express 20, 17873–17879 (2012).
Li, C. et al. Nonpolar InGaN/GaN core–shell single nanowire lasers. Nano Lett. 17, 1049–1055 (2017).
Liang, H. et al. Ultrahigh numerical aperture metalens at visible wavelengths. Nano Lett. 18, 4460–4466 (2018).
Chen, W. T. et al. Immersion meta-lenses at visible wavelengths for nanoscale imaging. Nano Lett. 17, 3188–3194 (2017).
He, D. et al. Polarization-insensitive meta-lens doublet with large view field in the ultraviolet region. Proc. SPIE Int. Symp. Adv. Opt. Manufact. Testing Technol. https://doi.org/10.1117/12.2505584 (2019).
Deng, Y. et al. All-silicon broadband ultraviolet metasurfaces. Adv. Mater. 30, 1802632 (2018).
Ollanik, A. J., Smith, J. A., Belue, M. J. & Escarra, M. D. High-efficiency all-dielectric Huygens metasurfaces from the ultraviolet to the infrared. ACS Photonics 5, 1351–1358 (2018).
Zhang, C. et al. Low-loss metasurface optics down to the deep ultraviolet region. Light Sci. Appl. 9, 55 (2020).
Engelberg, J. et al. Near-IR wide-field-of-view Huygens metalens for outdoor imaging applications. Nanophotonics 9, 361–370 (2020).
Arbabi, A. et al. Miniature optical planar camera based on a wide-angle metasurface doublet corrected for monochromatic aberrations. Nat. Commun. 7, 13682 (2016).
Vo, S. et al. Sub-wavelength grating lenses with a twist. IEEE Photonics Technol. Lett. 26, 1375–1378 (2014).
Arbabi, A., Horie, Y., Ball, A. J., Bagheri, M. & Faraon, A. Subwavelength-thick lenses with high numerical apertures and large efficiency based on high-contrast transmitarrays. Nat. Commun. 6, 7069 (2015).
Fan, Q. et al. A high numerical aperture, polarization-insensitive metalens for long-wavelength infrared imaging. Appl. Phys. Lett. 113, 201104 (2018).
Zuo, H. et al. High-efficiency all-dielectric metalenses for mid-infrared imaging. Adv. Opt. Mater. 5, 1700585 (2017).
Yan, C. et al. Midinfrared real-time polarization imaging with all-dielectric metasurfaces. Appl. Phys. Lett. 114, 161904 (2019).
Zhang, L. et al. Ultra-thin high-efficiency mid-infrared transmissive Huygens meta-optics. Nat. Commun. 9, 1481 (2018).
Shalaginov, M. Y. et al. A single-layer panoramic metalens with >170° diffraction-limited field of view. Preprint at arXiv https://arxiv.org/abs/1908.03626 (2019).
Aieta, F. et al. Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces. Nano Lett. 12, 4932–4936 (2012).
Aieta, F., Genevet, P., Kats, M. & Capasso, F. Aberrations of flat lenses and aplanatic metasurfaces. Opt. Express 21, 31530–31539 (2013).
Liang, H. et al. High performance metalenses: numerical aperture, aberrations, chromaticity, and trade-offs. Optica 6, 1461–1470 (2019).
Groever, B., Chen, W. T. & Capasso, F. Meta-lens doublet in the visible region. Nano Lett. 17, 4902–4907 (2017).
Faraji-Dana, M. et al. Compact folded metasurface spectrometer. Nat. Commun. 9, 4196 (2018).
Faraji-Dana, M. et al. Hyperspectral imager with folded metasurface optics. ACS Photonics 6, 2161–2167 (2019).
Zhu, A. Y. et al. Compact aberration-corrected spectrometers in the visible using dispersion-tailored metasurfaces. Adv. Opt. Mater. 7, 1801144 (2019).
Zhu, A. Y. et al. Ultra-compact visible chiral spectrometer with meta-lenses. APL Photonics 2, 036103 (2017).
Khorasaninejad, M., Chen, W. T., Oh, J. & Capasso, F. Super-dispersive off-axis meta-lenses for compact high resolution spectroscopy. Nano Lett. 16, 3732–3737 (2016).
Nikolova, L. & Ramanujam, P. S. Polarization Holography (Cambridge Univ. Press, 2009).
Pancharatnam, S. Generalized theory of interference, and its applications. Proc. Indian Acad. Sci. Sect. A 44, 247–262 (1956).
Gori, F. Measuring Stokes parameters by means of a polarization grating. Opt. Lett. 24, 584–586 (1999).
Bomzon, Z., Biener, G., Kleiner, V. & Hasman, E. Space-variant Pancharatnam–Berry phase optical elements with computer-generated subwavelength gratings. Opt. Lett. 27, 1141–1143 (2002).
Escuti, M. J., Kim, J. & Kudenov, M. W. Controlling light with geometric-phase holograms. Opt. Photonics News 27, 22–29 (2016).
Kikuta, H., Ohira, Y. & Iwata, K. Achromatic quarter-wave plates using the dispersion of form birefringence. Appl. Opt. 36, 1566–1572 (1997).
Zhao, Y., Belkin, M. A. & Alù, A. Twisted optical metamaterials for planarized ultrathin broadband circular polarizers. Nat. Commun. 3, 870 (2012).
Pu, M. et al. Catenary optics for achromatic generation of perfect optical angular momentum. Sci. Adv. 1, e1500396 (2015).
Wang, D. et al. Broadband high-efficiency chiral splitters and holograms from dielectric nanoarc metasurfaces. Small 15, 1900483 (2019).
Chen, W. T., Zhu, A. Y., Sisler, J., Bharwani, Z. & Capasso, F. A broadband achromatic polarization-insensitive metalens consisting of anisotropic nanostructures. Nat. Commun. 10, 355 (2019).
Yoon, G., Lee, D., Nam, K. T. & Rho, J. Geometric metasurface enabling polarization independent beam splitting. Sci. Rep. 8, 9468 (2018).
Zhang, X. et al. Polarization-independent broadband meta-holograms via polarization-dependent nanoholes. Nanoscale 10, 9304–9310 (2018).
Zhan, T., Xiong, J., Lee, Y.-H. & Wu, S.-T. Polarization-independent Pancharatnam-Berry phase lens system. Opt. Express 26, 35026–35033 (2018).
She, A., Zhang, S., Shian, S., Clarke, D. R. & Capasso, F. Large area metalenses: design, characterization, and mass manufacturing. Opt. Express 26, 1573–1585 (2018).
Kenney, M. et al. Large area metasurface lenses in the NIR region. Proc. SPIE Model. Aspects Opt. Metrology VII https://doi.org/10.1117/12.2527157 (2019).
Ra’di, Y., Sounas, D. L. & Alù, A. Metagratings: beyond the limits of graded metasurfaces for wave front control. Phys. Rev. Lett. 119, 067404 (2017).
Fan, Z. et al. Perfect diffraction with multiresonant bianisotropic metagratings. ACS Photonics 5, 4303–4311 (2018).
Paniagua-Domínguez, R. et al. Generalized Brewster effect in dielectric metasurfaces. Nat. Commun. 7, 10362 (2016).
Kamali, S. M. et al. Angle-multiplexed metasurfaces: encoding independent Wavefronts in a single metasurface under different illumination angles. Phys. Rev. X 7, 041056 (2017).
Wenwei, L. et al. Metasurface enabled wide-angle Fourier lens. Adv. Mater. 30, 1706368 (2018).
Qiu, M. et al. Angular dispersions in terahertz metasurfaces: physics and applications. Phys. Rev. Appl. 9, 054050 (2018).
Backer, A. S. Computational inverse design for cascaded systems of metasurface optics. Opt. Express 27, 30308–30331 (2019).
Pestourie, R. et al. Inverse design of large-area metasurfaces. Opt. Express 26, 33732–33747 (2018).
Jensen, J. S. & Sigmund, O. Topology optimization for nano-photonics. Laser Photonics Rev. 5, 308–321 (2011).
Lalau-Keraly, C. M., Bhargava, S., Miller, O. D. & Yablonovitch, E. Adjoint shape optimization applied to electromagnetic design. Opt. Express 21, 21693–21701 (2013).
Molesky, S. et al. Inverse design in nanophotonics. Nat. Photonics 12, 659–670 (2018).
Burger, M., Osher, S. J. & Yablonovitch, E. Inverse problem techniques for the design of photonic crystals. IEICE Trans. Electron. 87, 258–265 (2004).
Miller, O. D. Photonic design: from fundamental solar cell physics to computational inverse design. Preprint at arXiv https://arxiv.org/abs/1308.0212 (2013).
Sell, D., Yang, J., Doshay, S., Yang, R. & Fan, J. A. Large-angle, multifunctional metagratings based on freeform multimode geometries. Nano Lett. 17, 3752–3757 (2017).
Phan, T. et al. High-efficiency, large-area, topology-optimized metasurfaces. Light Sci. Appl. 8, 48 (2019).
Byrnes, S. J., Lenef, A., Aieta, F. & Capasso, F. Designing large, high-efficiency, high-numerical-aperture, transmissive meta-lenses for visible light. Opt. Express 24, 5110–5124 (2016).
Lin, Z., Liu, V., Pestourie, R. & Johnson, S. G. Topology optimization of freeform large-area metasurfaces. Opt. Express 27, 15765–15775 (2019).
Zhang, H., Hsu, C. W. & Miller, O. D. Scattering concentration bounds: brightness theorems for waves. Optica 6, 1321–1327 (2018).
Lin, Z. & Johnson, S. G. Overlapping domains for topology optimization of large-area metasurfaces. Opt. Express 27, 32445–32453 (2019).
Torfeh, M. & Arbabi, A. Analysis and design of metasurfaces using the discrete-space impulse response technique. Proc. SPIE High Contrast Metastruct. VIII https://doi.org/10.1117/12.2510098 (2019).
Chung, H. & Miller, O. D. High-NA achromatic metalenses by inverse design. Opt. Express 28, 6945–6965 (2020).
Aieta, F., Kats, M. A., Genevet, P. & Capasso, F. Multiwavelength achromatic metasurfaces by dispersive phase compensation. Science 347, 1342–1345 (2015).
Chen, W. T. et al. A broadband achromatic metalens for focusing and imaging in the visible. Nat. Nanotechnol. 13, 220–226 (2018).
Kempe, M., Stamm, U., Wilhelmi, B. & Rudolph, W. Spatial and temporal transformation of femtosecond laser pulses by lenses and lens systems. J. Opt. Soc. Am. B 9, 1158–1165 (1992).
Weiner, A. M. in Ultrafast Optics (Wiley, 2008).
Almeida, V. R., Xu, Q., Barrios, C. A. & Lipson, M. Guiding and confining light in void nanostructure. Opt. Lett. 29, 1209–1211 (2004).
Tong, L., Lou, J. & Mazur, E. Single-mode guiding properties of subwavelength-diameter silica and silicon wire waveguides. Opt. Express 12, 1025–1035 (2004).
Wang, S. et al. A broadband achromatic metalens in the visible. Nat. Nanotechnol. 13, 227–232 (2018).
Li, Y. et al. Achromatic flat optical components via compensation between structure and material dispersions. Sci. Rep. 6, 19885 (2016).
Veronis, G. & Fan, S. Modes of subwavelength plasmonic slot waveguides. J. Lightwave Technol. 25, 2511–2521 (2007).
Pu, M., Ma, X., Guo, Y., Li, X. & Luo, X. Theory of microscopic meta-surface waves based on catenary optical fields and dispersion. Opt. Express 26, 19555–19562 (2018).
Shrestha, S., Overvig, A. C., Lu, M., Stein, A. & Yu, N. Broadband achromatic dielectric metalenses. Light Sci. Appl. 7, 85 (2018).
Arbabi, E., Arbabi, A., Kamali, S. M., Horie, Y. & Faraon, A. Controlling the sign of chromatic dispersion in diffractive optics with dielectric metasurfaces. Optica 4, 625–632 (2017).
Khorasaninejad, M. et al. Achromatic metalens over 60 nm bandwidth in the visible and metalens with reverse chromatic dispersion. Nano Lett. 17, 1819–1824 (2017).
Shkondin, E. et al. Fabrication of high aspect ratio TiO2 and Al2O3 nanogratings by atomic layer deposition. J. Vac. Sci. Technol. A 34, 031605 (2016).
Zhou, Y. et al. Multifunctional metaoptics based on bilayer metasurfaces. Light Sci. Appl. 8, 80 (2019).
Pu, M., Li, X., Guo, Y., Ma, X. & Luo, X. Nanoapertures with ordered rotations: symmetry transformation and wide-angle flat lensing. Opt. Express 25, 31471–31477 (2017).
Yin, X. et al. Hyperbolic metamaterial devices for wavefront manipulation. Laser Photonics Rev. 13, 1800081 (2019).
Poddubny, A., Iorsh, I., Belov, P. & Kivshar, Y. Hyperbolic metamaterials. Nat. Photonics 7, 948–957 (2013).
Lin, R. J. et al. Achromatic metalens array for full-colour light-field imaging. Nat. Nanotechnol. 14, 227–231 (2019).
Chen, N., Zuo, C., Lam, E. Y. & Lee, B. 3D imaging based on depth measurement technologies. Sensors 18, 3711 (2018).
Fan, Z.-B. et al. A broadband achromatic metalens array for integral imaging in the visible. Light Sci. Appl. 8, 67 (2019).
Hoffman, D. M., Girshick, A. R., Akeley, K. & Banks, M. S. Vergence–accommodation conflicts hinder visual performance and cause visual fatigue. J. Vision 8, 33 (2008).
Liu, S. et al. A multi-plane optical see-through head mounted display design for augmented reality applications. J. Soc. Inf. Display 24, 246–251 (2016).
Chen, W. T. et al. Broadband achromatic metasurface-refractive optics. Nano Lett. 18, 7801–7808 (2018).
Stone, T. & George, N. Hybrid diffractive-refractive lenses and achromats. Appl. Opt. 27, 2960–2971 (1988).
Sawant, R. et al. Mitigating chromatic dispersion with hybrid optical metasurfaces. Adv. Mater. 31, 1805555 (2019).
Kurvits, J. A., Jiang, M. & Zia, R. Comparative analysis of imaging configurations and objectives for Fourier microscopy. J. Opt. Soc. Am. A 32, 2082–2092 (2015).
Schuller, J. A. et al. Orientation of luminescent excitons in layered nanomaterials. Nat. Nanotechnol. 8, 271–276 (2013).
Gao, N. et al. Ultra-dispersive anomalous diffraction from Pancharatnam-Berry metasurfaces. Appl. Phys. Lett. 113, 113103 (2018).
Zhou, Y., Chen, R. & Ma, Y. Characteristic analysis of compact spectrometer based on off-axis meta-lens. Appl. Sci. 8, 321 (2018).
Chen, W. T. et al. Integrated plasmonic metasurfaces for spectropolarimetry. Nanotechnology 27, 224002 (2016).
Maguid, E. et al. Photonic spin-controlled multifunctional shared-aperture antenna array. Science 352, 1202–1206 (2016).
Pors, A., Nielsen, M. G. & Bozhevolnyi, S. I. Plasmonic metagratings for simultaneous determination of Stokes parameters. Optica 2, 716–723 (2015).
Camayd-Muñoz, P., Roberts, G., Debbas, M., Ballew, C. & Faraon, A. Inverse-designed spectrum splitters for color imaging. Proc. Conf. Lasers Electro-Opt. AM4K, AM4K.3 (2019).
Zhou, Y. et al. Multilayer noninteracting dielectric metasurfaces for multiwavelength metaoptics. Nano Lett. 18, 7529–7537 (2018).
Lee, G.-Y. et al. Metasurface eyepiece for augmented reality. Nat. Commun. 9, 4562 (2018).
Harm, W., Roider, C., Jesacher, A., Bernet, S. & Ritsch-Marte, M. Dispersion tuning with a varifocal diffractive-refractive hybrid lens. Opt. Express 22, 5260–5269 (2014).
Colburn, S., Zhan, A. & Majumdar, A. Metasurface optics for full-color computational imaging. Sci. Adv. 4, eaar2114 (2018).
Aiello, M. D. et al. Achromatic varifocal metalens for the visible spectrum. ACS Photonics 6, 2432–2440 (2019).
Zhang, J., Zhang, L., Huang, K., Duan, Z. & Zhao, F. Polarization-enabled tunable focusing by visible-light metalenses with geometric and propagation phase. J. Opt. 21, 115102 (2019).
Rubin, N. A. et al. Matrix Fourier optics enables a compact full-Stokes polarization camera. Science 365, eaax1839 (2019).
Jang, M. et al. Wavefront shaping with disorder-engineered metasurfaces. Nat. Photonics 12, 84–90 (2018).
Pahlevaninezhad, H. et al. Nano-optic endoscope for high-resolution optical coherence tomography in vivo. Nat. Photonics 12, 540–547 (2018).
Guo, Q. et al. Compact single-shot metalens depth sensors inspired by eyes of jumping spiders. Proc. Natl Acad. Sci. USA 116, 22959–22965 (2019).
Holsteen, A. L., Lin, D., Kauvar, I., Wetzstein, G. & Brongersma, M. L. A light-field metasurface for high-resolution single-particle tracking. Nano Lett. 19, 2267–2271 (2019).
Capasso, F. The future and promise of flat optics: a personal perspective. Nanophotonics 7, 953–957 (2018).
Faklis, D. & Morris, G. M. Polychromatic diffractive lens. US Patent US5589982A (1996).
Faklis, D. & Morris, G. M. Spectral properties of multiorder diffractive lenses. Appl. Opt. 34, 2462–2468 (1995).
Arbabi, E., Arbabi, A., Kamali, S. M., Horie, Y. & Faraon, A. Multiwavelength polarization-insensitive lenses based on dielectric metasurfaces with meta-molecules. Optica 3, 628–633 (2016).
Khorasaninejad, M. et al. Achromatic metasurface lens at telecommunication wavelengths. Nano Lett. 15, 5358–5362 (2015).
Hu, T. et al. Demonstration of color display metasurfaces via immersion lithography on a 12-inch silicon wafer. Opt. Express 26, 19548–19554 (2018).
Park, J.-S. et al. All-glass, large metalens at visible wavelength using deep-ultraviolet projection lithography. Nano Lett. 19, 8673–8682 (2019).
She, A., Zhang, S., Shian, S., Clarke, D. R. & Capasso, F. Adaptive metalenses with simultaneous electrical control of focal length, astigmatism, and shift. Sci. Adv. 4, eaap9957 (2018).
Ahn, S. H. & Guo, L. J. Large-area roll-to-roll and roll-to-plate nanoimprint lithography: a step toward high-throughput application of continuous nanoimprinting. ACS Nano 3, 2304–2310 (2009).
Chen, X. et al. Plasmonic roller lithography. Nanotechnology 30, 105202 (2019).
Geary, J. M. Introduction to Lens Design: With Practical ZEMAX Examples (Willmann-Bell, 2002).
Kamali, S. M., Arbabi, A., Arbabi, E., Horie, Y. & Faraon, A. Decoupling optical function and geometrical form using conformal flexible dielectric metasurfaces. Nat. Commun. 7, 11618 (2016).
Wu, K., Coquet, P., Wang, Q. J. & Genevet, P. Modelling of free-form conformal metasurfaces. Nat. Commun. 9, 3494 (2018).
Wilson, D. W., Maker, P. D., Muller, R. E., Mouroulis, P. Z. & Backlund, J. Recent advances in blazed grating fabrication by electron-beam lithography. Proc. SPIE Curr. Dev. Lens Design Opt. Eng. IV https://doi.org/10.1117/12.510204 (2003).
Arat, K. T. et al. Electron beam lithography on curved or tilted surfaces: Simulations and experiments. J. Vac. Sci. Technol. B 37, 051604 (2019).
Jiang, J. et al. Free-form diffractive metagrating design based on generative adversarial networks. ACS Nano 13, 8872–8878 (2019).
Jiang, J. & Fan, J. A. Global optimization of dielectric metasurfaces using a physics-driven neural network. Nano Lett. 19, 5366–5372 (2019).
An, S. et al. Multifunctional metasurface design with a generative adversarial network. Preprint at arXiv https://arxiv.org/abs/1908.04851 (2019).
Engelberg, J. & Levy, U. The advantages of metalenses over diffractive lenses. Nat. Commun. 11, 1991 (2020).
Decker, M. et al. Imaging performance of polarization-insensitive metalenses. ACS Photonics 6, 1493–1499 (2019).
Banerji, S. et al. Imaging with flat optics: metalenses or diffractive lenses? Optica 6, 805–810 (2019).
Banerji, S., Meem, M., Majumder, A., Sensale-Rodriguez, B. & Menon, R. Imaging over an unlimited bandwidth with a single diffractive surface. Preprint at arXiv https://arxiv.org/abs/1907.06251 (2019).
Banerji, S. et al. Single flat lens enabling imaging in the short-wave infra-red (SWIR) band. OSA Continuum 2, 2968–2974 (2019).
Xie, Y.-Y. et al. Metasurface-integrated vertical cavity surface-emitting lasers for programmable directional lasing emissions. Nat. Nanotechnol. 15, 125–130 (2020).
Huang, M. C. Y., Zhou, Y. & Chang-Hasnain, C. J. A surface-emitting laser incorporating a high-index-contrast subwavelength grating. Nat. Photonics 1, 119–122 (2007).
Li, S.-Q. et al. Phase-only transmissive spatial light modulator based on tunable dielectric metasurface. Science 364, 1087–1090 (2019).
Akselrod, G. M. Optics for automotive lidar: Metasurface beam steering enables solid-state, high-performance lidar. LaserFocusWorld https://www.laserfocusworld.com/optics/article/14036818/metasurface-beam-steering-enables-solidstate-highperformance-lidar (2019).
Luo, X. Subwavelength artificial structures: opening a new era for engineering optics. Adv. Mater. 31, 1804680 (2019).
Li, X. et al. Dispersion engineering in metamaterials and metasurfaces. J. Phys. D Appl. Phys. 51, 054002 (2018).
Li, W. & Fan, S. Nanophotonic control of thermal radiation for energy applications. Opt. Express 26, 15995–16021 (2018).
Luo, X. Engineering optics 2.0: a revolution in optical materials, devices, and systems. ACS Photonics 5, 4724–4738 (2018).
Pu, M., Guo, Y., Ma, X., Li, X. & Luo, X. Methodologies for on-demand dispersion engineering of waves in metasurfaces. Adv. Opt. Mater. 7, 1801376 (2019).
Nemati, A., Wang, Q., Hong, M. & Teng, J. Tunable and reconfigurable metasurfaces and metadevices. Opto-Electron. Adv. 1, 180009 (2018).
Cui, T., Bai, B. & Sun, H.-B. Tunable metasurfaces based on active materials. Adv. Funct. Mater. 29, 1806692 (2019).
Zhang, S. et al. Solid-immersion metalenses for infrared focal plane arrays. Appl. Phys. Lett. 113, 111104 (2018).
Ye, M., Ray, V. & Yi, Y. S. Achromatic flat subwavelength grating lens over whole visible bandwidths. IEEE Photonics Technol. Lett. 30, 955–958 (2018).
Wang, S. et al. Broadband achromatic optical metasurface devices. Nat. Commun. 8, 187 (2017).
Zhou, H., Chen, L., Shen, F., Guo, K. & Guo, Z. Broadband achromatic metalens in the midinfrared range. Phys. Rev. Appl. 11, 024066 (2019).
Zhang, F., Zhang, M., Cai, J., Ou, Y. & Yu, H. Metasurfaces for broadband dispersion engineering through custom-tailored multi-resonances. Appl. Phys. Express 11, 082004 (2018).
Zhao, F. et al. Optimization-free approach for broadband achromatic metalens of high-numerical-aperture with high-index dielectric metasurface. J. Phys. D Appl. Phys. 52, 505110 (2019).
Yu, B., Wen, J., Chen, X. & Zhang, D. An achromatic metalens in the near-infrared region with an array based on a single nano-rod unit. Appl. Phys. Express 12, 092003 (2019).
Lalanne, P. Waveguiding in blazed-binary diffractive elements. J. Opt. Soc. Am. A 16, 2517–2520 (1999).
Wang, S. & Magnusson, R. Theory and applications of guided-mode resonance filters. Appl. Opt. 32, 2606–2613 (1993).
Karagodsky, V., Sedgwick, F. G. & Chang-Hasnain, C. J. Theoretical analysis of subwavelength high contrast grating reflectors. Opt. Express 18, 16973–16988 (2010).
Kuznetsov, A. I., Miroshnichenko, A. E., Brongersma, M. L., Kivshar, Y. S. & Luk’yanchuk, B. Optically resonant dielectric nanostructures. Science 354, aag2472 (2016).
Lin, D., Fan, P., Hasman, E. & Brongersma, M. L. Dielectric gradient metasurface optical elements. Science 345, 298–302 (2014).
Overvig, A. C., Shrestha, S. & Yu, N. Dimerized high contrast gratings. Nanophotonics 7, 1157–1168 (2018).
Decker, M. et al. High-efficiency dielectric Huygens’ surfaces. Adv. Opt. Mater. 3, 813–820 (2015).
Pfeiffer, C. et al. Efficient light bending with isotropic metamaterial Huygens’ surfaces. Nano Lett. 14, 2491–2497 (2014).
Zheng, G. et al. Metasurface holograms reaching 80% efficiency. Nat. Nanotechnol. 10, 308–312 (2015).
Verslegers, L. et al. Planar lenses based on nanoscale slit arrays in a metallic film. Nano Lett. 9, 235–238 (2009).
Guo, Y. et al. Spoof plasmonic metasurfaces with catenary dispersion for two-dimensional wide-angle focusing and imaging. iScience 21, 145–156 (2019).
Luo, X., Tsai, D., Gu, M. & Hong, M. Subwavelength interference of light on structured surfaces. Adv. Opt. Photonics 10, 757–842 (2018).
Acknowledgements
This work was supported by the Defense Advanced Research Projects Agency (DARPA, grant no. HR00111810001). The authors thank Zhujun Shi for helpful discussion on topology optimization.
Author information
Authors and Affiliations
Contributions
W.T.C. researched data for the article. W.T.C., A.Y.Z. and F.C. contributed to the discussion of content and wrote the article.
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Related links
A new centre of excellence for transformative meta-optical systems: https://www.arc.gov.au/2020-arc-centre-excellence-transformative-meta-optical-systems
DARPA extreme-optics programme: https://www.darpa.mil/program/extreme-optics-and-imaging
Leica Inc. developed an instrument for precise alignment of lenses: https://www.osa.org/en-us/meetings/webinar/older/values_of_microscope_objectives/
LightTrans: https://www.lighttrans.com/virtuallab-fusion-product-sheets/metalens-and-metasurface-holograms.html
Lux Research forecasted market opportunity in metamaterials: https://www.luxresearchinc.com/press-releases/lux-research-forecasts-10.7-billion-market-opportunity-in-metamaterial-devices
OSA incubator meeting of flat optics: https://www.osa.org/en-us/meetings/incubator_meetings/2020/flatopticsinc/
PlanOpSim: https://www.planopsim.com/
Samsung research award: https://www.sait.samsung.co.kr/saithome/about/collabo_apply.do
Sony research award: https://www.sony.com/research-award-program#FocusedResearchAward
The World Economic Forum and Scientific American: https://www.scientificamerican.com/article/tiny-lenses-will-enable-design-of-miniature-optical-devices/
Zemax has teamed up with Lumerical: https://apps.lumerical.com/zemax-interoperability-metalens.html
Rights and permissions
About this article
Cite this article
Chen, W.T., Zhu, A.Y. & Capasso, F. Flat optics with dispersion-engineered metasurfaces. Nat Rev Mater 5, 604–620 (2020). https://doi.org/10.1038/s41578-020-0203-3
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41578-020-0203-3
This article is cited by
-
Wide field of view large aperture meta-doublet eyepiece
Light: Science & Applications (2025)
-
Cascaded chiral birefringent media enabled planar lens with programable chromatic aberration
PhotoniX (2024)
-
Microcavity-assisted multi-resonant metasurfaces enabling versatile wavefront engineering
Nature Communications (2024)
-
Intelligent block copolymer self-assembly towards IoT hardware components
Nature Reviews Electrical Engineering (2024)
-
Diffractive optical computing in free space
Nature Communications (2024)